
2    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve decided to follow the example of Randall Munroe (xkcd) and work at

answering an absurd hypothetical question: Will we ever have secure
systems?

Actually, a well-known professor at Purdue, Gene Spafford, already answered this question
way back in 1989:

The only truly secure system is one that is powered off, cast in a block of concrete and
sealed in a lead-lined room with armed guards—and even then I have my doubts. [1]

I’ve actually used the image of a computer cord coming out of a block of cast cement in some
presentations, as there’s nothing like a concrete visual image to help people understand the
problem.

Input Challenged
Instead of a computer buried in a concrete block, I have a simpler suggestion: Let’s have a
computer, running any OS you like, but not permit any input to it. If it crashes, the BIOS will
be set to reboot the OS, then the computer just goes on sitting there, with the OS sitting in an
idle loop.

This doesn’t move the state of the art in a much more useful direction than the computer-in-
concrete version, but it is suggestive: It’s not the computer running the OS that’s the problem,
it’s the input that gets fed to programs running under that OS. And that’s the conundrum: If
you want a secure computer, don’t allow anyone to access it. We still have a useless computer,
unless you are using it to heat a room.

To illustrate just how bad the problem can be when you allow input, I remember the first
kernel security bug I’d ever heard of. In the UNIX System III or Version 7 kernel, you could
get a root shell by running any program and providing a specially crafted argument to the
command you were exec’ing. The argument needed to be longer than 5120 bytes, as that was
the statically defined length for execve() call arguments, and by overrunning this buffer, you
could overwrite the u_area where the owner and group IDs were stored.

That means that:

#include<stdio.h>

main()

{

 printf(“Hello World”);

}

was capable of being used to exploit the system.

Even though the “hello world” program doesn’t accept any input, the program executing it
does, and there’s the rub. So it appears that what might seem to be a simple program—on a
computer that has no networking beyond UUCP over serial port and on a kernel short enough
to have been published in book form [2] several years earlier—can be rooted.

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  3

EDITORIAL
Musings

One useful line of research points to input parsers as being to
blame for many successful exploits [3]. The reasoning behind
this assertion is clear: An input parser more complex than the
simplest parser in the Chomsky hierarchy [4] cannot be proven
to work as expected. That simplest parser uses regular expres-
sions where you have a choice of parsing from the left or the
right end of your input. Anything more complex than that is
asking for trouble.

If you have a difficult time visualizing an input parser, just
consider almost any shell script that accepts command-line
arguments. If you have written, or seen, such a script, then you
should know that the switch or if-then-else statements at the
beginning of the script act as an input parser, even if it is a simple
one. Other input parsers include Web scripting back-end engines
such as PHP, Perl, Ruby, Python; SQL query parsers; the shells;
and the Web servers themselves.

During an invited talk at USENIX Security 2014 (see the sum-
maries in the back of this issue), Felix Lindner (FX) provided a
wonderful example of a parsing bug. The chunk encoding bug
first appeared in the Apache Web server in 2003, and then in
Nginx in 2013. The code was different in these two programs,
but the bug was almost the same.

Absurd Answer
One of the most popular answers to the question “How do we
improve security?” involves the use of security software. This
software is supposed to protect us from bugs in other software.
But this is absurd, as security software is also software, subject
to the same problems as other software. Worse yet, security soft-
ware, whether it’s an IPS or a virus scanner, has to parse input
using complex rules, making it even more vulnerable. On top of
that, security software generally runs with privileges, making
that software an even more exciting target.

Perhaps we could wrap the security software inside of some
other software to isolate the rest of the system when the security
software gets exploited? Sandboxing, another popular security
solution, involves relying on yet more software to make the soft-
ware we have more secure. It’s turtles all the way down.

The Lineup
We begin this issue with an article by Rory Ward, with help from
Betsy Beyer. Ward describes how Google is moving beyond the
notion of having a privileged network, protected by a firewall
that is considered secure. Some Google employees have been
working on the many moving parts needed to replace this out-
dated design with something a lot better thought out and, likely,
much more secure. I think it is wonderful that Google manage-
ment has decided to allow some employees to share information
like this with the rest of us.

Pawel Dawidek and Mariusz Zaborski bring us up-to-date on
Capsicum. Capsicum, which appeared during Security 2010,
uses capabilities to control the namespaces that a process has
access to. If you read the “Containers” article in the October
2014 issue of ;login:, you will be familiar with the Linux approach
to this problem. Dawidek and Zaborski explain how sandboxing
was done before Capsicum, updates to Capsicum, as well as a
server program, casperd, that can help with adding Capsicum to
applications.

Santiago Torres and Justin Cappos share some work they
have been doing to make the storage of password hashes safer.
They’ve created a scheme, using cryptographic shares, that
makes cracking password hashes 23 orders of magnitude more
difficult, while still taking a tiny amount of time to perform
authentication.

I asked Peter Gutmann to write about his own experience with
debugging. Peter shares a technique based on failure as an
important debugging tool. Not his own failure, but a method for
injecting failures so that the failure paths of programs can be
rigorously tested. Not that this would have helped with Heart-
bleed or Shellshock, as the failures in parsing there weren’t
tested, but Peter’s technique will help you better test your code.

Mark Gondree decided to continue the discussion that was begun
by a panel on the “Gamification of Security” at the 3GSE work-
shop. Mark posed questions to all of the panelists, then collected
and edited their responses. If you’ve wondered about gamifica-
tion, I think you will learn a lot from reading this discussion.

