
20    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

CLOUD

Knockoff
Cheap Versions in the Cloud

X I A N Z H E N G D O U , P E T E R M . C H E N , A N D J A S O N F L I N N

Cloud-based storage provides reliability and ease-of-management.
Unfortunately, it can also incur significant costs for both storing and
communicating data. These costs increase when systems retain past

versions of files for data recovery, auditing, and forensic troubleshooting.
While techniques such as chunk-based deduplication and delta compres-
sion have proven very effective in reducing bytes stored and sent over the
network, further optimizations to these techniques are yielding increasingly
incremental benefits. We argue that it is time to consider additional strategies
for reducing storage costs. In our current work, we are demonstrating that one
such strategy, deterministic recomputation of data, can substantially reduce
the cost of cloud storage. Our distributed file system, Knockoff, selectively
substitutes nondeterministic inputs for file data. Our results show that this
reduces the cost of sending files to the cloud without versioning by 21–24%;
the relative benefit is substantially greater when past versions are retained.

Deterministic Recomputation
Knockoff leverages an unconventional method for communicating and storing file data. In
lieu of the actual data, it selectively represents a file as a log of the nondeterministic inputs
needed to recompute the data (e.g., system call results, thread scheduling, and external
data read by a process). With such a log, a cloud file server can deterministically replay the
computation that originally produced the data to recreate the data. We call the observation
that one can represent data generated by computation either by value or by the log of inputs
needed to reproduce the computation the principle of equivalence (between values and com-
putation); the principle has been observed and used in many settings such as fault tolerance
and state machine replication.

Representing data as a log of nondeterminism leads to several benefits for a distributed file
system. First, it substitutes (re)computation for communication and storage, and this can
reduce total cost because computation in cloud systems is less costly than communication
and storage. Second, it can reduce the number of bytes sent over the network when the log
of nondeterminism is smaller than the data produced by the recorded computation. For the
same reason, it can reduce the number of bytes stored by the cloud storage provider. Finally,
representing data as a log of nondeterminism can support a wider range of versioning fre-
quencies than prior methods.

Although similar ideas have been previously applied to distributed storage, the computa-
tion has either been assumed to be deterministic given its command line and file inputs [4]
or given a specific sequence of user-interface events [1]. Unfortunately, neither a log of shell
commands nor a log of user activity is sufficient to reproduce the computation of modern,
general-purpose programs, especially due to the shift to multithreaded computation running
on multiprocessors, as well as a growing diversity in execution environments and corre-
sponding dependencies on operating systems, libraries, and installed application versions.

Xianzheng Dou is a PhD student
in computer science and
engineering at the University of
Michigan, Ann Arbor. In general,
his research interests include

file systems, operating systems, and distributed
file systems. More specifically, he has been
focusing on how to reduce communication
and storage costs for distributed file systems
and how to speed up computation via
memorization. xdou@umich.edu

Peter M. Chen is an Arthur
F. Thurnau Professor in the
Computer Science Division at
the University of Michigan.
He is an ACM and IEEE

Fellow and served as the Editor-in-Chief of
ACM Transactions on Computer Systems from
2009–2013. In 2007, he received the ACM
SIGOPS Mark Weiser Award “for creativity
and innovation in operating systems research.”
His research interests include operating
systems, computer security, and fault-tolerant
computing. He is currently investigating how
to improve software reliability for multicore
computers and how to integrate new types of
persistent memories into computer systems.
He regularly teaches a senior course on
operating systems and a first-year course on
computer engineering. pmchen@umich.edu

Jason Flinn is a Professor
of Computer Science and
Engineering and Director of the
Software Systems Laboratory
at the University of Michigan,

whose research interests include operating
systems, distributed systems, and mobile
computing. He is a fellow of the ACM, and
his research has been recognized with an NSF
CAREER award and eight Best Paper awards
at SOSP, OSDI, ASPLOS, FAST, and MobiSys.
jflinn@umich.edu

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  21

CLOUD
Knockoff: Cheap Versions in the Cloud

Knockoff uses deterministic record and replay to guarantee that
data produced by all data-race free programs can be reproduced.
Rather than capture a subset of nondeterministic inputs, it uses
the Arnold [2] system to record all nondeterministic data enter-
ing each process that executes on a file system client, including
the results of system calls (such as user and network input), the
timing of signals, and real-time clock queries. Arnold enables
deterministic replay of multithreaded programs by recording all
synchronization operations (e.g., pthread_lock and atomic hard-
ware instructions). This recording has minimal overhead (8% or
less in our experiments). Because it supplies recorded values on
replay rather than re-executing system calls that interact with
external dependencies, Arnold can trivially record an applica-
tion on one computer and replay it on another. The only require-
ments are that both computers run the Arnold kernel and have
the same processor architecture (x86).

