
www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 13

SECURITY

A Large-Scale Empirical Study of
Security Patches
F R A N K L I A N D V E R N P A X S O N

Miscreants seeking to exploit computer systems incessantly dis-
cover and weaponize new security vulnerabilities. As a result,
system administrators and end users must constantly run on the

“patch treadmill,” where they apply security patch after security patch to
fix newly discovered software vulnerabilities, relying on many of the same
processes practiced for decades to update their software against the latest
threats. Given the vital role that security patches play in our management of
vulnerabilities, it behooves us to better understand the patch development
process and characteristics of the resulting fixes.

Prior studies [2, 4, 5, 7, 8] investigated aspects of the vulnerability and patching life cycles
but typically at a restricted scale in terms of software diversity, focusing on only a few
projects or even just one. While these studies provide insights into the patch development
process, there remains a question of how generally their findings apply, and how the nature
of security patches may differ from that of other types of bug fixes. Security patches are of
particular importance given their critical role in securing software and the time sensitivity
of their development.

In this work, we conduct a large-scale empirical study of security patches, investigating
4,000+ bug fixes for 3,000+ vulnerabilities that affected a diverse set of 682 open-source
software projects. We build our analysis on a data set that merges vulnerability entries from
the National Vulnerability Database [6], information scraped from relevant external refer-
ences, affected software repositories, and their associated security fixes. Tying together
these disparate data sources allows us to perform a deep analysis of the patch development
life cycle, including investigation of the code base life span of vulnerabilities, the timeliness
of security fixes, and the degree to which developers can produce safe and reliable security
patches. We also extensively characterize the security fixes themselves in comparison to
general bug patches, exploring the complexity of different types of patches and their impact
on code bases.

Data Collection Methodology
To explore vulnerabilities and their fixes, we must collect security patches and information
pertaining to them and the remedied security issues. Given this goal, we restricted our inves-
tigation to open-source software for which we could access source code repositories and
associated metadata. Our data collection centered around the National Vulnerability Data-
base (NVD) [6], a database provided by the US National Institute of Standards and Technol-
ogy (NIST) with information pertaining to publicly disclosed software vulnerabilities. These
vulnerabilities are identified by CVE (Common Vulnerabilities and Exposures) IDs.

We mined the NVD and crawled external references to extract relevant information, includ-
ing the affected software repositories, associated security patches, public disclosure dates,
and vulnerability classifications. Figure 1 depicts an overview of this process. In the remainder

Frank Li is a PhD student at
the University of California,
Berkeley. His research
mainly focuses on improving
the remediation process

for security issues such as vulnerabilities
and misconfigurations. More broadly,
he is interested in large-scale network
measurements and empirical studies in a
computer security context.
frankli@cs.berkeley.edu

Vern Paxson is a Professor
of Electrical Engineering
and Computer Sciences at
the University of California,
Berkeley, and leads the

Networking and Security Group at the
International Computer Science Institute in
Berkeley. His research focuses heavily on
measurement-based analysis of network
activity and Internet attacks. He works
extensively on high performance network
monitoring, detection algorithms, cybercrime,
and countering censorship and abusive
surveillance. vern@berkeley.edu

14  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
A Large-Scale Empirical Study of Security Patches

of this section, we briefly describe these various data sources
and our collection methodology (see [3] for details).

Note that throughout our methodology, we frequently manu-
ally inspected random samples of populations to confirm that
the population distributions accorded with our assumptions or
expectations.

Finding Public Vulnerabilities with the NVD
The NVD contains entries for all publicly released vulnerabili-
ties assigned a CVE identifier, and rich annotations about the
vulnerabilities. In particular, it summarizes the vulnerability,
links to relevant external references (such as security advisories
and reports), specifies the affected software, identifies the class
of security weakness under the Common Weakness Enumeration
(CWE) classifications, and evaluates the vulnerability severity
using the Common Vulnerability Scoring System (CVSS).

