
64    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

COLUMNS

Practical Perl Tools
Parallel Asynchronicity, Part 1

D A V I D N . B L A N K - E D E L M A N

A t some point everyone gets the desire to be able to do multiple things
at once or be in multiple places at the same time as a way of getting
more done. And although we try to multitask, the research keeps

piling up to suggest that humans aren’t so good at intentional multitasking.
But computers, they do a much better job at this, that is, if we humans can
express clearly just how we want them to work on multiple things at once. I
thought it might be fun to explore the various ways we can use Perl to write
code that performs multiple tasks at once. This can be a fairly wide-ranging
topic, so we’re going to take it on over multiple columns to give us plenty of
space to peruse the subject. Note: for those of you with photographic memo-
ries, I touched on a similar subject in this column back in 2007. There will be
some overlap (and I might even quote myself), but I’ll be bringing the topic up
to date by bringing in modules that weren’t around in the good ole days.

One quick caveat that my conscience forces me to mention: to avoid writing a book on the
topic (been there, done that), these columns will use UNIX or UNIX-derivative operating
systems as their reference platform. There’s been lots of great work done over the years for
other platforms (I’m looking at you Windows), but I won’t be making any guarantees that
everything written here works on anything but a UNIX-esque system. Caveat Microsoft
Emptor and all of that.

Fork!
Usually I don’t like to get to forking without a little bit of warm up, but that is indeed the sim-
plest way to get into the parallel processing game. Perl has a fork() function that lets us spin
off another copy of a running Perl interpreter that continues to execute the current program.
Let’s see how it works.

If the Perl interpreter encounters the first line of the program below:

 my $pid = fork();

 print $pid,”\n”;

a second Perl interpreter comes into being (i.e., a copy is forked off the running interpreter)
that is also running the program. That second copy is referred to as a child of the original
copy (which, as you would expect, is called the parent process). From the perspective of the
program itself, neither copy can tell that anything special has occurred (they are both run-
ning the exact same program, have the same file descriptors open, etc.) with one very small
difference: when the fork() program line has successfully finished executing, $pid in the
parent process gets set to the process ID of the child process. In the child process, $pid will be
set to 0. So if I run this program as is, I’ll get output like this:

 $ perl fork.pl

 6240

 0

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here are
David’s alone and do not repre-
sent Apcera/Ericsson) . He

has spent close to thirty years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’. dnblankedelman@gmail.com

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  65

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 1

The parent has printed the process ID of the child process
(6240), the child printed 0 as expected. As an important aside
for your programming, if for some reason the fork() call fails,
$pid will be undef in the parent (and yes, you should test for that
happening).

The reason this matters is that a parent process has a responsi-
bility for a task in addition to any other work it plans to do that
a child does not. A parent process is responsible for “reaping”
its children after they exit lest they remain zombies (and we all
know zombies are entertaining, I mean bad, right?). Wikipedia
has a great description of this [1]:

On Unix and Unix-like computer operating systems, a
zombie process or defunct process is a process that has
completed execution (via the exit system call) but still
has an entry in the process table: it is a process in the
“Terminated state”. This occurs for child processes,
where the entry is still needed to allow the parent
process to read its child’s exit status: once the exit
status is read via the wait system call, the zombie’s
entry is removed from the process table and it is said to
be “reaped”.

There are two common ways for reaping: manually or signal-
based. The manual way is the most straightforward. The parent
will call wait() or waitpid(), which will block until the child
exits. The code looks something like this:

 my $pid = fork();

 die “fork failed!: $!\n”; if (!defined $pid);

 if ($pid == 0) {

 # I’m a client

 # do stuff

 exit 0;

 }

 else {

 # I’m the parent

 # can also do stuff, then reap the child

 waitpid $pid, 0;

 }

Now, that code just shows a single fork. If we wanted a parent
to fork repeatedly, that is as easy as putting a while loop around
the fork() call and either keep track of the child process IDs (so
we can have the parent wait for each explicitly with waitpid())
or have a similar loop at the end of the parent script that repeat-
edly calls wait() (which just waits for any child process) the right
number of times to clean up after each fork().

If you don’t like this approach, another one is to make use of the
fact that the parent process should receive a signal when each
child process exits (SIGCHLD to be precise). If we add a signal

handler that either ignores the signal explicitly or reaps the
child that signaled it, we avoid zombies as well. If you plan to go
this route, I recommend looking up the Perl Cookbook recipe on
“Avoiding Zombie Processes” because it does a good job of laying
out some of the caveats you’ll need to know.

One last tip for you if you plan to write manually forking code:
I’ve seen far too many fork bombs (where a process forks itself
and the machine it is on into oblivion) in my time. Please put
logic into your code that limits and/or prevents unbridled fork-
ing. Keep a counter, check for a sentinel file (i.e., if a file with a
name on disk exists, don’t fork), create a dead man’s switch (only
fork if a file or some other condition is present), and so on. Any
strategy to avoid this problem is likely better than no strategy.

