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SECURITY

A Large-Scale Empirical Study of  
Security Patches
F R A N K  L I  A N D  V E R N  P A X S O N

Miscreants seeking to exploit computer systems incessantly dis-
cover and weaponize new security vulnerabilities. As a result, 
system administrators and end users must constantly run on the 

“patch treadmill,” where they apply security patch after security patch to 
fix newly discovered software vulnerabilities, relying on many of the same 
processes practiced for decades to update their software against the latest 
threats. Given the vital role that security patches play in our management of 
vulnerabilities, it behooves us to better understand the patch development 
process and characteristics of the resulting fixes. 

Prior studies [2, 4, 5, 7, 8] investigated aspects of the vulnerability and patching life cycles 
but typically at a restricted scale in terms of software diversity, focusing on only a few 
projects or even just one. While these studies provide insights into the patch development 
process, there remains a question of how generally their findings apply, and how the nature 
of security patches may differ from that of other types of bug fixes. Security patches are of 
particular importance given their critical role in securing software and the time sensitivity 
of their development.

In this work, we conduct a large-scale empirical study of security patches, investigating 
4,000+ bug fixes for 3,000+ vulnerabilities that affected a diverse set of 682 open-source 
software projects. We build our analysis on a data set that merges vulnerability entries from 
the National Vulnerability Database [6], information scraped from relevant external refer-
ences, affected software repositories, and their associated security fixes. Tying together 
these disparate data sources allows us to perform a deep analysis of the patch development 
life cycle, including investigation of the code base life span of vulnerabilities, the timeliness 
of security fixes, and the degree to which developers can produce safe and reliable security 
patches. We also extensively characterize the security fixes themselves in comparison to 
general bug patches, exploring the complexity of different types of patches and their impact 
on code bases.

Data Collection Methodology
To explore vulnerabilities and their fixes, we must collect security patches and information 
pertaining to them and the remedied security issues. Given this goal, we restricted our inves-
tigation to open-source software for which we could access source code repositories and 
associated metadata. Our data collection centered around the National Vulnerability Data-
base (NVD) [6], a database provided by the US National Institute of Standards and Technol-
ogy (NIST) with information pertaining to publicly disclosed software vulnerabilities. These 
vulnerabilities are identified by CVE (Common Vulnerabilities and Exposures) IDs.

We mined the NVD and crawled external references to extract relevant information, includ-
ing the affected software repositories, associated security patches, public disclosure dates, 
and vulnerability classifications. Figure 1 depicts an overview of this process. In the remainder 
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of this section, we briefly describe these various data sources 
and our collection methodology (see [3] for details).

Note that throughout our methodology, we frequently manu-
ally inspected random samples of populations to confirm that 
the population distributions accorded with our assumptions or 
expectations.

Finding Public Vulnerabilities with the NVD
The NVD contains entries for all publicly released vulnerabili-
ties assigned a CVE identifier, and rich annotations about the 
vulnerabilities. In particular, it summarizes the vulnerability, 
links to relevant external references (such as security advisories 
and reports), specifies the affected software, identifies the class 
of security weakness under the Common Weakness Enumeration 
(CWE) classifications, and evaluates the vulnerability severity 
using the Common Vulnerability Scoring System (CVSS).

We focused on the NVD as it is public, expansive, manually 
curated, and detailed. For this study, we analyzed a snapshot of 
the NVD taken on December 25, 2016. Its 80,741 CVE vulner-
abilities served as our starting point for further data collection.

Identifying Software Repositories and Security 
Patches
Many open-source version-controlled software repositories 
provide web interfaces to navigate project development (such 
as git.kernel.org). We frequently observed URLs to these web 
interfaces among the external references for CVE entries, link-
ing to particular repository commits that addressed the security 
vulnerability. We focused on popular Git web interfaces as they 
were the most commonly occurring (and Git overall is popular). 
Crawling these links afforded us the ability to collect security 
patches and access the source code repositories.

