MICHAEL W. LUCAS

FreeBSD 5 SMPng

THE NETWORK STACK

Michael W. Lucas is a network consultant and author
of Absolute BSD, Absolute OpenBSD, Cisco Routers for
the Desperate, and the forthcoming PGP & GPG. He
has been logging onto UNIX-like systems for twenty
years and finds lesser operating systems actively
uncomfortable.

B mwlucas@blackhelicopters.org

The author wishes to gratefully acknowl-
edge Robert Watson’s strong contribution to
this article.

;LOGIN: VOL. 30, NO. 5

FREEBSD IS ONE OF THE GRANDPARENTS
of open source operating systems, and
FreeBSD version 4 is considered the gold
standard of high performance by its user
community. In this article we'll discuss the
improvements in FreeBSD 5, using the net-
work stack as an example of the particular-
ly heinous problems faced when enhancing
multiprocessor operating systems.

FreeBSD 5 had many disruptive new features (such as
the GEOM disk layer and ACPI) but also had ex-
tremely high ambitions for its new SMP implementa-
tion. This SMP infrastructure was necessary for the
future growth of FreeBSD, but required massive
rewrites in many parts of the system. The new multi-
CPU project, dubbed “SMPng,” steered FreeBSD in a
direction that promised incredible performance en-
hancements—at the price of a lot of work.

To understand why this was considered worthwhile,
we need to consider some basics of multiprocessor
computing. What we usually think of as “multipro-
cessing” is actually “symmetric multiprocessing,” or
SMP. In SMP you use multiple general purpose pro-
cessors, all running the same OS. They share memory,
/0, PCI busses, and so on, but each CPU has a pri-
vate register context, CPU cache, APIC timer, and so
on. This is certainly not the only approach: all mod-
ern video cards have a Graphics Processing Unit
(GPU), which could be considered a special purpose
asymmetric multiprocessor. Managing multiple iden-
tical general purpose CPUs has become dramatically
more important with the advent of multi-core CPUs.

A multiprocessor-capable OS is one that operates cor-
rectly on multiprocessor systems. Most operating sys-
tems are designed to give the user access to those
extra CPUs simply as “more computing power.”
While many people have implemented alternatives to
this, the general idea that more CPU means more
horsepower is still what most of us believe.

Additionally, adding processors can’t be allowed to
change the look-and-feel of our operating system.
Managing these processors becomes much simpler if
you abandon the current process model, standard
APIs, and so on. Many of these APIs and services were
designed for systems with only a single CPU and as-
sumed that the hardware had only one processor exe-
cuting one task at a time. As with so many other hard-
ware evolutions, it would be easier to knock down the
house of UNIX and build a strip mall. Instead, the
FreeBSD Project has had contractors climbing over
the old house to bring it up to today’s building code—
and gain some extras while we're at it.

Obviously, the goal of adding processors is improving
performance. The problem is that “performance” is a
very vague term: it depends on the work you're doing,
and trade-offs happen everywhere. There’s a 100-mpg
carburetor that works wonderfully, if you don’t mind
doing 0 to 60 in about an hour.

The best way to handle performance tuning in SMP is
to measure how your system performs under the
workload you're interested in, and continue measur-
ing as you add additional CPUs. The SMP implemen-
tation needs to not slow down the application in it-
self, and then it needs to provide features to make it
possible to accelerate the application. In an ideal
world, your application performance would increase
linearly with additional processors—an eight-CPU
system would perform eight times as well as a one-
CPU system. This simply isn’t realistic. The OS and
application will be slowed by having to share re-
sources such as memory and bus access, and keeping
track of where everything is becomes increasingly
complex as the number of CPUs increases. Consistent
measuring and benchmarking are vital when embark-
ing on an SMP implementation.

Implementing SMP

Implementing SMP is simple. First, make it run. Then
make it run fast. Everything else is just petty details.

The obvious place to begin is in the kernel. Nothing
happens until your kernel notices the additional
processors. Your OS must be able to power up the
processors, send them instructions, and attend to
everything that makes it possible to use the hardware.