For example, consider a simple application that reads in a data
file, computes a statistical transformation over that data, and
writes a timestamped summary to an output file. The output
data may be many megabytes in size. However, the program itself
can be reproduced given a small log of determinism, as shown in
Figure 1 (for clarity, the log has been simplified).

The log records the results of system calls (e.g., open) and syn-
chronization operation (e.g., pthread_lock). The first entry in
Figure 1 records the file descriptor (rc=3) chosen by the operat-
ing system during the original execution. Parameters to the
open call do not need to be logged since they will be reproduced
during a deterministic re-execution. The second entry records
the mapping of the executable; replaying this entry will cause the
exact version used during recording to be mapped to the same
place in the replaying process address space. Lines 4 and 5 read
data from the input file, line 6 records the original timestamp,
and lines 7 and 8 write the transformation to the output file.
Data read from the file system is not in the log since Knockoff is
a versioning file system that can reproduce the desired version
on demand. Also, the data written to the output file need not be
logged since it will be reproduced exactly as a result of replaying
the execution.

With aggressive compression [2], a log for this sample applica-
tion can be only a few hundred bytes in size, as contrasted with
the megabytes of data that the execution produces. The out-
put data is reproduced by starting from the same initial state,
re-executing the computation, and supplying values from the
log for each nondeterministic operation. Since the log contains
references to executable and shared library versions, as well as
all interactions with the operating system, the complex envi-
ronmental dependencies of an application are automatically
resolved as part of the replay process. For instance, the replay
starts from the same executable, loads the same versions of

shared libraries, and sees the same results of IPC and network
operations that were seen during recording.

Additionally, just as deduplication and compression of file
data can reduce bytes stored and sent over the network for file
data, we have found that applying these techniques to logs of
nondeterminism can also provide similar savings by exploit-
ing similarities in computation across executions of the same
application. In particular, Knockoff achieves an additional 42%
reduction in bytes stored and communicated by using delta com-
pression on the logs of nondeterminism.

Writing Data to the Cloud
To propagate modifications to the cloud, Knockoff first calcu-
lates the cost of sending and replaying the log of nondetermin-
ism given a pre-defined cost of communication (costcomm) and
computation (costcomp):

costlog = sizelog ∗ costcomm + timereplay ∗ costcomp (1)

sizelog is determined by compressing the log of nondeterminism
for the application that wrote the file and measuring its size
directly. To estimate timereplay , Knockoff records the user CPU
time consumed so far by the recorded application with each log
entry that modifies file data. This is a very good estimate for the
time needed to replay the log on the client [6]. To estimate server
replay time, Arnold multiplies this value by a conversion factor
to reflect the relative CPU speeds of the client and server.

Knockoff calculates the cost of sending file data as:

costdata = sizechunks ∗ costcomm (2)

Knockoff implements the chunk-based deduplication algorithm
used by LBFS [5] to reduce the cost of transmitting file data. It
breaks all modified files into chunks, hashes each chunk, and
sends the hashes to the server. The server responds with the set of
hashes it has stored. sizechunks is the size of any chunks unknown to
the server that would need to be transmitted; Knockoff uses gzip
compression to reduce bytes transmitted for such chunks.

Figure 1: Sample log of nondeterminism

22    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

CLOUD
Knockoff: Cheap Versions in the Cloud

If costlog < costdata, Knockoff sends the log to the server. The server
spawns a replay process that consumes the log and replays the
application. When the replay process executes a system call that
modifies a target file, it updates the current version, and poten-
tially retains the past version as described below.

Replay is guaranteed to produce the same data if the application
being replayed is free of data races. Data-race freedom can be
guaranteed for some programs (e.g., single-threaded ones) but
not for complex applications. Knockoff therefore ships a SHA-
512 hash of each modified file to the server with the log. The
Knockoff server verifies this hash. If verification fails, it asks the
client to ship the file data. Such races are rare since the replay
system itself acts as an efficient data-race detector. All subse-
quent replays are guaranteed to produce the same data as the
first replay, so once Knockoff verifies that the replay produces
the desired data, it need not do so again.

If costdata < costlog, then Knockoff could reduce the cost of the
current transaction by sending the unique chunks to the server.
However, for long-running applications, it may be the case that
sending and replaying the log collected so far would help reduce
the cost of future file modifications that have yet to be seen
(because the cost of replaying from this point is less than replay-
ing from the beginning of the program). Knockoff predicts this
by looking at a history of costdata / costlog ratios for the application.
If sending logs has been historically beneficial and current appli-
cation behavior is similar (the ratios differ by less than 40%) to
past executions, it sends the log. Otherwise, it sends the unique
data chunks.