Figure 1: An overview of our data collection methodology. (1) We extracted vulnerability characteristics from CVE entries in the NVD with external refer-
ences to Git commit links. (2) We crawled other references and extracted page publication dates to estimate public disclosure dates. (3) We crawled the 
Git commit links to identify and clone the corresponding Git source code repositories, and collected security fixes using the commit hashes in the links. (4) 
We also used the Git repositories to select general bug fixes.
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In total, we retrieved 4,080 commits across 682 unique Git 
repositories, tied to 3,094 CVEs. Note that these repositories are 
distinct, as we de-duplicated mirrored versions. By manually 
investigating 100 randomly sampled commits, we found that all 
commits reflect fixes for the corresponding vulnerabilities, indi-
cating the vast majority, if not all, of our commits are security 
patches. This data set corresponds to a variety of vulnerability 
types and severities, affecting an expansive range of products 
(from OS distributions to applications to libraries), detailed in [3].

Identifying General Bug Fixes
We can gain insights into any especially distinct characteristics 
of security patches by comparing them to bug fixes in general. 
However, to do so at scale we must automatically identify bug 
fixes. We tackled this problem using a logistic regression that 
models the character n-grams in Git commit messages to iden-
tify likely bug fix commits. We discuss the details of our classi-
fier training and evaluation in [3].

With our classifier, we collected a data set of bug fixes by 
randomly selecting per repository up to 10 commits classified 
as bug fixes. This provided us with a large set of over 6,000 bug 
fixes (similar to our number of security fixes) balanced across 
repositories. 

Processing Commits
In a patch, it can be useful to consider only changes to functional 
source code, rather than documentation files or source code 
comments. For each commit that we collected (both security and 
general bug fixes), we processed the commit data to produce an 
alternative “cleaned” version that filtered non-source code files 
and removed comments.

Estimating Vulnerability Public Disclosure Dates
Determining the public disclosure date of a vulnerability is vital 
to understanding the timeline of its life cycle. The CVE publi-
cation date indicates when the CVE entry was published, not 
necessarily when the vulnerability was publicly disclosed. To 
estimate the public disclosure date, we analyzed the external 
references associated with CVEs. These web pages frequently 
contain publication dates for information pertaining to vulner-
abilities. Example pages include security advisories, public mail-
ing list archives, other vulnerability database entries, and bug 
reports. We chose the earliest date among the extracted dates 
and the CVE publication date as our estimate.

Analysis Results
Our collected data set provides us with a unique perspective 
on the development life cycle of security fixes, as well as on the 
characteristics of the security patches themselves in compari-
son to general bug fixes. In this section, we discuss our more 
salient analyses and findings (see [3] for additional analyses). 

We first consider the patch development process by connect-
ing the vulnerability information available in the NVD with the 
historical logs available in Git repositories. We follow that by 
analyzing our collection of security and general bug fixes to help 
illuminate their differences, considering facets such as the com-
plexity of fixes and the locality of changes. In general, to assess 
whether differences observed have statistical significance, we 
use permutation tests with a significance threshold of α = 0.05 
(discussed in detail in [3]).

Vulnerability Life Spans in Code Bases
Upon a vulnerability’s discovery, we might naturally ask how 
long it plagued a code base before a developer rectified the issue, 
a duration we call the code base life span. Automatically and reli-
ably determining this life span is difficult, requiring semantic 
understanding of the source code and the vulnerability. How-
ever, we can approximate a lower bound on age by determining 
when the source code affected by a security fix was previously 
last modified. We note that this heuristic does assume that secu-
rity fixes modify the same lines that contained insecure code. 
We assessed that this is a robust approximation through manual 
inspection of a random sample of security patches.

We analyzed the cleaned versions of security commit data to 
focus on source code changes. For all lines of code deleted or 
modified by a security commit, we retrieved the last time each 
line was previously updated. We conservatively designate the 
most recent change date across all of the lines as the estimated 
vulnerability birth. The duration between this date and the 
patch commit date provides a lower bound on the vulnerability’s 
code base life span. We observe that vulnerabilities exist in code 
bases for extensive durations, with a median life span of 438 days 
(14.4 months). Furthermore, a third of all CVEs had life spans 
beyond three years. The longest surviving vulnerability was a 
21-year-old information disclosure vulnerability in Kerberos.