I wanted to interview Dan Farmer. I met Dan almost 25 years
ago, and while I would see him during security conferences, I
had lots of unanswered questions about his career. Dan would
often base his decisions on ethics rather than personal profit or
security, and that’s had a huge impact on his life.

Robert Ricci and Eric Eide announce CloudLab. While I heard
about this during Security, their announcement goes well beyond
just security. They, and a much larger team in multiple locations,
are building infrastructure for doing cloud research. CloudLab
provides barebones systems, VMs, and access to networking so
that a wide variety of cloud research projects can have a realistic
test environment.

Andy Seely continues his sysadmin management column with
stories about keeping up with details. In each story, someone has
ignored some aspect of their professional life, even while doing
an otherwise exemplary job, and that has gotten each of them in
career/job trouble.

David Blank-Edelman explains how to make the best use of two
different search interfaces to CPAN, the Perl module site. There
are gems hidden away in each of the GUI interfaces, which David
reveals.

4    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

EDITORIAL
Musings

David Beazley reveals a new Python 3.4 feature, via explaining
constants. Constants are an issue in all scripting languages, as
they are, uh, not terribly constant. Enums and IntEnums help
with this.

Dave Josephsen waxes enthusiastically about collectd, a client-
side agent that is useful for collecting the various bits of info you
want to monitor.

Dan Geer takes the concept of the stress testing of the larg-
est banks and turns it into a plan for testing your own security
preparedness. Stress testing helps you and your organization
evaluate just what level of risk you might be facing when the next
Internet worm hits.

Robert Ferrell has dug up another rant, this time on security
snake oil. While Robert describes this as a “dystopian future,” I
think it is a scenario that’s all too familiar.

Mark Lamourine has written book reviews about functional pro-
gramming, a difficult book about SDN, and the new Limoncelli,
Chalup, and Hogan book about managing clouds. I’ve written a
(much easier) review about the Randall Munroe book What If?
Serious Scientific Answers to Absurd Hypothetical Questions.

Most of the workshops that accompanied USENIX Security have
some summaries covering them, with the exception of HotSec,
which by design is not taped or summarized, and EVT/WOTE.
Every session in Security itself, and WOOT, are covered in an
excellent set of summaries.

Just as I was editing this column, I learned of a new bug in Bash,
which is going by the name “Shellshock.” By attempting to cre-
ate a null function in an environment variable, an attacker can
execute anything she likes via the shell. This bug appears to be a
problem in parsing, when I looked at the patch files [5] for Bash.
One could argue equally that this was a mistake in implementa-
tion, as null functions shouldn’t be evaluated within environ-
ment variables, but that’s just splitting hairs. The bug does
appear to have been in Bash for many years. And Bash parses
its input, as you should expect, but limiting Bash to the simplest
Chomsky hierarchy parser would also make Bash a wimpy shell.

The lesson of Shellshock is that you should never expose a shell
to input that you don’t trust. That shells get invoked in a large
variety of software, including DHCP clients, just shows how dif-
ficult it is for people to write secure software.

I’d like to end this column with another quote:

I don’t think it’s an exaggeration to say that cyber
defense solutions will serve as the essential basis for
human development and economic growth in this
century—I think it’s happening before our very eyes.
	 —Prime Minister Benjamin Netanyahu [6]

While I’d rather not agree, I can see the logic in this statement.
If we build software cyberdefense solutions that are themselves
software, then we have created a perpetual motion machine that
will benefit the purveyors of security software.

Instead, I believe it would make much more sense to produce
software tools without the sharp edges that make writing soft-
ware so dangerous, so insecure. While this has been attempted
(consider Java), part of the problem with this approach is that a
new programming environment has to encompass everything
that a programmer believes he needs to do, simply, quickly, and
securely. Then, perhaps, we would have Web servers invoking
shells to process request variables, or DHCP clients [7] invoking
a shell to configure the client. And this process must include the
OS too, as the largest, most complex, software that we run.

References
[1] Gene Spafford quotes: http://spaf.cerias.purdue.edu/quotes
.html.

[2] Lions’ Commentary on UNIX 6th Edition, with Source
Code (Peer to Peer Communications, 1996): http://
en.wikipedia.org/wiki/Lions’_Commentary_on_UNIX
_6th_Edition,_with_Source_Code.

[3] LANGSEC: Language-Theoretic Security: http://www.cs
.dartmouth.edu/~sergey/langsec/.

[4] “Chomsky hierarchy,” Wikipedia: http://en.wikipedia.org
/wiki/Chomsky_hierarchy.

[5] Patches to Bash: http://ftp.gnu.org/pub/gnu/bash/bash-4.3
-patches/bash43-025.

[6] “Netanyahu, Kaspersky, and Gold tackle cyber ‘game-
changers’,” EurekAlert! Press Release for Cyber Week 2014:
http://www.eurekalert.org/pub_releases/2014-09/afot
-cw2092414.php.

[7] “ISC’s DHCP Client Can Be Used as a Delivery Vector for
Bash Bug,” ISC DHCP, dhcp-4.3.1/client/client.c; http://
www.isc.org/.

Announcing the USENIX Store!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book, a USENIX or
conference shirt, or the box set from last year’s workshop? Now you can, via
the brand new USENIX Store!

Head over to www.usenix.org/store and check out the collection of t-shirts,
video box sets, ;login: magazines, short topics books, and other USENIX and
LISA gear. USENIX and LISA SIG members save, so make sure your membership
is up to date.

