
44    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

SYSADMINA Brief POSIX Advocacy
Shell Script Portability

A R N A U D T O M E Ï

Arnaud Tomeï is a self-taught
system administrator who
first worked for the French
social security administration
as a consultant, where he

discovered portability issues between AIX
and RHEL Linux. He currently works for a
hosting and services company in the south of
France, specializing in Debian GNU/Linux and
OpenBSD, administering 600 systems and the
network. arnaud@tomei.fr

A utomating things is the most important task a system administrator
has to take care of, and the most practical or at least widespread way
to do that is probably by writing shell scripts. But there are many fla-

vors of shell, and their differences are a big concern when you have a hetero-
geneous environment and want to run the same script with the same result
on every machine (that’s what any sane person would expect). One option is
to write POSIX-compliant shell scripts, but even the name might be confus-
ing because POSIX normalizes a lot of UNIX-related things, from system
APIs to standard commands, so I will try to clear things up.

The Bestiary of /bin/sh
One remarkable characteristic of Unixes since their beginning is the separation between the
base system and the command interpreter. Beside architectural considerations, it allowed a
wide diversity of programs to exist, and even to coexist on the same system with the choice
given to the users on which one to use.

The first shell available was not surprisingly developed by Ken Thompson, and while it
remained the default only for a couple of years, it laid the basis for the functionalities we use
today: pipes, redirections, and basic substitutions. It was rapidly improved by Steve Bourne
[1] in 1977 and developed into the now widely known Bourne shell. But another competing
implementation was released in 1978, the C shell, written by Bill Joy to be closer to the C
syntax and to have more interactive features (history, aliases, etc.). Sadly, those two syntaxes
were incompatible.

That’s when the Korn shell emerged; developed by David Korn and announced at the 1983
summer USENIX conference, it was backward-compatible with the Bourne shell syntax and
included a lot of the interactive features from the C shell. Those two main characteristics
made ksh the default shell on many commercial versions of UNIX, and made it widely known
and used. No major alternative shell was written, and a stable base was reached with the
release of ksh88. A new version was shipped in 1993, ksh93, which brought associative arrays
and extensibility of built-in commands. Due to its popularity, the Korn shell has seen a lot of
forks, including the “Public Domain KSH” pdksh, which shipped on OpenSolaris, most of the
open source BSD variants, and even graphic-enabled versions like dtksh [2] and tksh [3].

It took until the late ’80s and the beginning of the ’90s to see two new shells released: bash in
1989 and zsh in 1990. The first was an effort from the GNU Project to have a free software
equivalent of the Bourne shell for the GNU operating system, and the second was a student
project of Paul Falstad’s [4]. They are both backward-compatible with the Bourne shell but
aim at providing more advanced functions and better usability.

A Step by Step Normalization
Back in 1988, the IEEE Computer Society felt the need to standardize tools and APIs to
maintain compatibility between systems and started to write what was going to be com-
monly known as “POSIX,” the IEEE Std 1003.1-1988, or ISO/IEC 9945 standard. This docu-
ment defined very low-level mandatory characteristics of what could be called a UNIX, and

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  45

SYSADMIN
A Brief POSIX Advocacy: Shell Script Portability

was the foundation of what we now know. It was further expanded
to the point where four standards were necessary: POSIX.1,
POSIX.1b, POSIX.1c, and POSIX.2, with even longer official
denominations. The interesting part for our purposes is the 1992
revision (POSIX.2 also known as IEEE Std 1003.2-1992), which
defined the behavior of the shell and the syntax of the scripting
language. This norm is based on what was the most available
shell at the time which, given the time frame, was still ksh88.

All those standards were finally merged as the result of a vendor
consortium (if you thought it was already complex, search for
The Open Group history) into one document in 1994: the Single
UNIX Specification. The standards have since all become avail-
able under the same IEEE Std 1003.1 standard, divided into four
sections. The shell scripting language is defined by the XCU
chapter, along with standard tools (e.g., grep, sed, or cut) with
their options, and those specifications are now maintained both
by the IEEE Computer Society and by The Open Group.

Testing Code Portability
Modern shells like bash, zsh, or ksh will all be able to run POSIX-
compatible scripts with no modifications, but will not fail when
facing nonstandard options or constructs. For example, bash has
a POSIX-compatibility mode that can be triggered in three dif-
ferent ways: calling it directly with the --posix argument, setting
the POSIXLY_CORRECT environment variable, and calling set -o

posix in an interactive session; none of these methods, however,
will cause bash to fail to run a script containing a test between
double brackets, a bash-only construct, or use the -n argument
for echo. Reading the full XCU specification before writing a
script is not even remotely conceivable: the specification’s table
of contents alone is already 4867 lines long (I’m serious) [5].

Although setting the POSIXLY_CORRECT variable will not make
bash behave as a strictly POSIX shell, it will enable other
GNU tools like df or tar to use 512-byte blocks (as specified
by the norm) instead of one kilobyte by default, which might
be useful for a backup script designed to run between Linux
and BSD, for example.

