
www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  61

COLUMNS

Practical Perl Tools
Top of the Charts

D A V I D N . B L A N K - E D E L M A N

I sometimes wonder if the people who make statements about Perl’s
health in the world (some nostalgic, some a little more mean-spirited)
have a sense of just how vibrant the Perl world is. I wonder whether see-

ing some of the interesting things being developed even as we speak or the
range of projects available would change their thinking.

This leads to a good question: how do you find out about the interesting things happening in
Perl on a week-to-week basis? In this column I’d like to focus on one of the answers to that
question: the weekly reports that are published about modules.

We’ll look at three of them and for fun pick and consider interesting modules from each.
All three of these listings are published each week on a blog created by Spanish Perl hacker
Miguel Prz (“NICEPERL”), which can be found at http://niceperl.blogspot.com. Before
we dive in, I should mention that these listings came to my attention thanks to the lovely
newsletter started by Gabor Szabo called Perl Weekly. You can sign up and find past issues at
http://perlweekly.com.

CPAN Great Modules Released Last Week
The first list we are going to look at is indeed titled “CPAN great modules released last week.”
This is an ordered list of modules newly published to the Comprehensive Perl Archive Net-
work which has garnered 12 or more “favorite” ratings—that is, 12 or more people “++”d these
modules on the MetaCPAN (metacpan.org) listing site.

On the off chance you are brand new to the Perl world, let me quickly mention that CPAN is
an archive where people in the Perl community share their modules and other Perl work for
everyone to use. It is one of the best things Perl has going for it. And to be totally candid, it is
not always the best; some of the code there isn’t the greatest. To give you a sense of its scale,
here are the stats as of today from the cpan.org home page:

The Comprehensive Perl Archive Network (CPAN) currently has 194,457 Perl modules

in 35,953 distributions, written by 13,329 authors, mirrored on 256 servers.

The archive has been online since October 1995 and is constantly growing.

So what’s in the list of great modules for the week of December 17, 2017, the one in which I am
writing?

This week we find a few old friends of the column like Mojolicious and perlbrew. Instead
of retreading, let’s instead look at DBIx::Simple. In the past, we’ve talked a bit about the
framework that was a true innovator in the space at the time it was introduced: DBI. The
idea of having a single portable abstraction layer for code that communicated with databases
independent of the database backend being used was a great step forward at the time. This
idea was subsequently expanded in many different directions (and the basic concept was
repurposed for other non-database contexts as well). My magic 8-ball predicts an entire
column on DBI-related expansions coming in our near future… But in the meantime, let’s look
at DBIx::Simple.

David has over 30 years of
experience in the systems
administration/DevOps/SRE
field in large multiplatform
environments and is the author

of the O’Reilly Otter book (new book on SRE
forthcoming!). He is one of the co-founders
of the now global set of SREcon conferences.
David is honored to serve on the USENIX
Board of Directors where he helps to organize
and engineer conferences like LISA and
SREcon. dnb@usenix.org

62    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

COLUMNS
Practical Perl Tools: Top of the Charts

Standard DBI has you writing code that looks like this (examples
excerpted from the DBI doc with my comments inserted):

use DBI;

connect to a database

$dbh = DBI->connect($data_source, $username, $auth, \%attr);

execute a random SQL statement

$rv = $dbh->do($statement);

various ways of retrieving the results

$ary_ref 	= $dbh->selectall_arrayref($statement);

$ary_ref 	= $dbh->selectcol_arrayref($statement);

@row_ary 	= $dbh->selectrow_array($statement);

$ary_ref 	= $dbh->selectrow_arrayref($statement);

$hash_ref 	= $dbh->selectrow_hashref($statement);

more efficient ways of running/rerunning queries

$sth 	= $dbh->prepare($statement);

$rv 	= $sth->execute;

other ways of retrieving results

@row_ary 	= $sth->fetchrow_array;

$ary_ref 	= $sth->fetchrow_arrayref;

$hash_ref 	= $sth->fetchrow_hashref;

close connection to the database

$rc = $dbh->disconnect;

These are some of the more commonly used statements when
working with DBI, certainly when first getting started. It’s worth
reading the entire doc (several times) to get a good handle on the
proper idioms and performant ways to work with DBI. And, hoo
boy, is there plenty of doc to read—124 pages if you were to print
it all out as of the time of this writing.