We focused on the NVD as it is public, expansive, manually
curated, and detailed. For this study, we analyzed a snapshot of
the NVD taken on December 25, 2016. Its 80,741 CVE vulner-
abilities served as our starting point for further data collection.

Identifying Software Repositories and Security
Patches
Many open-source version-controlled software repositories
provide web interfaces to navigate project development (such
as git.kernel.org). We frequently observed URLs to these web
interfaces among the external references for CVE entries, link-
ing to particular repository commits that addressed the security
vulnerability. We focused on popular Git web interfaces as they
were the most commonly occurring (and Git overall is popular).
Crawling these links afforded us the ability to collect security
patches and access the source code repositories.

Figure 1: An overview of our data collection methodology. (1) We extracted vulnerability characteristics from CVE entries in the NVD with external refer-
ences to Git commit links. (2) We crawled other references and extracted page publication dates to estimate public disclosure dates. (3) We crawled the
Git commit links to identify and clone the corresponding Git source code repositories, and collected security fixes using the commit hashes in the links. (4)
We also used the Git repositories to select general bug fixes.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 15

SECURITY
A Large-Scale Empirical Study of Security Patches

In total, we retrieved 4,080 commits across 682 unique Git
repositories, tied to 3,094 CVEs. Note that these repositories are
distinct, as we de-duplicated mirrored versions. By manually
investigating 100 randomly sampled commits, we found that all
commits reflect fixes for the corresponding vulnerabilities, indi-
cating the vast majority, if not all, of our commits are security
patches. This data set corresponds to a variety of vulnerability
types and severities, affecting an expansive range of products
(from OS distributions to applications to libraries), detailed in [3].

Identifying General Bug Fixes
We can gain insights into any especially distinct characteristics
of security patches by comparing them to bug fixes in general.
However, to do so at scale we must automatically identify bug
fixes. We tackled this problem using a logistic regression that
models the character n-grams in Git commit messages to iden-
tify likely bug fix commits. We discuss the details of our classi-
fier training and evaluation in [3].

With our classifier, we collected a data set of bug fixes by
randomly selecting per repository up to 10 commits classified
as bug fixes. This provided us with a large set of over 6,000 bug
fixes (similar to our number of security fixes) balanced across
repositories.

Processing Commits
In a patch, it can be useful to consider only changes to functional
source code, rather than documentation files or source code
comments. For each commit that we collected (both security and
general bug fixes), we processed the commit data to produce an
alternative “cleaned” version that filtered non-source code files
and removed comments.

Estimating Vulnerability Public Disclosure Dates
Determining the public disclosure date of a vulnerability is vital
to understanding the timeline of its life cycle. The CVE publi-
cation date indicates when the CVE entry was published, not
necessarily when the vulnerability was publicly disclosed. To
estimate the public disclosure date, we analyzed the external
references associated with CVEs. These web pages frequently
contain publication dates for information pertaining to vulner-
abilities. Example pages include security advisories, public mail-
ing list archives, other vulnerability database entries, and bug
reports. We chose the earliest date among the extracted dates
and the CVE publication date as our estimate.

Analysis Results
Our collected data set provides us with a unique perspective
on the development life cycle of security fixes, as well as on the
characteristics of the security patches themselves in compari-
son to general bug fixes. In this section, we discuss our more
salient analyses and findings (see [3] for additional analyses).

We first consider the patch development process by connect-
ing the vulnerability information available in the NVD with the
historical logs available in Git repositories. We follow that by
analyzing our collection of security and general bug fixes to help
illuminate their differences, considering facets such as the com-
plexity of fixes and the locality of changes. In general, to assess
whether differences observed have statistical significance, we
use permutation tests with a significance threshold of α = 0.05
(discussed in detail in [3]).