Security Fix Timeliness
The timeliness of a security fix relative to the vulnerability’s 
public disclosure affects the remediation process and the poten-
tial impact of the security issue. On the one hand, developers 
who learn of insecurities in their code bases through unan-
ticipated public announcements have to quickly react before 
attackers leverage the information for exploitation. On the other 
hand, developers who learn of a security bug through private 
channels can address the issue before public disclosure, but may 
not release the available patch for some time due to a project’s 
release cycle, expanding the vulnerability’s window of exposure.

We explore this facet of remediation by comparing the patch 
commit date for CVEs in our data set with public disclosure 
dates (estimated as described in “Data Collection Methodology,” 
above).
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How frequently are vulnerabilities unpatched when dis-
closed? We observe that 21% of all vulnerabilities were not fixed 
at the time of public disclosure. We cannot determine whether 
these vulnerabilities were privately reported to project develop-
ers but with no prior action taken, or disclosed without any prior 
notice. However, a quarter (26%) of these unpatched security 
issues remained unaddressed 30 days after disclosure, leaving a 
window wide open for attacker exploitation.

For the remaining 79% of all CVEs, project developers commit-
ted the security fixes by public disclosure time. This suggests 
that the majority of vulnerabilities were either internally discov-
ered or disclosed to project developers using private channels, 
the expected best practice. 

Are vulnerability patches publicly visible long before dis-
closure? The degree to which security commits precede disclo-
sures varies widely. This behavior highlights the security impact 
of an interesting aspect of the open-source ecosystem. Given the 
public nature of open-source projects and their development, an 
attacker targeting a specific software project can feasibly track 
security patches and the vulnerabilities they address.

While the vulnerability is remedied in the project repository, it 
is unlikely to be widely fixed in the wild before public disclosure 
and update distribution. We note that over 50% of CVEs were 
patched more than two weeks before public disclosure, giving 
attackers ample time to develop and deploy exploits.

Patch Reliability
The patch that a developer creates to address a vulnerability may 
unfortunately disrupt existing code functionality or introduce 
new errors. Beyond the direct problems that arise from such 
patches, end-user trust in generally applying patches (or in the 
software itself) can erode. To assess how successful developers 
are at producing reliable and safe security fixes, we identified 
instances of multiple commits for the same CVE, and classified 
the causes.

To locate CVEs associated with multiple commits where a sub-
sequent commit may fix a previous one, we found CVEs listed 
in the NVD with multiple commits. Additionally, we attempted 
to identify further commits potentially associated with a CVE 
using repository Git logs, looking for commit messages that 
explicitly reference the original patch’s commit hash or the CVE 
ID. Note that with this approach, we could only identify multiple 
patches when commit messages contained this explicit linkage, 
so our analysis provides a lower bound.

Filtering out duplicate commits (e.g., merges, rebases, and 
cherry-picks) as well as CVEs where all commits were within a 
24-hour time window (thus even if there was a problem, it was 
quickly resolved), we found 440 CVEs with multiple commits.

We randomly sampled 50 of the remaining 440 CVEs and manu-
ally investigated whether the fixes were problematic. Table 
1 summarizes our results. We identified 26 (52%) as having 
incomplete fixes, requiring a later patch to complete the job. We 
labeled 17 (34%) as regressive, as they introduced new errors that 
required a later commit to address. Other follow-on commits 
were benign, such as commits for documentation, testing, or 
refactoring. Note that some CVEs had multiple commits in mul-
tiple categories, resulting in the sum of CVEs in each category 
exceeding 100%. Problematic initial patches were followed by 
a median of one additional commit, with a median of 181.5 days 
and 33 days between commits for incomplete and regressive 
patches, respectively. 

