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Knockoff
Cheap Versions in the Cloud
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Cloud-based storage provides reliability and ease-of-management. 
Unfortunately, it can also incur significant costs for both storing and 
communicating data. These costs increase when systems retain past 

versions of files for data recovery, auditing, and forensic troubleshooting. 
While techniques such as chunk-based deduplication and delta compres-
sion have proven very effective in reducing bytes stored and sent over the 
network, further optimizations to these techniques are yielding increasingly 
incremental benefits. We argue that it is time to consider additional strategies 
for reducing storage costs. In our current work, we are demonstrating that one 
such strategy, deterministic recomputation of data, can substantially reduce 
the cost of cloud storage. Our distributed file system, Knockoff, selectively 
substitutes nondeterministic inputs for file data. Our results show that this 
reduces the cost of sending files to the cloud without versioning by 21–24%; 
the relative benefit is substantially greater when past versions are retained. 

Deterministic Recomputation
Knockoff leverages an unconventional method for communicating and storing file data. In 
lieu of the actual data, it selectively represents a file as a log of the nondeterministic inputs 
needed to recompute the data (e.g., system call results, thread scheduling, and external 
data read by a process). With such a log, a cloud file server can deterministically replay the 
computation that originally produced the data to recreate the data. We call the observation 
that one can represent data generated by computation either by value or by the log of inputs 
needed to reproduce the computation the principle of equivalence (between values and com-
putation); the principle has been observed and used in many settings such as fault tolerance 
and state machine replication.

Representing data as a log of nondeterminism leads to several benefits for a distributed file 
system. First, it substitutes (re)computation for communication and storage, and this can 
reduce total cost because computation in cloud systems is less costly than communication 
and storage. Second, it can reduce the number of bytes sent over the network when the log 
of nondeterminism is smaller than the data produced by the recorded computation. For the 
same reason, it can reduce the number of bytes stored by the cloud storage provider. Finally, 
representing data as a log of nondeterminism can support a wider range of versioning fre-
quencies than prior methods.

Although similar ideas have been previously applied to distributed storage, the computa-
tion has either been assumed to be deterministic given its command line and file inputs [4] 
or given a specific sequence of user-interface events [1]. Unfortunately, neither a log of shell 
commands nor a log of user activity is sufficient to reproduce the computation of modern, 
general-purpose programs, especially due to the shift to multithreaded computation running 
on multiprocessors, as well as a growing diversity in execution environments and corre-
sponding dependencies on operating systems, libraries, and installed application versions.
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Knockoff uses deterministic record and replay to guarantee that 
data produced by all data-race free programs can be reproduced. 
Rather than capture a subset of nondeterministic inputs, it uses 
the Arnold [2] system to record all nondeterministic data enter-
ing each process that executes on a file system client, including 
the results of system calls (such as user and network input), the 
timing of signals, and real-time clock queries. Arnold enables 
deterministic replay of multithreaded programs by recording all 
synchronization operations (e.g., pthread_lock and atomic hard-
ware instructions). This recording has minimal overhead (8% or 
less in our experiments). Because it supplies recorded values on 
replay rather than re-executing system calls that interact with 
external dependencies, Arnold can trivially record an applica-
tion on one computer and replay it on another. The only require-
ments are that both computers run the Arnold kernel and have 
the same processor architecture (x86).

For example, consider a simple application that reads in a data 
file, computes a statistical transformation over that data, and 
writes a timestamped summary to an output file. The output 
data may be many megabytes in size. However, the program itself 
can be reproduced given a small log of determinism, as shown in 
Figure 1 (for clarity, the log has been simplified).

The log records the results of system calls (e.g., open) and syn-
chronization operation (e.g., pthread_lock). The first entry in 
Figure 1 records the file descriptor (rc=3) chosen by the operat-
ing system during the original execution. Parameters to the 
open call do not need to be logged since they will be reproduced 
during a deterministic re-execution. The second entry records 
the mapping of the executable; replaying this entry will cause the 
exact version used during recording to be mapped to the same 
place in the replaying process address space. Lines 4 and 5 read 
data from the input file, line 6 records the original timestamp, 
and lines 7 and 8 write the transformation to the output file. 
Data read from the file system is not in the log since Knockoff is 
a versioning file system that can reproduce the desired version 
on demand. Also, the data written to the output file need not be 
logged since it will be reproduced exactly as a result of replaying 
the execution.

With aggressive compression [2], a log for this sample applica-
tion can be only a few hundred bytes in size, as contrasted with 
the megabytes of data that the execution produces. The out-
put data is reproduced by starting from the same initial state, 
re-executing the computation, and supplying values from the 
log for each nondeterministic operation. Since the log contains 
references to executable and shared library versions, as well as 
all interactions with the operating system, the complex envi-
ronmental dependencies of an application are automatically 
resolved as part of the replay process. For instance, the replay 
starts from the same executable, loads the same versions of 

shared libraries, and sees the same results of IPC and network 
operations that were seen during recording.