Vulnerability Life Spans in Code Bases
Upon a vulnerability’s discovery, we might naturally ask how
long it plagued a code base before a developer rectified the issue,
a duration we call the code base life span. Automatically and reli-
ably determining this life span is difficult, requiring semantic
understanding of the source code and the vulnerability. How-
ever, we can approximate a lower bound on age by determining
when the source code affected by a security fix was previously
last modified. We note that this heuristic does assume that secu-
rity fixes modify the same lines that contained insecure code.
We assessed that this is a robust approximation through manual
inspection of a random sample of security patches.

We analyzed the cleaned versions of security commit data to
focus on source code changes. For all lines of code deleted or
modified by a security commit, we retrieved the last time each
line was previously updated. We conservatively designate the
most recent change date across all of the lines as the estimated
vulnerability birth. The duration between this date and the
patch commit date provides a lower bound on the vulnerability’s
code base life span. We observe that vulnerabilities exist in code
bases for extensive durations, with a median life span of 438 days
(14.4 months). Furthermore, a third of all CVEs had life spans
beyond three years. The longest surviving vulnerability was a
21-year-old information disclosure vulnerability in Kerberos.

Security Fix Timeliness
The timeliness of a security fix relative to the vulnerability’s
public disclosure affects the remediation process and the poten-
tial impact of the security issue. On the one hand, developers
who learn of insecurities in their code bases through unan-
ticipated public announcements have to quickly react before
attackers leverage the information for exploitation. On the other
hand, developers who learn of a security bug through private
channels can address the issue before public disclosure, but may
not release the available patch for some time due to a project’s
release cycle, expanding the vulnerability’s window of exposure.

We explore this facet of remediation by comparing the patch
commit date for CVEs in our data set with public disclosure
dates (estimated as described in “Data Collection Methodology,”
above).

16  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
A Large-Scale Empirical Study of Security Patches

How frequently are vulnerabilities unpatched when dis-
closed? We observe that 21% of all vulnerabilities were not fixed
at the time of public disclosure. We cannot determine whether
these vulnerabilities were privately reported to project develop-
ers but with no prior action taken, or disclosed without any prior
notice. However, a quarter (26%) of these unpatched security
issues remained unaddressed 30 days after disclosure, leaving a
window wide open for attacker exploitation.

For the remaining 79% of all CVEs, project developers commit-
ted the security fixes by public disclosure time. This suggests
that the majority of vulnerabilities were either internally discov-
ered or disclosed to project developers using private channels,
the expected best practice.

Are vulnerability patches publicly visible long before dis-
closure? The degree to which security commits precede disclo-
sures varies widely. This behavior highlights the security impact
of an interesting aspect of the open-source ecosystem. Given the
public nature of open-source projects and their development, an
attacker targeting a specific software project can feasibly track
security patches and the vulnerabilities they address.

While the vulnerability is remedied in the project repository, it
is unlikely to be widely fixed in the wild before public disclosure
and update distribution. We note that over 50% of CVEs were
patched more than two weeks before public disclosure, giving
attackers ample time to develop and deploy exploits.

Patch Reliability
The patch that a developer creates to address a vulnerability may
unfortunately disrupt existing code functionality or introduce
new errors. Beyond the direct problems that arise from such
patches, end-user trust in generally applying patches (or in the
software itself) can erode. To assess how successful developers
are at producing reliable and safe security fixes, we identified
instances of multiple commits for the same CVE, and classified
the causes.

To locate CVEs associated with multiple commits where a sub-
sequent commit may fix a previous one, we found CVEs listed
in the NVD with multiple commits. Additionally, we attempted
to identify further commits potentially associated with a CVE
using repository Git logs, looking for commit messages that
explicitly reference the original patch’s commit hash or the CVE
ID. Note that with this approach, we could only identify multiple
patches when commit messages contained this explicit linkage,
so our analysis provides a lower bound.

Filtering out duplicate commits (e.g., merges, rebases, and
cherry-picks) as well as CVEs where all commits were within a
24-hour time window (thus even if there was a problem, it was
quickly resolved), we found 440 CVEs with multiple commits.