Installing all available shells and running the intended script
with all of them might sound crazy but is a serious option if you
want to look after really specific cases where strict POSIX com-
pliance is not mandatory but portability is.

But for a more generic situation, using a minimal Bourne-
compatible shell is a quicker solution: if you are using Debian or
a derivative you can use dash, which is installed by default now,
or even install posh (Policy-compliant Ordinary SHell) to test
the script against, as they will exit with an error when encoun-
tering a nonstandard syntax. On almost all other systems (e.g.,
AIX, HP-UX, *BSD, and Solaris/Illumos), a ksh derivative will be
available. Since the XCU standard was written when ksh88 was

the most widespread interpreter, chances are that your script
will be well interpreted on most platforms if it runs with ksh:
granted it is ksh88 and this might not be the case on all systems.

One other option, coming again from the Debian project, is the
Perl script checkbashisms [6], originally designed to help the
transition of the default system shell from bash to dash. It allows
for some exceptions by default, as it checks for conformance
against the Debian policy [7] first (which allows echo –n, for
example), but can be forced to be strictly POSIX:

$ checkbashisms --posix duplicate-fronted.sh

possible bashism in duplicate-frontend.sh line 144 (echo -n):

 echo -n “Updating server list ...”

possible bashism in duplicate-frontend.sh line 157 (brace

expansion):

mkdir -p $wwwpath/{www,log,stats}

[...]

checkbashisms has one big limitation, however: it does not
check for external tools and their arguments, which can be
nonportable.

Finally, there is Shellcheck [8], a tool that does a lot more than
just checking portability but also warns you about stylistic
errors, always true conditions, and even possible catastrophic
mistakes (rm $VAR/*). Shellcheck also has an online version with
a form to submit the script if you don’t want to install the Haskell
dependencies required to run Shellcheck.

Built-ins
Some of the errors the previous tools would point out are fre-
quently part of the shell syntax itself, which is often extended for
ease of use, but at the expense of compatibility.

read
The -p option of read is a good example of an extended shell
built-in that is frequently used in interactive scripts to give input
context to the user:

read -p “Enter username: “ username

echo “$username”

On bash or zsh, it would output something like this:

$./test.sh

Enter username: foo

foo

But it will fail on dash, posh, or ksh because -p is not available:

$./test.sh

read: invalid option -- ‘p’

Another nonstandard extension of read is the special vari-
able $REPLY, which contains user input if no variable name is
provided:

46    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

SYSADMIN
A Brief POSIX Advocacy: Shell Script Portability

read -p “Enter username: “

echo “$REPLY”

This code will also fail on other interpreters:

$./test.sh

test.sh:2: read: mandatory argument is missing

A better version of the above examples would be to use printf
and explicitly name the variable:

printf “Enter username: “

read username

Which will give the same output as read -p on all shells.

echo
On the last example given with read, an alternative would have
been to use the following code:

echo -n “Enter username: “

read username

because echo -n does not output a newline. But this option is
not portable either, and interpreters on which it is available
will likely support the -p option of read. Actually, the POSIX
echo does not support any option: as stated by The Open Group,
“Implementations shall not support any options.”

Some operands are supported, however, and a workaround to
suppress the newline would be to insert \c at the end: echo
immediately stops outputting as soon as it reads this operand. But
this method, although POSIX-compliant, is not portable either, at
least with bash and zsh (only when zsh is called as /bin/sh):

$./test.sh

Enter username: \c

foo

Those two interpreters don’t process operands unless echo is fol-
lowed by the -e option, in contradiction with the POSIX specifi-
cation. That’s why it’s often recommended to use printf instead
of echo. A rule of thumb is to use echo only when no option or
operand is needed, or to print only one variable at a time.

getopts
Yes, with an s. Unlike getopt, the platform-dependent imple-
mentation, getopts is well defined and will behave consistently
across different systems, with one big limitation: long options
are not supported.

test
The test built-in, or [], obviously has many useful options, too
many to be listed here, but two of them were deprecated (actually
they were not part of the POSIX norm but of the XSI extension)
and are still in use: the binary operators AND and OR, noted -a
and -o.

[“$foo” = “$bar” -a -f /etc/baz]

[“$foo” = “$bar” -o -f /etc/baz]

Because they were ambiguous, depending on their position in the
expression, and could be confused by user input, they have been
marked obsolescent. Moreover, they could be easily replaced by
the equivalent shell operators: && and ||. Another nonportable
syntax often used is the bash extended test, delimited by double
brackets, which must also be avoided for POSIX scripts.