Additionally, just as deduplication and compression of file 
data can reduce bytes stored and sent over the network for file 
data, we have found that applying these techniques to logs of 
nondeterminism can also provide similar savings by exploit-
ing similarities in computation across executions of the same 
application. In particular, Knockoff achieves an additional 42% 
reduction in bytes stored and communicated by using delta com-
pression on the logs of nondeterminism. 

Writing Data to the Cloud
To propagate modifications to the cloud, Knockoff first calcu-
lates the cost of sending and replaying the log of nondetermin-
ism given a pre-defined cost of communication (costcomm) and 
computation (costcomp):

costlog = sizelog ∗ costcomm + timereplay ∗ costcomp (1)

sizelog is determined by compressing the log of nondeterminism 
for the application that wrote the file and measuring its size 
directly. To estimate timereplay , Knockoff records the user CPU 
time consumed so far by the recorded application with each log 
entry that modifies file data. This is a very good estimate for the 
time needed to replay the log on the client [6]. To estimate server 
replay time, Arnold multiplies this value by a conversion factor 
to reflect the relative CPU speeds of the client and server.

Knockoff calculates the cost of sending file data as:

costdata = sizechunks ∗ costcomm (2)

Knockoff implements the chunk-based deduplication algorithm 
used by LBFS [5] to reduce the cost of transmitting file data. It 
breaks all modified files into chunks, hashes each chunk, and 
sends the hashes to the server. The server responds with the set of 
hashes it has stored. sizechunks is the size of any chunks unknown to 
the server that would need to be transmitted; Knockoff uses gzip 
compression to reduce bytes transmitted for such chunks.

Figure 1: Sample log of nondeterminism
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If costlog < costdata, Knockoff sends the log to the server. The server 
spawns a replay process that consumes the log and replays the 
application. When the replay process executes a system call that 
modifies a target file, it updates the current version, and poten-
tially retains the past version as described below.

Replay is guaranteed to produce the same data if the application 
being replayed is free of data races. Data-race freedom can be 
guaranteed for some programs (e.g., single-threaded ones) but 
not for complex applications. Knockoff therefore ships a SHA-
512 hash of each modified file to the server with the log. The 
Knockoff server verifies this hash. If verification fails, it asks the 
client to ship the file data. Such races are rare since the replay 
system itself acts as an efficient data-race detector. All subse-
quent replays are guaranteed to produce the same data as the 
first replay, so once Knockoff verifies that the replay produces 
the desired data, it need not do so again.

If costdata < costlog, then Knockoff could reduce the cost of the 
current transaction by sending the unique chunks to the server. 
However, for long-running applications, it may be the case that 
sending and replaying the log collected so far would help reduce 
the cost of future file modifications that have yet to be seen 
(because the cost of replaying from this point is less than replay-
ing from the beginning of the program). Knockoff predicts this 
by looking at a history of costdata / costlog ratios for the application. 
If sending logs has been historically beneficial and current appli-
cation behavior is similar (the ratios differ by less than 40%) to 
past executions, it sends the log. Otherwise, it sends the unique 
data chunks.

Storing Data in the Cloud
Knockoff may store file data on the server either by value (as 
normal file data) or by operation (as the log of nondeterminism 
required to recompute that data). If the log of nondeterminism 
is smaller than the file data it produces, then storing the file 
by operation saves space and money. However, storing files by 
operation delays future reads of that data, since Knockoff will 
need to replay the original computation that produced the data. 
In general, this implies that Knockoff should only store file data 
by operation if the data is very cold, i.e., if the probability of read-
ing the data in the future is low.

Knockoff currently stores the current version of all files by value 
so that its read performance for current file data is the same 
as that of a traditional file system. Knockoff may store past 
versions by operation if the storage requirements for storing 
the data by log are less than those of storing the data by value. 
However, Knockoff also has a configuration parameter that sets 
a maximum materialization delay, which is the time to recon-
struct any version stored by operation. The default materializa-
tion delay is 60 seconds.

When replaying a log to regenerate data, Knockoff may find 
that some of the input files for the computation being replayed 
are also stored by operation rather than by value. In this case, it 
recursively replays those logs to reproduce the input data needed 
to regenerate the target data. Knockoff tracks such recursive 
dependencies in a data structure called the version graph. When 
storing data, it ensures that any path of recomputation in this 
graph does not exceed the materialization delay, and this guar-
antees that the total time to reproduce any file is no greater than 
that bound.

Fine-Grained Versioning
Past file versions have many uses: recovery of lost or overwrit-
ten data, reproduction of the process by which data was created, 
auditing, and forensic troubleshooting. These benefits increase 
as versions are retained more frequently. For instance, if ver-
sions are retained every time a file is closed, the user may have 
a snapshot of file data with each save operation. However, many 
applications only close files on termination, so versioning on 
every file write may be required to provide snapshots of interme-
diary states. However, such a policy would not capture interme-
diary states from modifications to memory-mapped files.

When storing and communicating file data by value, more 
frequent versioning substantially increases costs due to a 
greater amount of data sent over the network and saved to disk. 
However, when Knockoff represents file data by operation, its 
deterministic recomputation can produce any version of file data 
written by that computation at no additional cost. This means 
that Knockoff has much lower costs for retaining past versions 
of file data than traditional storage systems.