This random sample is representative of the 440 CVEs with 
multiple commits accounting for 14.2% of all CVEs. Extrapolat-
ing from the sample to all CVEs, we estimate that about 7% of 
all security fixes may be incomplete, and about 5% regressive. 
These findings indicate that broken patches occur with unfor-
tunate frequency, and applying security patches comes with 
non-negligible risks. In addition, these numbers have a skew 
towards underestimation: we may not have identified all existing 
problematic patches, and recent patches in our data set might 
not have had enough time yet to manifest as ultimately requiring 
multiple commits.

Patch Complexity
How complex are security patches compared to bug fixes in 
general? Given the number and diversity of software projects 
we consider, we chose lines of code (LOC) as a simple-albeit-
rudimentary metric.

Are security patches smaller than general bug fixes? 
Under the LOC metric, security commits overall are statisti-
cally significantly smaller than bug patches in general (p ≈ 0). 
The median security commit diff involved 7 LOC compared 
to 16 LOC for general bug fixes. Approximately 20% of general 
bug patches had diffs with over 100 lines changed, while this 
occurred in only 6% of security commits.

CVE 
Commits 
Label

Num. CVEs
Median Num. 
Follow-on 
Commits

Median Fix 
Interarrival 
Time (days)

Incomplete 26 (52%) 1.0 181.5 

Regressive 17 (34%) 1.0 33.0 

Benign 14 (28%) 1.5 118.5

Table 1: Summary of our manual investigation into 50 randomly sampled 
CVEs with multiple commits. Note that a CVE may have commits in 
multiple categories.
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Do security patches make fewer “logical” changes than gen-
eral bug fixes? As an alternative to our raw LOC metric, we can 
group consecutive lines changed by a commit as a single “logical” 
change. Under this definition, we consider several lines updated 
as a single logical update, and a chunk of deleted code counts 
as a single logical delete. Across all logical actions, we observe 
that security commits involve significantly fewer changes (all p 
< 0.01). Nearly 78% of security commits did not delete any code, 
compared to 66% of general bug-fix commits. Between 30% 
and 40% of all commits for both security and general bug-fix 
commits also did not add any new code portions, indicating the 
majority of logical changes were updates to existing code.

Do security patches change code base sizes less than gen-
eral bug fixes? Another metric for a patch’s complexity is its 
impact on the code base size. The net number of lines changed 
by a commit reflects the growth or decline in the associated 
code base’s size. We observe that significantly more general bug 
patches result in a net reduction in project LOC, compared to 
security fixes: 18% of general bug fixes reduced code base sizes 
compared to 9% of security patches. For all commits, approxi-
mately a quarter resulted in no net change in project LOC, which 
commonly occurs when lines are only updated. Overall, projects 
are more likely to grow in size with commits, since the major-
ity of all commits added to the code base. However, security 
commits tend to contribute less growth compared to general bug 
fixes, an observation that accords with our earlier results.

Patch Locality
Finally, we can quantify the impact of a patch by its locality. We 
consider two metrics: the number of files affected and the num-
ber of functions affected.

Do security patches affect fewer source code files than gen-
eral bug fixes? We observe that security patches modify fewer 
files compared to bug fixes in general, a statistically signifi-
cant observation (p ≈ 0). In aggregate, 70% of security patches 
affected one file, while 55% of general bug patches were equiva-
lently localized. Fixes typically updated, rather than created 
or deleted, files (mirroring code changes, which were typically 
updates). Only 4% of security fixes created new files vs. 13% of 
general bug fixes, and only 0.5% of security patches deleted files 
vs. 4% of general bug fixes.

Do security patches affect fewer functions than general bug 
fixes? We find that 5% of general bug fixes affected only global 
code outside of function boundaries, compared to 1% of security 
patches. Overall, we observe a similar trend as with the number 
of affected files. Security patches are significantly (p ≈ 0) more 
localized across functions: 59% of security changes resided in a 
single function compared to 42% of other bug fixes.