We randomly sampled 50 of the remaining 440 CVEs and manu-
ally investigated whether the fixes were problematic. Table
1 summarizes our results. We identified 26 (52%) as having
incomplete fixes, requiring a later patch to complete the job. We
labeled 17 (34%) as regressive, as they introduced new errors that
required a later commit to address. Other follow-on commits
were benign, such as commits for documentation, testing, or
refactoring. Note that some CVEs had multiple commits in mul-
tiple categories, resulting in the sum of CVEs in each category
exceeding 100%. Problematic initial patches were followed by
a median of one additional commit, with a median of 181.5 days
and 33 days between commits for incomplete and regressive
patches, respectively.

This random sample is representative of the 440 CVEs with
multiple commits accounting for 14.2% of all CVEs. Extrapolat-
ing from the sample to all CVEs, we estimate that about 7% of
all security fixes may be incomplete, and about 5% regressive.
These findings indicate that broken patches occur with unfor-
tunate frequency, and applying security patches comes with
non-negligible risks. In addition, these numbers have a skew
towards underestimation: we may not have identified all existing
problematic patches, and recent patches in our data set might
not have had enough time yet to manifest as ultimately requiring
multiple commits.

Patch Complexity
How complex are security patches compared to bug fixes in
general? Given the number and diversity of software projects
we consider, we chose lines of code (LOC) as a simple-albeit-
rudimentary metric.

Are security patches smaller than general bug fixes?
Under the LOC metric, security commits overall are statisti-
cally significantly smaller than bug patches in general (p ≈ 0).
The median security commit diff involved 7 LOC compared
to 16 LOC for general bug fixes. Approximately 20% of general
bug patches had diffs with over 100 lines changed, while this
occurred in only 6% of security commits.

CVE
Commits
Label

Num. CVEs
Median Num.
Follow-on
Commits

Median Fix
Interarrival
Time (days)

Incomplete 26 (52%) 1.0 181.5

Regressive 17 (34%) 1.0 33.0

Benign 14 (28%) 1.5 118.5

Table 1: Summary of our manual investigation into 50 randomly sampled
CVEs with multiple commits. Note that a CVE may have commits in
multiple categories.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 17

SECURITY
A Large-Scale Empirical Study of Security Patches

Do security patches make fewer “logical” changes than gen-
eral bug fixes? As an alternative to our raw LOC metric, we can
group consecutive lines changed by a commit as a single “logical”
change. Under this definition, we consider several lines updated
as a single logical update, and a chunk of deleted code counts
as a single logical delete. Across all logical actions, we observe
that security commits involve significantly fewer changes (all p
< 0.01). Nearly 78% of security commits did not delete any code,
compared to 66% of general bug-fix commits. Between 30%
and 40% of all commits for both security and general bug-fix
commits also did not add any new code portions, indicating the
majority of logical changes were updates to existing code.

Do security patches change code base sizes less than gen-
eral bug fixes? Another metric for a patch’s complexity is its
impact on the code base size. The net number of lines changed
by a commit reflects the growth or decline in the associated
code base’s size. We observe that significantly more general bug
patches result in a net reduction in project LOC, compared to
security fixes: 18% of general bug fixes reduced code base sizes
compared to 9% of security patches. For all commits, approxi-
mately a quarter resulted in no net change in project LOC, which
commonly occurs when lines are only updated. Overall, projects
are more likely to grow in size with commits, since the major-
ity of all commits added to the code base. However, security
commits tend to contribute less growth compared to general bug
fixes, an observation that accords with our earlier results.

Patch Locality
Finally, we can quantify the impact of a patch by its locality. We
consider two metrics: the number of files affected and the num-
ber of functions affected.