Storing Data in the Cloud
Knockoff may store file data on the server either by value (as
normal file data) or by operation (as the log of nondeterminism
required to recompute that data). If the log of nondeterminism
is smaller than the file data it produces, then storing the file
by operation saves space and money. However, storing files by
operation delays future reads of that data, since Knockoff will
need to replay the original computation that produced the data.
In general, this implies that Knockoff should only store file data
by operation if the data is very cold, i.e., if the probability of read-
ing the data in the future is low.

Knockoff currently stores the current version of all files by value
so that its read performance for current file data is the same
as that of a traditional file system. Knockoff may store past
versions by operation if the storage requirements for storing
the data by log are less than those of storing the data by value.
However, Knockoff also has a configuration parameter that sets
a maximum materialization delay, which is the time to recon-
struct any version stored by operation. The default materializa-
tion delay is 60 seconds.

When replaying a log to regenerate data, Knockoff may find
that some of the input files for the computation being replayed
are also stored by operation rather than by value. In this case, it
recursively replays those logs to reproduce the input data needed
to regenerate the target data. Knockoff tracks such recursive
dependencies in a data structure called the version graph. When
storing data, it ensures that any path of recomputation in this
graph does not exceed the materialization delay, and this guar-
antees that the total time to reproduce any file is no greater than
that bound.

Fine-Grained Versioning
Past file versions have many uses: recovery of lost or overwrit-
ten data, reproduction of the process by which data was created,
auditing, and forensic troubleshooting. These benefits increase
as versions are retained more frequently. For instance, if ver-
sions are retained every time a file is closed, the user may have
a snapshot of file data with each save operation. However, many
applications only close files on termination, so versioning on
every file write may be required to provide snapshots of interme-
diary states. However, such a policy would not capture interme-
diary states from modifications to memory-mapped files.

When storing and communicating file data by value, more
frequent versioning substantially increases costs due to a
greater amount of data sent over the network and saved to disk.
However, when Knockoff represents file data by operation, its
deterministic recomputation can produce any version of file data
written by that computation at no additional cost. This means
that Knockoff has much lower costs for retaining past versions
of file data than traditional storage systems.

Figure 2: Total bytes sent to the server across all user study participants.
We compare Knockoff with two baselines across all relevant versioning
policies.

www.usenix.org	   FA L L 20 17  VO L . 42 , N O. 3  23

CLOUD
Knockoff: Cheap Versions in the Cloud

As a result, Knockoff currently supports four different version-
ing policies:

◆◆ No versioning: Knockoff retains only the current version of all
files.

◆◆ Version on close: Knockoff retains all past versions at close
granularity; for past versions, Knockoff may store the actual
data or the logs required to regenerate the data.

◆◆ Version on write: Knockoff retains all past versions at write
granularity.

◆◆ Eidetic: Knockoff retains all past versions at instruction
granularity. It can reproduce versions of a memory-mapped file
by replaying the computation up to a specified point and redo-
ing the individual store instructions that modified the file.

User Study Results
As part of a detailed evaluation of Knockoff [3], we recruited
eight graduate students to use Knockoff for software develop-
ment tasks. We asked participants to write software to perform
several simple tasks, e.g., converting a CSV file to a JSON file;
each participant could spend up to an hour solving the problem.
We did not dictate how the problem should be solved. Partici-
pants used various Linux utilities, text editors, IDEs, and pro-
gramming languages. They used Web browsers to visit different
Web sites such as Google and StackOverflow, as well as sites
unrelated to the assignment (e.g., Facebook and CNN News).
Almost all files accessed during the study are stored in Knockoff
(exceptions include the tmp directory and system configuration
files), and almost all file modifications are therefore persisted in
the cloud. One of the eight participants was unable to complete
the programming assignment and quit right away. We show
results for the seven participants who attempted the tasks; four
of these finished successfully within the hour.

Figure 2 summarizes the results by aggregating the bytes sent to
a cloud server by Knockoff and the baseline file systems across
all seven users. Even without retaining past versions, Knockoff
is surprisingly effective in reducing bytes sent over the network
for non-versioning file systems. Compared to chunk-based
deduplication, Knockoff reduces communication by 24%. Com-
pared to delta compression, it reduces communication by 32%.
Note that these baselines are already very effective in reducing
bandwidth; without compression, this workload requires 1.9 GB
of communication, so delta compression alone achieves an 86%
reduction in network bandwidth, and chunk-based deduplication
achieves an 87% reduction.