Moving Forward
In this study, we have conducted a large-scale empirical analysis 
of security patches across over 650 projects. Here we discuss 
the main takeaways, highlighting the primary results developed 
(summarized in Table 2) and their implications for the security 
community moving forward.

Need for more extensive or effective code testing and audit-
ing processes for open-source projects. Our results show that 
vulnerabilities live for years and their patches are sometimes 
problematic. These findings indicate that the software develop-
ment and testing process, at least for open-source projects, is not 
adequate at quickly detecting and properly addressing security 
issues. A natural avenue for future work is to develop more 
effective testing processes, particularly considering usability, 
as developers are unlikely to leverage methods that prove dif-
ficult to deploy or challenging to interpret. In addition, software 
developers can already make strides in improving their testing 
processes by using existing tools such as sanitizers or fuzzers 
more extensively.

The transparency of open-source projects makes them ripe for 
such testing not only by the developers, but by external research-
ers and auditors as well. Community-driven efforts, such as 
those supported by the Core Infrastructure Initiative [1], have 
already demonstrated that they can significantly improve the 
security of open-source software. Further support of such 
efforts, and more engagement between various project contribu-
tors and external researchers, can help better secure the open-
source ecosystem.

Aspect of Security 
Patches Summary of Results

Vulnerability Life Spans
Vulnerabilities often lived for 
years, with a third for more than 
three years.

Security Fix Timeliness

A fifth of vulnerabilities were not 
fixed at public disclosure time. 
When fixed before disclosure, the 
patches were visible in repositories 
weeks to months in advance.

Patch Reliability
We conservatively estimate that 
about 7% of security patches were 
incomplete and 5% regressive.

Patch Complexity
Security patches were significantly 
smaller than bug fixes in general.

Patch Locality
Security patches were more 
localized in their changes than 
general bug fixes.

Table 2: Summary of main analysis results.
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Need for refined bug reporting and public disclosure 
processes for open-source projects. Our analysis of the 
timeliness of security fixes revealed that they are poorly timed 
with vulnerability public disclosures. Over 20% of CVEs were 
unpatched when they were first announced, perhaps sometimes 
to the surprise of project developers.

In the opposite direction, we discovered that when security 
issues are reported or discovered privately and fixed, the remedy 
is not immediately distributed and divulged, likely due to soft-
ware release cycles. Over a third of fixed vulnerabilities were 
not publicly disclosed for more than a month. While operating 
in silence may help limit to a small degree the dissemination of 
information about the vulnerability, it also forestalls inform-
ing affected parties and spurring them to remediate. Given the 
transparency of open-source projects, attackers may be able to 
leverage this behavior by tracking the security commits of target 
software projects. From the public visibility into these commits, 
attackers can identify and weaponize the underlying vulner-
abilities. The issue of vulnerability disclosure and embargoing 
of information is a complex debate, but the visibility of the patch 
itself should be part of that discussion.

Opportunities for leveraging characteristics of security 
patches. Our comparison of security patches with general bug 
fixes revealed that security fixes have a smaller impact on code 
bases, across various metrics. They involve fewer lines of code, 
fewer logical changes, and are more localized in their changes. 
This has implications along various patch analysis dimensions, 
such as patch safety analysis. Tying back to broken patches, 
the lower complexity of security patches can perhaps be lever-
aged for safety analysis customized for evaluating just security 
fixes. Also, as these remedies involve fewer changes, automatic 
patching systems may operate more successfully if targeting 
security bugs. Zhong and Su [8] observed that general patches 
are frequently too complex or too delocalized to be amenable to 
automatic generation. However, security patches may be small 
and localized enough. From a usability angle, we may addition-
ally be able to better inform end users of the potential impact of 
a security update, given its smaller and more localized changes. 
The need for more exploration into the verification and auto-
mated generation of security patches is quite salient as our abil-
ity to respond to security vulnerabilities still heavily depends 
on patching, while the attack landscape has grown ever more 
dangerous.
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