Let Someone Else Fork for You
Truth be told, I haven’t written code that calls fork() in quite
a few years. Ever since I discovered a particular module and
how easy it let me spread “run this in parallel” pixie dust on my
previously serial code, I really haven’t bothered with any of that
fork() / wait() drudgery. The module I speak of and love dearly
is Parallel::ForkManager. Looking back at the 2007 column, it
is clear that my affections haven’t waned over that time because
the example I gave then is still pertinent today.

Let’s quickly revisit that code. At the time, I mentioned having
a very large directory tree that I needed to copy from one file
system to another. I needed to copy each subdirectory over sepa-
rately using code similar to this:

 opendir(DIR, $startdir) or

 die "unable to open $startdir:$!\n";

 while ($_ = readdir(DIR)) {

 next if $_ eq ".";

 next if $_ eq "..";

 push(@dirs, $_);

 }

 closedir(DIR);

 foreach my $dir (sort @dirs) {

 (do the rsync);

 }

Since the copy operations are not related to each other (except
by virtue of touching the same file servers), we could run the
copies in parallel. But we have to be a little careful—we probably
don’t want to perform the task in the maximally parallel fashion
(i.e., start up N rsyncs where N is the number of subdirectories)
because that is sure to cause too much I/O and perhaps memory
and CPU contention. We’ll want to run with a limited number
of copies going at a time. Here’s some revised code that uses
Parallel::ForkManager:

66    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 1

 # ...read in the list of subdirectories as before

 my $pm = new Parallel::ForkManager(5);

 foreach my $dir (sort @dirs){

 # we are a child process if we get past this line

 $pm->start and next;

 (... do the rsync ...);

 $pm->finish; # terminate child process

 }

 # hang out until all processes have completed

 $pm->wait_all_children;

Let’s take a walk through the code. The first thing we do is
instantiate a Parallel::ForkManager object. When we do, we
provide the maximum number of processes we want running at
a time (five in this case). We then iterate over each subdirectory
we are going to copy. For each directory, we use start() to fork a
new process. If the max number of processes is already running,
this command will pause until there is a free spot. If we are able
to fork(), the line $pm->start returns the pid of the child process
to the parent process and 0 to the child as in our last section.

The logic of the “and next” part of the line is a little tricky so let
me go to super slow-mo and explain what is going on very care-
fully. We need to understand two cases: what happens to the
parent and what happens to the child process.

If we are the parent process, we’ll get a process ID of the child
back from start(), and so the line will become something like

 6240 and next;

Because 6240 is considered a “true” value in Perl, the next state-
ment will run and the rest of the contents of the loop will be
skipped. This lets the parent move on to the “next” subdirectory
so it can start() the next one in the list.

If we are the child process, we’ll get a 0 back from the start() call,
so the line becomes

 0 and next;

Since Perl short-circuits the “and” construct when it knows the
first value is false (as it is here), next isn’t called so the contents
of the loop (the actual rsync) is run by the child process. The
child process then calls $pm->finish to indicate it is done and
ready to exit.

At the very end, we call wait_all_children in the parent process
so it will hang out to reap the children that were spawned in the
process.

As I mentioned in 2007, all it takes is four additional lines for
the program to run my actions in parallel, keeping just the right
number of processes going at the same time. Easy peasey.

Better Threads
After process forking, the very next topic that usually comes up
in a discussion of parallel processing is threads. The usual idea
behind threads is they are lightweight entities that live within
a single process. They are considered lightweight because they
don’t require a new process (e.g., with all of the requirements of
running a new Perl interpreter) to be spun up for each worker.
As a quick aside: modern operating systems do a bunch of fancy
tricks to make process spawning/forking not as resource inten-
sive as might first appear, but it still is likely to be heavier than
decent threading support. A threading model can sometimes
make the programmer work a bit harder for reasons we’ll see in
the next installment, but it is often worth it.

Allow me to surprise you by ignoring any of the built-in Perl
threading support and instead moving on to a module that I
think provides for more pleasant use of threads under Perl: Coro.
I’ll let an excerpt from the module’s intro doc explain [2]:

Coro started as a simple module that implemented
a specific form of first class continuations called
Coroutines. These basically allow you to capture the
current point execution and jump to another point,
while allowing you to return at any time, as kind of non-
local jump, not unlike C’s “setjmp/longjmp.”…

One natural application for these is to include a
scheduler, resulting in cooperative threads, which is
the main use case for Coro today....

A thread is very much like a stripped-down perl
interpreter, or a process: Unlike a full interpreter
process, a thread doesn’t have its own variable or code
namespaces—everything is shared. That means that
when one thread modifies a variable (or any value, e.g.,
through a reference), then other threads immediately
see this change when they look at the same variable or
location.

