
L U K E K A N I E S

using version
control in system
administration
Luke Kanies runs Reductive Labs (http://reductivelabs
.com), a startup producing OSS software for central-
ized, automated server administration. He has been
a UNIX sysadmin for nine years and has published
multiple articles on UNIX tools and best practices.

luke@madstop.com

V E R S I O N C O N T R O L T O O L S S U C H A S
CVS and Subversion have long been accept-
ed as necessary for software development,
but they serve just as admirably in system
administration, especially when doing cen-
tralized, automated administration, com-
monly called configuration management.
In this article I will discuss some of the ben-
efits of using version control as a system
administrator and then provide some sim-
ple examples for doing so.

What Is Version Control?

Version control software provides a convenient way to
store and manage changes to files over time. They
generally involve a repository for storing all of the file
versions, along with client tools for interacting with
the repository, and most modern tools support net-
work access to the repository. Although the details
vary from tool set to tool set, basically all of them
support a similar subset of actions:

n Add files to the repository
n Commit new changes to the repository, recording

date and author
n Retrieve changes from the repository
n Compare a file with the repository

There are many different version control systems
available, both commercial and open source. They
generally have similar client-side features; where they
differ most is in how the repositories are maintained
or can be used. For instance, CVS and Subversion
(both open source) require a single master version
repository, while GNU Arch (open source) and Bit-
Keeper (commercial) allow for distributed version
repositories, so disconnected users can still perform
versioning operations. This article is focused mostly
on the client side of version control and thus won’t
benefit from the additional features of GNU Arch, so I
will settle for CVS and Subversion for my examples.

CVS is more common than Subversion because it has
been around longer, and it is significantly easier to
compile from scratch, so it is a reasonable choice for
most purposes. Many operating systems now ship
with Subversion installed, though, and Subversion
has some key benefits over CVS, most notably that
using it over a network is significantly better.

The Benefits of Version Control

For those unfamiliar with version control and why it
is so useful, it is worthwhile summarizing some of its

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G V E R S I O N CO NTRO L I N SYSTE M A DM I N I STR ATI O N 49

benefits. Its true value can change dramatically depending on circumstances—in
particular, it becomes far more valuable when many people are modifying the
same files or when the same files are used on many machines—but it provides
some value to nearly every organization.

The two greatest values it provides are a log of all changes you’ve made and the
ability to easily revert to any version. While backups provide something like
this, their granularity is usually relatively low—at most once a day, and often
less. With version control, you decide how much change is worth committing a
new version (usually, one work session correlates to one new version), and you
can always come back and revert to a specific version in one simple command.

An oft-overlooked benefit of version control is that it provides a very easy way to
centralize information. I version-control all of the configuration files in my
home directory (notably not most content files, just the config files—MP3s don’t
belong in version repositories), along with all of the articles I write (including
this one). This makes it easy to have a consistent login environment on all of my
machines, which I find stupendously useful as a sysadmin, and it also makes it
easy to sync data between my desktop and laptop when I travel. I also like com-
mitting changes from my laptop back to a central server when I’m traveling, as
it’s an easy way to make off-site backups of new content.

Version Control for Sysadmins

System administrators using version control software will often find themselves
making decisions that software developers do not encounter. In particular, the
final product of software development is usually wrapped into some kind of
package or binary and shipped to customers as a software release, but the final
product of system-administrative version control is as individual configuration
files on production servers. This difference provides some options that are not
open to most software developers.

Software developers generally make all of their modifications in what is called a
“sandbox,” which is a checked-out copy of the repository in their home directo-
ry. Changes in this sandbox do not modify the repository until they have been
committed, so mistakes can be made and fixed without anyone else knowing or
caring. Developers make their changes, test them, and then commit them to the
repository, which is the first time those changes can affect anyone else.

System administrators do not necessarily need a sandbox, though; they can
check out the files directly on production servers, which can immediately
change the running state of the system. This is an important design point: as a
system administrator, you can choose to use a sandbox, which provides a clean
separation between file modification and deploying those modifications to the
server, or you can choose to modify the files directly on your servers, which pro-
vides no such separation but is much simpler.

I always recommend making your changes in a sandbox whenever possible, par-
tially because it makes the security picture much cleaner (normal users only
modify the repository, and a special user can be used to retrieve new versions)
but also because it forces you to commit any changes you make—you make
your changes, commit them to the repository, and then retrieve them on your
servers (usually automatically, using a tool like Puppet or cfengine). Otherwise,
users can make changes on the production servers without committing them to
the repository, which can be problematic.

The downside of using a sandbox to make all of the changes is that it makes it
more difficult to test changes, since they often must be deployed before you can
test them, and it does add some complexity.

50 ; L O G I N : V O L . 3 0 , N O . 6

One of the other differences in using version control for system administration
is that you will always have to have a privileged system user actually retrieve up-
dates from the repository rather than doing so individually, as developers do.
Only a privileged user will have write access to the files you are maintaining, and
you also won’t want to require that a user be logged in to retrieve file updates.