Then your applications must be able to use the addi-
tional CPU. You might find that your important appli-
cation can only run on one processor at a time, ren-
dering that additional processor almost useless. You
can have an application monopolize one CPU while
the other CPU handles all the other petty details of
keeping the system up, but this is less than ideal.

Your OS libraries and utilities play a vital part in this.
Perhaps the most common way to make an applica-
tion capable of using parallelism is by using threads.
Your OS must include a multiprocessor-capable and
well-optimized threads library. It can do its thread
support in either the kernel or userland. Some appli-
cations use more brute-force methods of handling
parallelism—the popular Apache daemon forks
copies of itself, and those children can automatically
run on separate processors.

Once your application can use additional processors,
start measuring performance. By observing the system
as it handles your work you can identify and address
the bottlenecks in your real-world load. Once you fix
those bottlenecks, benchmark again to find the new

;LOGIN: OCTOBER 2005

bottleneck. Shuffle your trade-offs until you reach an
acceptable average for all of your workloads.

Traditional OS kernels expect that there is only one
CPU, and so when the kernel returns to a task, all of
the appropriate resources should be right where they
were left for that task. When the machine has multi-
ple processors, however, it’s entirely possible for mul-
tiple kernel threads to access the same data structures
simultaneously. Those structures can become cor-
rupted. This makes the kernel angry, and it will take
out its feelings on you one way or another.

You must implement a method of maintaining inter-
nal consistency and data synchronization, and pro-
vide higher level primitives to the rest of the system.
Some applications require that certain actions be han-
dled as a whole (known as “atomic operations”). Oth-
ers simply insist that certain things are done before
other things. Your synchronization model must take
all of this into account, without breaking the API so
badly that you scare off your users. Your choice of
locking model affects your system’s performance and
complexity, and so is very important. For example,
let’s contrast the locking model used with FreeBSD
3.x/4.x to that used in 5.x and later.

The Big Giant Lock (BGL) model used in FreeBSD
3.x/4.x is the most straightforward way to implement
SMP. The kernel is only allowed to execute on one
CPU at a time. If a process running on the other CPU
needs to access the kernel, it is held off (spinlocks)
until the kernel is released by the other process.

Contention occurs in the BGL model when tasks on
multiple CPUs compete to enter the kernel. Think
about how many types of workload access the kernel:
user threads that do system calls, interrupts or timer
driver activity, reading or writing to disk or networks,
IPC, scheduler and context switches, and just about
everything else. On a two-CPU system this isn't too
bad—at least you're doing better than you would with
one CPU. It’s horrible on a four-CPU system, and un-
thinkable on an eight-way or bigger.

The locks are obviously necessary for synchroniza-
tion, but the costs are high. Overall, a dual-CPU sys-
tem is an improvement over a single processor.

Fine-Grained Locking

FreeBSD 4.x’s Big Giant Lock was the main perfor-
mance bottleneck, and just had to go. That's where
fine-grained locking came in. Fine-grained locking is
simply smaller kernel locks that contend less. For ex-
ample, a process that has entered the kernel to write
to a file shouldn’t block another process from entering
the kernel to transmit a packet. The FreeBSD devel-
opers implemented this iteratively. First they locked
the scheduler and close dependencies such as memo-

FREEBSD 5 SMPNG

Context Switching in a
Giant-Locked Kernel

vo
completes

read()

Sleep
returns

Giant
acquired

&— | CPUsspinning waiting

for Giant to be released

- byihcolaCPU

CPUL +-- t
’ Giant socket()
socket(‘ acquired ‘ returns
— Executing in kernel -~ Running in user space
— # Waiting on Giant - o Idle

ry allocation and timer events. High-level subsystems
followed, such as a generic network stack lock or a
file-system lock. They then proceeded to data-based
locking. Once they hit this point, it was a simple mat-
ter of watching to identify the new bottlenecks and
lock them more finely.