Do security patches affect fewer source code files than gen-
eral bug fixes? We observe that security patches modify fewer
files compared to bug fixes in general, a statistically signifi-
cant observation (p ≈ 0). In aggregate, 70% of security patches
affected one file, while 55% of general bug patches were equiva-
lently localized. Fixes typically updated, rather than created
or deleted, files (mirroring code changes, which were typically
updates). Only 4% of security fixes created new files vs. 13% of
general bug fixes, and only 0.5% of security patches deleted files
vs. 4% of general bug fixes.

Do security patches affect fewer functions than general bug
fixes? We find that 5% of general bug fixes affected only global
code outside of function boundaries, compared to 1% of security
patches. Overall, we observe a similar trend as with the number
of affected files. Security patches are significantly (p ≈ 0) more
localized across functions: 59% of security changes resided in a
single function compared to 42% of other bug fixes.

Moving Forward
In this study, we have conducted a large-scale empirical analysis
of security patches across over 650 projects. Here we discuss
the main takeaways, highlighting the primary results developed
(summarized in Table 2) and their implications for the security
community moving forward.

Need for more extensive or effective code testing and audit-
ing processes for open-source projects. Our results show that
vulnerabilities live for years and their patches are sometimes
problematic. These findings indicate that the software develop-
ment and testing process, at least for open-source projects, is not
adequate at quickly detecting and properly addressing security
issues. A natural avenue for future work is to develop more
effective testing processes, particularly considering usability,
as developers are unlikely to leverage methods that prove dif-
ficult to deploy or challenging to interpret. In addition, software
developers can already make strides in improving their testing
processes by using existing tools such as sanitizers or fuzzers
more extensively.

The transparency of open-source projects makes them ripe for
such testing not only by the developers, but by external research-
ers and auditors as well. Community-driven efforts, such as
those supported by the Core Infrastructure Initiative [1], have
already demonstrated that they can significantly improve the
security of open-source software. Further support of such
efforts, and more engagement between various project contribu-
tors and external researchers, can help better secure the open-
source ecosystem.

Aspect of Security
Patches Summary of Results

Vulnerability Life Spans
Vulnerabilities often lived for
years, with a third for more than
three years.

Security Fix Timeliness

A fifth of vulnerabilities were not
fixed at public disclosure time.
When fixed before disclosure, the
patches were visible in repositories
weeks to months in advance.

Patch Reliability
We conservatively estimate that
about 7% of security patches were
incomplete and 5% regressive.

Patch Complexity
Security patches were significantly
smaller than bug fixes in general.

Patch Locality
Security patches were more
localized in their changes than
general bug fixes.

Table 2: Summary of main analysis results.

18  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
A Large-Scale Empirical Study of Security Patches

Need for refined bug reporting and public disclosure
processes for open-source projects. Our analysis of the
timeliness of security fixes revealed that they are poorly timed
with vulnerability public disclosures. Over 20% of CVEs were
unpatched when they were first announced, perhaps sometimes
to the surprise of project developers.

In the opposite direction, we discovered that when security
issues are reported or discovered privately and fixed, the remedy
is not immediately distributed and divulged, likely due to soft-
ware release cycles. Over a third of fixed vulnerabilities were
not publicly disclosed for more than a month. While operating
in silence may help limit to a small degree the dissemination of
information about the vulnerability, it also forestalls inform-
ing affected parties and spurring them to remediate. Given the
transparency of open-source projects, attackers may be able to
leverage this behavior by tracking the security commits of target
software projects. From the public visibility into these commits,
attackers can identify and weaponize the underlying vulner-
abilities. The issue of vulnerability disclosure and embargoing
of information is a complex debate, but the visibility of the patch
itself should be part of that discussion.