The benefit of Knockoff increases substantially as past versions
are maintained more frequently. For instance, Knockoff reduces
bytes sent by 47% compared to chunk-based deduplication for a
version on write policy. In fact, versioning on write with Knock-
off uses less bandwidth than the baselines without versioning.

Figure 3: Bytes sent to the server for each individual user-study partici-
pant (A-G). We compare Knockoff with two baselines across all relevant
versioning policies.

(a) No versioning

(b) Version on close

(c) Version on write

24    FA L L 20 17  VO L . 42 , N O. 3 	 www.usenix.org

CLOUD
Knockoff: Cheap Versions in the Cloud

At the limit, the eidetic policy, which can reproduce any past ver-
sion even for memory-mapped files, is completely infeasible with
current storage systems that store data by value. Knockoff can
support this granularity of versioning while sending only 41%
more bytes to the cloud than chunk-based deduplication without
versioning in the user study and storing only 134% more bytes in
the cloud to retain this state in another longitudinal study (not
shown).

A surprising result from this study was that the effectiveness of
Knockoff varied tremendously across users, as shown in Figure
3 (each individual study participant is labeled A-G in each
graph). For participant C, Knockoff achieves a 97% reduction in
bandwidth for the no versioning policy and a 95% reduction for
the version on write policy compared to chunk-based dedupli-
cation. On the other hand, for participant F, the corresponding
reductions are 2% and 17%. This shows the orthogonal nature of
Knockoff’s cost savings. When the mix of tools and workloads
is better for operation shipping than it is for deduplication or
compression, Knockoff produces large savings. In cases where
operation shipping is not economical, Knockoff can detect this
and revert to more traditional forms of bandwidth and storage
reduction.

Summary
Operation shipping has long been recognized as a promising
technique for reducing the cost of distributed storage. How-
ever, using operation shipping in practice has required onerous
restrictions about application determinism or standardization
of computing platforms, and these assumptions make operation
shipping unsuitable for general-purpose file systems. Knockoff
leverages recent advances in deterministic record and replay to
lift those restrictions. It can represent, communicate, and store
file data as logs of nondeterminism. This saves network commu-
nication and reduces storage utilization, leading to cost savings.

In the future, we hope to extend the ideas in Knockoff to other
uses; one promising target is reducing cross-datacenter commu-
nication. We are also investigating whether it is feasible to gen-
erate logs of nondeterminism from which data can be reproduced
by observing only a portion of those nondeterministic inputs and
synthesizing likely values for the rest. This could represent a
promising middle ground between Knockoff and prior operation
shipping systems in which one could still guarantee that data
can always be reproduced once a successful recomputation has
been generated, but such guarantees could be achieved without
running a full-scale deterministic recording system such as
Arnold on each client.

Acknowledgments
This work has been supported by the National Science Founda-
tion under grants CNS-1513718 and CNS-1421441 and by a gift
from NetApp.

References
[1] T.-Y. Chang, A. Velayutham, and R. Sivakumar, “Mimic:
Raw Activity Shipping for File Synchronization in Mobile File
Systems,” in Proceedings of the 2nd International Conference
on Mobile Systems, Applications and Services (June 2004), pp.
165–176.

[2] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen,
“Eidetic Systems,” in Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
’14) (October 2014): https://www.usenix.org/system/files​
/conference/osdi14/osdi14-paper-devecsery.pdf.

[3] X. Dou, P. M. Chen, and J. Flinn, “Knockoff: Cheap Versions
in the Cloud,” in Proceedings of the 15th USENIX Conference
on File and Storage Technologies (FAST ’17) (February 2017):
https://www.usenix.org/system/files/conference/fast17​
/fast17-dou.pdf.

[4] Y.-W. Lee, K.-S. Leung, and M. Satyanarayanan, “Opera-
tion Shipping for Mobile File Systems,” in IEEE Transactions
on Computers, vol. 51, no. 12 (December 2002), pp. 1410–1422.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-
Bandwidth Network File System,” in Proceedings of the 18th
ACM Symposium on Operating Systems Principles (October
2001), pp. 174–187: https://pdos.csail.mit.edu/papers/lbfs:​
sosp01/lbfs.pdf.

[6] A. Quinn, D. Devecsery, P. M. Chen, and J. Flinn, “Jet-
Stream: Cluster-Scale Parallelization of Information Flow
Queries,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16)
(November 2016): https://www.usenix.org/system/files​
/conference/osdi16/osdi16-quinn.pdf.

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-devecsery.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-devecsery.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-dou.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-dou.pdf
https://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf
https://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-quinn.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-quinn.pdf