Goals along the path include adopting a more thread-
ed architecture and implementing threads where the
kernel can work in parallel. Interrupts in particular
were permitted to execute as threads. FreeBSD also
had to introduce a whole range of synchronization
primitives such as mutexes, sx locks, rw locks, and
semaphores. Low-level primitives are mapped into
higher level programming services. Atomic opera-
tions and IPIs are at the bottom, which are used to
build mutexes, semaphores, signals, and locks,
which, in turn, are assembled into lockless queues
and other structures at the very top.

As this was a gradual migration rather than an all-at-
once conversion, subsystems that were not yet prop-
erly locked during the conversion were allowed to
“seize” the Giant Lock. A device driver that had not
yet been converted was allowed to scream “OK,
everybody out of the kernel, I must process an inter-
rupt!” This was called “holding” the Giant Lock, and
it reduced performance to the 3.x/4.x level.

One by one, each system was finely locked, the BGL
slid off, and newly exposed problems resolved. This
produced a very different contention pattern.

This was complicated, of course, by the fact that
FreeBSD is a project in use by millions of people
around the world. People even consider selected
points along the development version stable enough
for production use. If the FreeBSD team could have
simply declared, “The development branch of FreeB-
SD will be utterly unusable for six months,” fine-
grained locking could have been accomplished more
quickly. They would have also alienated many users
and commercial sponsors. While commercial compa-
nies can get away with this, a project like FreeBSD
simply can’t. The team did the equivalent of changing

;LOGIN: VOL. 30, NO. 5

Context Switching in a
Finely Locked Kernel

vo

completes

read()

Slecp
| read() ‘ ‘ ‘ retums

on I/O

[]

CPUO I 1... 4 l L ~~

Socket buffer mutex /

briefly in contention

Mutex
acquired
CPUL
T LT
e ’ —
returns

— Executing in kernel - Running in user space

mutex

Wait on |

— # Waiting on mutex <+ Idle

a car’s oil while said vehicle was barreling down the
freeway at 80 miles an hour.

Today, FreeBSD 5.x has fine-grained locking in most
major subsystems, except for VFS. The network stack
as a whole runs without Giant, although a few net-
work protocols still require it. Some high-end net-
work drivers execute without seizing Giant. FreeBSD
6.0 (which should be out by the time this article
reaches print) is almost completely Giant-free. VFS it-
self runs without Giant, although some file systems
do not. (Those of you running high-performance
databases on a FAT file store, with a server using
those dollar-a-dozen Ethernet cards, might not be
pleased with its performance.) A few straggling device
drivers require the BGL, but those are slated for con-
version or execution before FreeBSD 7.0 is released
(probably in 2007). The network stack also runs
without the BGL. As locking the network stack was
one of the more interesting parts of implementing
fine-grained locking, let’s take a closer look at it.

Locking the Network

The FreeBSD network stack includes components
such as the mbuf memory allocator, network device
drivers and interface abstractions, a protocol-inde-
pendent routing and event model, sockets and socket
buffers, and a slew of link-layer protocols and net-
work-layer protocols such as IPv4, IPv6, IPSec, IPX,
EtherTalk, ATM, and the popular Netgraph extension
framework. Excluding distributed file systems and
device drivers, that’s about 400,000 lines of code. To
complicate things further, FreeBSD’s TCP/IP stack has
been considered one of the best performers for many
years. It's important not to squander that reputation!

Locking the network stack has very real problems.
Overhead is vital: a small per-packet cost becomes
very large when aggregated over millions of packets
per second. TCP is very sensitive to misordering, and
interprets reordered packets as requiring fast retrans-
mit. Much like our 100-mpg carburetor, different op-

timizations conflict (e.g., optimizing for latency can
damage throughput).

FreeBSD uses a few general strategies for locking the
network stack. Data structures are locked. Also, locks
are no finer than that required by the UNIX API—
e.g., parallel send and receive on the same socket is
useful, but not parallel send on the same socket. Ref-
erences to in-flight packets are locked, not the pack-
ets themselves. Layers have their own locks, as ob-
jects at different layers have different requirements.