Opportunities for leveraging characteristics of security
patches. Our comparison of security patches with general bug
fixes revealed that security fixes have a smaller impact on code
bases, across various metrics. They involve fewer lines of code,
fewer logical changes, and are more localized in their changes.
This has implications along various patch analysis dimensions,
such as patch safety analysis. Tying back to broken patches,
the lower complexity of security patches can perhaps be lever-
aged for safety analysis customized for evaluating just security
fixes. Also, as these remedies involve fewer changes, automatic
patching systems may operate more successfully if targeting
security bugs. Zhong and Su [8] observed that general patches
are frequently too complex or too delocalized to be amenable to
automatic generation. However, security patches may be small
and localized enough. From a usability angle, we may addition-
ally be able to better inform end users of the potential impact of
a security update, given its smaller and more localized changes.
The need for more exploration into the verification and auto-
mated generation of security patches is quite salient as our abil-
ity to respond to security vulnerabilities still heavily depends
on patching, while the attack landscape has grown ever more
dangerous.

Acknowledgements
This work was supported in part by the National Science Foun-
dation awards CNS-1237265 and CNS-1518921.

References
[1] Core Infrastructure Initiative: https://www
.coreinfrastructure.org.

[2] Z. Huang, M. D’Angelo, D. Miyani, and D. Lie, “Talos:
Neutralizing Vulnerabilities with Security Workarounds for
Rapid Response,” in Proceedings of the 37th I-EEE Symposium
on Security and Privacy (S&P ’16): https://www.eecg.toronto
.edu/~lie/papers/zhuang_talos_oakland2016.pdf.

[3] F. Li and V. Paxson, “A Large-Scale Empirical Study of
Security Patches,” in Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS ’17): https://
www.icir.org/vern/papers/patch-study.ccs17.pdf.

[4] A. Ozment and S. E. Schechter, “Milk or Wine: Does Soft -
-ware Security Improve with Age?” in Proceedings of the 15th
USENIX Security Symposium (Security ’06): https://www
.usenix.org/legacy/event/sec06/tech/full_papers/ozment
/ozment.pdf.

[5] J. Park, M. Kim, B. Ray, and D. Bae, “An Empirical Study of
Supplementary Bug Fixes,” in Proceedings of the 9th Work-
ing Conference on Mining Software Repositories (MSR ’12):
https://web.cs.ucla.edu/~miryung/Publications/msr2012
-supplementarypatch.pdf.

[6] US National Institute of Standards and Technology, National
Vulnerability Database: https://nvd.nist.gov/home.cfm.

[7] S. Zaman, B. Adams, and A. E. Hassan, “Security Versus
Performance Bugs: A Case Study on Firefox,” in Proceedings of
the 8th Working Conference on Mining Software Repositories
(MSR ’11): https://citeseerx.ist.psu.edu/viewdoc/download
?doi=10.1.1.740.4377&rep=rep1&type=pdf.

[8] H. Zhong and Z. Su, “An Empirical Study on Real Bug Fixes,”
in Proceedings of the 37th International Conference on Soft-
ware Engineering (ICSE ’15): https://web.cs.ucdavis.edu/~su
/publications/icse15-bugstudy.pdf.

https://www.coreinfrastructure.org
https://www.coreinfrastructure.org
https://www.eecg.toronto.edu/~lie/papers/zhuang_talos_oakland2016.pdf
https://www.eecg.toronto.edu/~lie/papers/zhuang_talos_oakland2016.pdf
https://www.icir.org/vern/papers/patch-study.ccs17.pdf
https://www.icir.org/vern/papers/patch-study.ccs17.pdf
https://www.usenix.org/legacy/event/sec06/tech/full_papers/ozment/ozment.pdf
https://www.usenix.org/legacy/event/sec06/tech/full_papers/ozment/ozment.pdf
https://www.usenix.org/legacy/event/sec06/tech/full_papers/ozment/ozment.pdf
https://web.cs.ucla.edu/~miryung/Publications/msr2012-supplementarypatch.pdf
https://web.cs.ucla.edu/~miryung/Publications/msr2012-supplementarypatch.pdf
https://nvd.nist.gov/home.cfm
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.4377&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.4377&rep=rep1&type=pdf
https://web.cs.ucdavis.edu/~su/publications/icse15-bugstudy.pdf
https://web.cs.ucdavis.edu/~su/publications/icse15-bugstudy.pdf