Per-Server Version Control

Smaller sites may not need centralized version control, especially those with
only one or two servers, but could still benefit from better version records. In
those cases, it might make sense to create a version repository for each server;
this retains the fine granularity of change recording along with the ability to eas-
ily revert to older known-to-be-good configurations while adding very little
maintenance overhead.

CVS’s simplicity makes it perfect for this usage. Create a CVS repository accord-
ing to the documentation at http://www.nongnu.org/cvs/. I will only manage
/etc/apache2 here, but you could just about as easily manage the entire /etc.

This is very simple—just import your /etc/apache2 directory into the server’s
version repository:

$ cd /etc/apache2
$ sudo cvs import -m “Importing” etc/apache2 LAK gibberish
<feedback from CVS>

I use sudo here to do the work, because I make it a policy never to do any work
while logged in directly as root—sudo logs everything I do as root, which I find
extremely valuable. The -m flag to cvs import provides the log message that you
want associated with this change; cvs log retrieves these messages, along with
the date and author of the change, so you can figure out not only what changed
but why (of course, these messages are useless if you don’t provide useful infor-
mation in them). The etc/apache2 argument just tells CVS where to put the
files inside the repository, which we will just map directly to the system.

The next two arguments are basically useless to sysadmins, although I assume
that developers find them useful. I usually use my initials for the second argu-
ment (which is normally a vendor tag) and some gibberish for the third argu-
ment (which is supposed to be a release name but strangely cannot start with a
number or contain any non-alpha characters).

A desirable but somewhat surprising aspect of this import is that it does not
modify anything in /etc/apache2, it just copies the state of the directory into the
repository.

Once the files are imported, check them out into a temporary location and then
copy them into place:

$ cd /tmp
$ sudo cvs checkout etc/apache2
<feedback from CVS>
$ cd /tmp/etc/apache2
$ sudo cp -R . /etc/apache2

The CVS checkout creates the entire path in my current directory, so in this case
it creates /tmp/etc/apache2, with the versioned content in it.

I copy the files into place because CVS is not able to manage symlinks, which
are heavily used in Debian’s Apache2 configuration (which is what I am using).
Copying the files allows me to just put the now-versioned files in place without
messing with the symlinks.

The only difference you will notice in /etc/apache2 is the presence of a CVS di-
rectory in each subdirectory, which is used by CVS to manage file versions. Do

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G V E R S I O N CO NTRO L I N SYSTE M A DM I N I STR ATI O N 51

not modify or delete this directory or its contents, as doing so will effectively
disable CVS.

This system requires only one addition to your normal workflow: after you make
a change to a configuration file, commit that change to CVS. For instance, here
is what it would look like modifying one of your virtual host configurations:

$ cd /etc/apache2/sites-available
$ sudo vi reductivelabs.com
<edit file>
$ sudo cvs ci -m “Modifying rewrite rules” reductivelabs.com
<feedback from CVS>

CVS finds the change and commits it to your repository. If you do not specify a
file on the command line, CVS will search the entire directory tree looking for
changes. Sometimes this is desirable, but not always. File modifications are all
stored relative to the repository root, so you do not have to worry about dupli-
cate file names within a repository—in this case, CVS uses its control directory
to construct the path to the file I’ve modified, etc/apache2/sites-available/
reducctivelabs.com, and applies the change to the equivalent file in the
repository.

This may not seem useful—after all, you do have backups, right?—but it be-
comes incredibly valuable when you accidentally break your configuration and
you need to restore immediately, which you can do by just updating to yester-
day’s revision (as one way of reverting). I’ve often made changes that I thought
worked just fine only to figure out a week or more later that the change broke
some small part of my site; and I usually only find it out when it’s suddenly a
crisis but it’s been long enough that I don’t remember exactly what I changed.
CVS allows me to undo the most recent change without having to delve into a
backup system, and then it allows me to go back and figure out exactly what
changed, when, and maybe even why. This is especially useful when the other
guy broke it but you have to make the system work while keeping the change.

Site-Wide Scripts Directory

The next example will create a versioned, centralized repository for all those
scripts that every site uses to perform different maintenance tasks around the
network. Most sites I have been at use ad hoc mechanisms to get these scripts
where they need to be, such as using scp to copy them over when necessary, but
these ad hoc mechanisms often result in scripts that behave slightly differently
on different systems, because scripts are modified when necessary but then not
propagated to the entire network.

I will use Subversion for this example, both because its networking is much eas-
ier to set up and because it manages file modes in addition to content, which is
important since all of these scripts will need to be executable. I will be storing
the scripts at /usr/local/scripts, but you should use whatever is appropriate for
your site. Creation and configuration of a Subversion repository are beyond the
scope of this article, but the documentation on Subversion’s Web site
(http://svnbook
.red-bean.com/) does a great job of covering the process.