Locking order is vital. Seizing locks incorrectly can
cause deadlocks. Driver locks are leaf locks. The net-
work protocol drives most inter-layer activity, so pro-
tocol locks are acquired before either driver locks or
socket locks. FreeBSD 5 avoids lock problems via de-
ferred dispatch.

Transmission is generally serial, so the work is as-
signed to a single thread. Reception can be more par-
allel, so work can be split over multiple threads.

Increasing Parallelism

All of the above is just “making it run.” Afterwards
came time to “make it run fast.” Once the network
stack is freed of the Big Giant Lock, pick an interest-
ing workload and see where contention remains.
Where was CPU-intensive activity serialized in a sin-
gle thread, causing unbalanced CPU usage? Identify-
ing natural boundaries in processing, such as protocol
hand-offs, layer hand-offs, etc., both restricted and in-
spired further optimizations. Every trade-off had to be
carefully considered and then tested to confirm those
ideas. Context switches and locks are expensive, so
they had to be made as useful as possible.

All this had its own challenges. The FreeBSD-current
mailing list (for those people using the development
version) saw many reports of deadlocks, poor perfor-
mance under edge situations, and any sort of weird
issue imaginable. While FreeBSD’s sponsors were very
generous with donations of test facilities, no test can
possibly compare with the absurd range of conditions
found in the real world.

One not uncommon problem during development
was deadlock. If threads one and two both require
locks A and B, and thread one holds A while thread
two holds B, the whole system grinds to a halt. This
deadly embrace was avoided by a hard lock order on
most mutexes and sx locks, disallowing lock cycles,
and the WITNESS lock verification tool. There’s also a
variable, hierarchal lock order. Lock order is a proper-
ty of data structures, and at any given moment the
lock order is defined for that data structure. The lock
order can change as the data structure changes. And a
master lock serializes simultaneous access to multiple
leaf locks. Ordering was vital to avoiding deadlock—

;LOGIN: OCTOBER 2005

but weakening ordering can improve performance in
certain cases.

Awareness of locking order and violations is critical
throughout this. The WITNESS run-time lock-order
monitor tracks lock-order acquisitions, builds a graph
reflecting the current lock order, and detects lock-
order cycles. It also confirms that you're not recur-
sively locking a non-recursive lock as well as detect-
ing other basic problems. WITNESS uses up a lot of
CPU time but is invaluable in debugging.

Every lock is another slice of overhead. FreeBSD 5.x
amortizes the cost of locking by avoiding multiple
lock operations when possible, and it amortizes the
cost of locking over multiple packets. When possible,
locks are coalesced or reduced. Combining locks
across layers can avoid additional locks. If you lock
finely enough you can cause “live lock,” where your
system is so busy locking and unlocking from inter-
rupts that it does no actual work.

Some workloads handled parallelization better than
others. Parts of the network stack, such as TCP, ab-
solutely require serialization to avoid protocol perfor-
mance problems. Any sort of naive threading violates
ordering. FreeBSD uses two sorts of serialization:
thread serialization and CPU serialization, which uses
per-CPU data structures and pinning/critical sections.

Today’s SMPng Network Stack

FreeBSD 5.x and above largely run the network stack
without the Big Giant Lock, and 6.x shows substan-
tial improvements over both 4.x and 5.x. The project
has progressed from raw functionality to performance
tuning. The development team is paying close
attention to the performance of popular applications
such as MySQL, as well as basic matters such as raw
throughput.

Many workloads, such as databases and multi-thread-
ed/multi-process TCP use, show significant improve-
ments. The cost of locking hampers per-packet per-
formance on very specific workloads, such as the
packets per second when forwarding and bridging
packets. And, compared to the gold standard of 4.x,
performance on single-processor systems is some-
times suboptimal. While single-processor perfor-
mance is being carefully monitored and enhanced, as
dual-core systems become the standard even on
workstation systems this will be less important. The
FreeBSD team is actively working on performance
measurement and optimization.

Juggling all these optimizations is hard; it took about
five years to get past merely functional to optimal.
The oil change at 80 mph is just about done, though,
and it’s time to floor the accelerator and see what this
baby can do.

FREEBSD 5 SMPNG