Figure 2: Total bytes sent to the server across all user study participants. 
We compare Knockoff with two baselines across all relevant versioning 
policies.
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As a result, Knockoff currently supports four different version-
ing policies:

◆◆ No versioning: Knockoff retains only the current version of all 
files.

◆◆ Version on close: Knockoff retains all past versions at close 
granularity; for past versions, Knockoff may store the actual 
data or the logs required to regenerate the data.

◆◆ Version on write: Knockoff retains all past versions at write 
granularity.

◆◆ Eidetic: Knockoff retains all past versions at instruction 
granularity. It can reproduce versions of a memory-mapped file 
by replaying the computation up to a specified point and redo-
ing the individual store instructions that modified the file.

User Study Results
As part of a detailed evaluation of Knockoff [3], we recruited 
eight graduate students to use Knockoff for software develop-
ment tasks. We asked participants to write software to perform 
several simple tasks, e.g., converting a CSV file to a JSON file; 
each participant could spend up to an hour solving the problem. 
We did not dictate how the problem should be solved. Partici-
pants used various Linux utilities, text editors, IDEs, and pro-
gramming languages. They used Web browsers to visit different 
Web sites such as Google and StackOverflow, as well as sites 
unrelated to the assignment (e.g., Facebook and CNN News). 
Almost all files accessed during the study are stored in Knockoff 
(exceptions include the tmp directory and system configuration 
files), and almost all file modifications are therefore persisted in 
the cloud. One of the eight participants was unable to complete 
the programming assignment and quit right away. We show 
results for the seven participants who attempted the tasks; four 
of these finished successfully within the hour.

Figure 2 summarizes the results by aggregating the bytes sent to 
a cloud server by Knockoff and the baseline file systems across 
all seven users. Even without retaining past versions, Knockoff 
is surprisingly effective in reducing bytes sent over the network 
for non-versioning file systems. Compared to chunk-based 
deduplication, Knockoff reduces communication by 24%. Com-
pared to delta compression, it reduces communication by 32%. 
Note that these baselines are already very effective in reducing 
bandwidth; without compression, this workload requires 1.9 GB 
of communication, so delta compression alone achieves an 86% 
reduction in network bandwidth, and chunk-based deduplication 
achieves an 87% reduction.

The benefit of Knockoff increases substantially as past versions 
are maintained more frequently. For instance, Knockoff reduces 
bytes sent by 47% compared to chunk-based deduplication for a 
version on write policy. In fact, versioning on write with Knock-
off uses less bandwidth than the baselines without versioning. 

Figure 3: Bytes sent to the server for each individual user-study partici-
pant (A-G). We compare Knockoff with two baselines across all relevant 
versioning policies.

(a) No versioning

(b) Version on close

(c) Version on write
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At the limit, the eidetic policy, which can reproduce any past ver-
sion even for memory-mapped files, is completely infeasible with 
current storage systems that store data by value. Knockoff can 
support this granularity of versioning while sending only 41% 
more bytes to the cloud than chunk-based deduplication without 
versioning in the user study and storing only 134% more bytes in 
the cloud to retain this state in another longitudinal study (not 
shown).

A surprising result from this study was that the effectiveness of 
Knockoff varied tremendously across users, as shown in Figure 
3 (each individual study participant is labeled A-G in each 
graph). For participant C, Knockoff achieves a 97% reduction in 
bandwidth for the no versioning policy and a 95% reduction for 
the version on write policy compared to chunk-based dedupli-
cation. On the other hand, for participant F, the corresponding 
reductions are 2% and 17%. This shows the orthogonal nature of 
Knockoff’s cost savings. When the mix of tools and workloads 
is better for operation shipping than it is for deduplication or 
compression, Knockoff produces large savings. In cases where 
operation shipping is not economical, Knockoff can detect this 
and revert to more traditional forms of bandwidth and storage 
reduction.

Summary
Operation shipping has long been recognized as a promising 
technique for reducing the cost of distributed storage. How-
ever, using operation shipping in practice has required onerous 
restrictions about application determinism or standardization 
of computing platforms, and these assumptions make operation 
shipping unsuitable for general-purpose file systems. Knockoff 
leverages recent advances in deterministic record and replay to 
lift those restrictions. It can represent, communicate, and store 
file data as logs of nondeterminism. This saves network commu-
nication and reduces storage utilization, leading to cost savings.

In the future, we hope to extend the ideas in Knockoff to other 
uses; one promising target is reducing cross-datacenter commu-
nication. We are also investigating whether it is feasible to gen-
erate logs of nondeterminism from which data can be reproduced 
by observing only a portion of those nondeterministic inputs and 
synthesizing likely values for the rest. This could represent a 
promising middle ground between Knockoff and prior operation 
shipping systems in which one could still guarantee that data 
can always be reproduced once a successful recomputation has 
been generated, but such guarantees could be achieved without 
running a full-scale deterministic recording system such as 
Arnold on each client.
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