Because these are essentially independent scripts that can be tested as easily
from a sandbox as from within your scripts directory, I will use a sandbox for
modifications. This provides a one-way flow of changes: I commit changes from
my sandbox, which then flow to each server.

One of the benefits of Subversion over CVS is that access control is much more
flexible and powerful. Subversion over HTTP uses a relatively sophisticated con-
figuration file to determine access, and standard HTTP authentication is used,

52 ; L O G I N : V O L . 3 0 , N O . 6

which means that your Subversion server does not need a normal user account
for Subversion users. To guarantee that changes are one-way (that is, that users
cannot make changes on the local server and then commit them back), I create
an HTTP user, configure Subversion to allow only read-only access to the reposi-
tory, and then use that user to retrieve file updates.

This does introduce a dichotomy that can be somewhat confusing—most Sub-
version operations will involve a real user on the local machine and a Subver-
sion user. In the case of the system administrators, those users are generally
equivalent, but you are likely to be doing read-only operations as the local root
user and authenticating to the repository as a different user (I often use an svn
user for all read-only access). Depending on the data you are versioning, you
may not even require a password for this user (but if you do use a password,
make sure you send it over SSL). Also, Subversion can do credential caching, so
that you only need to provide a password the first time, which is especially use-
ful for automation. This does leave a password in your root user’s home directo-
ry, but that’s at least as secure as storing the password where a script looks for it,
and this necessary caching is just another reason to use a read-only user.

Once you have your repository and user created, import one of your current
scripts directories into the new repository as a user with write access to the
repository (usually, your own account):

$ cd /usr/local/scripts
$ sudo svn import https://reductivelabs.com/svn/scripts
Adding ioperf ... Committed revision 1.
$

As before, the import did not modify our local files. To get the version-con-
trolled files in place on the server, you need to do a switcheroo between the ex-
isting scripts directory and the new repository:

$ cd /usr/local
$ sudo mv scripts scripts.old
$ sudo svn co https://reductivelabs.com/svn/scripts
<authenticate as read-only user>
A scripts/ioperf ... Checked out revision 1.
$

It is worth saving the old scripts directory until you are sure that you have
everything working as desired.

You will find a .svn directory in your newly checked-out directory, which is anal-
ogous to CVS’s CVS control directory.

You need to perform this switcheroo on all of the machines on which you want
this directory available. It is straightforward to write a short script (ironically) to
perform this task, and you can also automatically create the credentials for the
user doing the updates by copying down a “.subversion” configuration directory
for the user doing the checkouts. Again, a configuration management tool
makes this significantly easier.

Making Changes

To make changes to the repository, check out the files in your sandbox (which I
usually name something like “svn”):

$ mkdir ~/svn
$ cd ~/svn
$ svn co https://reductivelabs.com/svn/scripts
$ cd scripts
<make changes>
$ svn ci -m ‘I made a change’
<feedback from Subversion>

; LO G I N : D E C E M B E R 2 0 0 5 U S I N G V E R S I O N CO NTRO L I N SYSTE M A DM I N I STR ATI O N 53

Then you need to update the production copy:

$ cd /usr/local/scripts
$ sudo svn update
<list of updates>

This updating after each change can get tedious, which is why configuration
management tools are usually used to automate it (although it could also be
done with a simple cron job). Automation of these updates is especially desir-
able in this case, since you will want all of your machines to perform this up-
date.

What Have We Gained?

Where it was previously difficult to keep our script repositories in sync across all
of our systems, or even to know if they were in sync, using our central version
repository it is now very simple. Normal users make all necessary changes in
their own sandboxes, which is where they also test those changes. They then
commit the changes, which are deployed automatically to all of the servers.

Unfortunately, I have presented a bit of a best-case situation, where all of your
scripts are already in sync and you just want to keep them that way. It is much
more likely that as you deploy the controlled scripts to each server in turn, you
will find some local modifications that you will need to handle. In doing so, you
will want to look at how to handle merging and conflict resolution, which is also
fortunately well covered in the documentation.

Conclusion

With my first example, that of version-controlling /etc/apache2, I provided a
simple way for small sites to track and log all of the configuration changes they
make, which is quite valuable. I know of sites that have hard-copy books for this
purpose, but those books cannot approach the functionality of a version control
system.

The second example delved into using version control to centralize common
files, and can be used as an example for any set of files that is duplicated on
many machines. One of the additional benefits of this example is that users can
be given the right to modify version-controlled files without even being given an
account on the system to which the files are deployed. This works excellently
with groups like Web developers—they commit their changes to the version
repository, and the changes are automatically deployed to the servers, without
the sysadmins needing to interfere but also without giving the Web developers
unnecessary rights on the Web servers, which can be especially important in In-
ternet-facing servers.

I hope this article has convinced you that version control is just as valuable
to system administrators (even home administrators) as it is to developers. It
can save individuals plenty of headache, but for large groups I consider it
indispensable.

54 ; L O G I N : V O L . 3 0 , N O . 6