Don’t Forget the Standard Tools
The shell language on its own would not have met its success
without all the tools it can use to process files and streams. Did
I mention that such tools as grep, sed, and cut are mandatory in
the XCU standard? They are, and their necessary options are
even listed. But we’re used to some options not necessarily being
available on all systems.

cut
I’ve never used this option, but I’ve seen it in others’ scripts a
couple of times, so I guess it is worthy to mention that --output-

delimiter is GNU-specific:

cut -f 1,2 -d ‘:’ --output-delimiter ‘,’ foo

will work with GNU coreutils but will throw an error on other
systems:

cut: unknown option -- -

The alternative in this case is pretty obvious and straightfor-
ward: pipe it to sed.

cut -f 1,2 -d ‘:’ foo | sed -e ‘s/:/,/g’

sed
One really useful flag of sed, the -i option, is sadly not defined,
and that can lead to some surprising errors even on systems
supporting it: for example, a small script I wrote on my Linux
machine to run on my girlfriend’s Mac produced the following:

$./spectro-split.sh lipo-ctrl_1.csv

sed: 1: “lipo-ctrl_1.csv”: invalid command code .

[...]

In the script, sed was used to replace the decimal mark in spec-
trometry raw data, for later analysis by another tool:

sed -i ‘s/,/./g’ $column.txt

With GNU sed, the -i option takes an optional string as a suffix
for a backup copy of the file being edited, but on Mac (and Free-
BSD) the suffix is mandatory even if empty; here the substitution
pattern was misunderstood, so I had to use this more portable
(but still non-POSIX) syntax:

sed -i ‘’ -e ‘s/,/./g’ $column.txt

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  47

SYSADMIN
A Brief POSIX Advocacy: Shell Script Portability

This syntax will run, at least on Linux, Mac, FreeBSD, and
OpenBSD, but it will throw an error on AIX, Solaris, and HP-UX,
whose sed does not know the in-place editing option. An alterna-
tive would be to use perl if available:

perl -pi -e ‘s/,/./g’ $column.txt

Or to rely only on POSIX tools:

sed -e ‘s/,/./g’ $column.txt > $column.txt.new && mv

$column.txt.new $column.txt

This last option might not be prettiest, but it is the most portable
and reliable: it does not require external tools or nonstandard
options, and it actually does the same as the in-place argu-
ment, without risking silent corruption in case of disk space
exhaustion.

sort and uniq
Sort is often used in conjunction with uniq, which can only pro-
cess adjacent lines, and, contrary to most of the previous options
we’ve seen, one of sort’s options is often wrongly thought to be
nonportable although it is perfectly standard and more efficient:

sort -u foo.txt -o bar.txt

which is POSIX-compliant and portable, and is more elegant
than piping the result into uniq before redirecting the output.

Common Mistakes
Table 1 provides a small cheat-sheet to quickly check for the
most common errors in shell scripts:

Conclusion
Even if it requires greater discipline, writing POSIX-compliant
scripts, as well as knowing the syntax and the options of the
tools used, is a good starting point for portability: it will produce
higher quality scripts and, in some marginal cases, might even
lead to better performance by using a limited but optimized
interpretation. Of course, as in the echo example, even with
standards some specific features can interfere, but by sticking
closely to the norm, those situations will be limited and trivial to
correct most of the time.

read -p “Input:” variable The -p option is not portable. Actually, the only POSIX option to read is -r.

read; echo $REPLY The $REPLY special variable is interpreter-specific and is not always available.

echo -n Foo Portable echo does not support any option; printf should be preferred.

sed -i “s/foo/bar/” file Although really useful, this option is not standard and behaves differently depending on the system.

cp /etc/{passwd,shadow} Brace substitutions are commonly used with bash and zsh but are not available on ksh and POSIX.

if [[-e /tmp/random-lock]] Double brackets are bash-specific.

touch /tmp/$RANDOM.tmp The special variable $RANDOM is not available everywhere.

if [$var1 == $var2]
String comparison takes only one equals sign. Moreover, doubling it might be interpreted as a vari-
able (named “=”) assignment, which can’t be done in a test.

foo () { local var1=bar } Scoped variables are not defined by the XCU. The unset routine might be used instead if necessary.

foo=((foo++))
Works only with bash, should be replaced by foo=$((foo+1)) or $((foo=foo+1)) when used in another
expression (for example, ls -l $((foo=foo+1))).

[“$foo” = “$bar” -a -f /etc/baz] Should be replaced by (([“$foo” = “$bar”] && [-f /etc/baz]))

[“$foo” = “$bar” -o -f /etc/baz] Should be replaced by (([“$foo” = “$bar”] || [-f /etc/baz]))

ls -1 ~/foo
Often used in interactive sessions, the tilde should be banned from script as it is not expanded by all
shells.

Table 1: A cheat-sheet with a quick check for the most common errors in shell scripts

Resources
[1] http://www.unix.org/what_is_unix/history_timeline.html.

[2] dtksh was a fork able to manipulate Motif widgets and was
included with the CDE desktop.

[3] tksh, like dtksh, was a fork adding graphic capabilities to
ksh but with the Tk widget toolkit instead of Motif.

[4] http://zsh.sourceforge.net/FAQ/zshfaq01.html.

[5] http://pubs.opengroup.org/onlinepubs/9699919799
/utilities/contents.html.

[6] http://sourceforge.net/projects/checkbaskisms/.

[7] http://www.debian.org/doc/debian-policy/ch-files.html.

[8] http://www.shellcheck.net/about.html.