Cooperative means that these threads must cooperate
with each other, when it comes to CPU usage—only
one thread ever has the CPU, and if another thread
wants the CPU, the running thread has to give it up.
The latter is either explicitly, by calling a function to do
so, or implicitly, when waiting on a resource (such as a
Semaphore, or the completion of some I/O request).

Coro will allow us to write a program where various parts of
the program can do some work and then hand off control of the
CPU to other parts. If that sounds a lot like a subroutine to you,
you are having the same reaction I did when I first started to
learn about Coro. One thing that helped me was this comparison
between subroutines and coroutines in Wikipedia [3]:

www.usenix.org	   J U N E 20 1 5  VO L . 4 0, N O. 3  67

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 1

When subroutines are invoked, execution begins at
the start, and once a subroutine exits, it is finished; an
instance of a subroutine only returns once, and does not
hold state between invocations. By contrast, coroutines
can exit by calling other coroutines, which may later
return to the point where they were invoked in the
original coroutine; from the coroutine’s point of view,
it is not exiting but calling another coroutine. Thus,
a coroutine instance holds state, and varies between
invocations; there can be multiple instances of a given
coroutine at once. The difference between calling
another coroutine by means of “yielding” to it and
simply calling another routine (which then, also, would
return to the original point) is that the latter is entered
in the same continuous manner as the former. The
relation between two coroutines which yield to each
other is not that of caller-callee, but instead symmetric.

I can’t believe I’m going to use this analogy, but it may help you
think of this model like a group of people standing in a circle
playing Hacky Sack™. One person starts with the footbag, does
some tricks, and then (in order for the game to be interesting to
all involved) has to pass the bag to another participant who does
whatever tricks he or she knows. That person does a few things
and then passes it along to the next person and so on. If you could
speed up the game such that all of the tricks and all of the passes
happen fast enough, you would get to watch a pretty entertaining
blur of activity consisting of multiple tasks appearing to basi-
cally happen at the same time. This analogy breaks down when
you start to talk about the various ways you can synchronize
cooperative threads, but it at least gets you started.

We are starting to come to the end of this column (I know, just
when it was starting to get good), but before we go, let’s learn the
very basics of how to use Coro at sort of the “hacky sack analogy”
level. Next time we’ll pick up right from these basics and look at
the more sophisticated features surrounding synchronization
and data passing between threads.

The basic way to define a thread in Coro is to use the async func-
tion. This function looks almost exactly like a subroutine defini-
tion except arguments are passed after the code block:

 use Coro;

 async { print “hi there $_[0]\n”; } ‘usenix’;

So what do you imagine that code prints? If you said “nothing!”
you win. If that answer makes you shake your head in confusion,
don’t worry, it is a bit of a trick question if you haven’t worked
with this package before. Let me explain.

When the program starts, it is running in what we’ll call the
“main” thread. This thread runs the async command you see
above to queue the requested code as a new thread. Then the
main thread exits because there is nothing left in the program
to run. As a result, the thread it queued up never got a chance
(sob) to run, hence no output. If we wanted that new thread to get
some CPU time, we have to give up the CPU in the main thread,
as in:

 use Coro;

 async { print "hi there $_[0]\n"; } 'usenix';

 cede;

Now we get the “hi there usenix” output we expect. We can yield
the CPU (which is what most thread packages call it instead of
cede) in any thread we want. Let’s play around with this idea a
bit. What would you guess this program returns? (Warning—it is
another trick question.)

 use Coro;

 async {

 print "1\n";

 cede;

 print "back to 1\n";

 };

 async {

 print "2\n";

 cede;

 print "back to 2\n";

 };

 async {

 print "3\n";

 cede;

 };

 cede;

Here’s the answer:

 1

 2

 3

Let’s walk through what is going on. The main thread starts. It
queues thread 1 to run, then thread 2, then thread 3. Finally, the
main thread cedes control of the CPU to the next thing that is
ready to run, which happens to be thread 1. Thread 1 prints “1”
and then cedes control to the next thing in the queue (thread 2).
This repeats until thread 3, which cedes control back to the main
thread. The main thread has nothing more to do, so the program
exits.

68    J U N E 20 1 5  VO L . 4 0, N O. 3 	 www.usenix.org

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 1

If we wanted to return to any of the threads so they can con-
tinue and print their second line, the main thread would have to
explicitly cede control back to them again. This is just as easy
as adding an extra “cede;” to the end of the program. If you are
not used to thinking “what is currently running? what could be
running?” it can take a little getting used to. Luckily, there are
ways to debug Coro programs. We’ll talk about that and other
advanced subjects in the next installment. Take care, and I’ll see
you next time.

References
[1] Wikipedia, “Zombie process”: https://en.wikipedia.org/
wiki/Zombie_process.

[2] Coro: http://search.cpan.org/dist/Coro/coro/intro.pod.

[3] Wikipedia, “Coroutines”: https://en.wikipedia.org/wiki/
Coroutine.

XKCD

xkcd.com