DBIx::Simple aims to, well, you probably guessed it, make some
of the coding with DBI more simple. With DBIx::Simple, you
write code that looks almost identical to plain DBI:

use DBIx::Simple;

my $db = DBIx::Simple->connect(

 DBI:mysql:database=test, # DBI source specification

 test, test, # Username and password

 { RaiseError => 1 } # Additional options

);

but then you can write code of this form (as stated in the doc):

$db->query($query, @variables)->what_you_want;

Some examples of this from the doc would be:

my ($name, $email) = $db->query(

 SELECT name, email FROM people WHERE email = ? LIMIT 1,

 $mail

)->list;

Here we’re querying the people table for a list of two fields—
name and email—given the email address ($mail). We ask for the
information back as a list.

If we didn’t want to chain methods like that, we could write:

$result = $db->query(...)

and then work from $result object returned using methods like:

@columns = $result->columns

or

CPAN module Version Votes Abstract
1 App::perlbrew 0.81 149 App::perlbrew - Manage Perl installations in your $HOME

2 Catalyst::Action::REST 1.21 16 Automated REST method dispatching

3 Data::Alias 1.21 12 Comprehensive set of aliasing operations

4 DBIx::Simple 1.37 27 Very complete easy-to-use OO interface to DBI

5 Digest::SHA 6.00 19 Perl extension for SHA-1/224/256/384/512

6 experimental 0.019 29 Experimental features made easy

7 libwww::perl 6.30 135 The World Wide Web library for Perl

8 Math::Prime::Util 0.70 12 Utilities related to prime numbers, including fast sieves and factoring

9 Mojolicious 7.58 352 Real-time web framework

10 SQL::Translator 0.11023 32 SQL DDL transformations and more

11 Test::Class::Moose 0.91 14 Serious testing for serious Perl

12 Text::Xslate v3.5.3 58 Scalable template engine for Perl5

Table 1: This is what the table at https://niceperl.blogspot.com/2017/12/clxii-cpan-great-modules-released-last.html looked like on December 17, 2017.

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  63

COLUMNS
Practical Perl Tools: Top of the Charts

@row 	= $result->list 	 # return as a list

@rows 	= $result->flat 	 # return as a flattened list

$row 	= $result->array 	 # return as an array ref

@rows 	= $result->arrays 	# return as an array of arrays

$row 	= $result->hash 	 # return as a hash

@rows 	= $result->hashes 	# return as an array of hashes

Here’s an example of a query that returns a set of rows which we
then iterate over to print separate fields:

for my $row (

 $db->query(SELECT name, email FROM people)->hashes) {

 print “Name: $row->{name}, Email: $row->{email}\n”;

}

I like how legible something like $row->{fieldname} is in the
code.

DBIx::Simple also hooks into a few other modules (some of which
we’ll likely talk about soon). For example, if you have Text::Table
installed, then code like:

print $result->text(“box”)

makes pretty output like:
+----+--------+---------- 	+
| ID | Animal | Type 	 |
+----+--------+----------	+
1	camel	mammal
2	llama	mammal
3	owl	bird
+----+--------+----------	+

MetaCPAN Weekly Report
The second report to mention is also from data pulled from the
MetaCPAN site. This report lists both the newly favorited mod-
ules (“Clicked for the first time”) and those whose popularity is
on the rise (“Increasing its reputation”). If enough people vote
for a particular module, this report will call out that module as
“special,” but that did not happen this week.

You can find an example of the table at https://niceperl.blogspot​
.com/2017/12/ccxciv-metacpan-weekly-report.html.

In the “first click” section, I found a couple of different modules
to be interesting, not because they helped me discover a module
I might use, but because they offered solutions for problems in
spaces that I knew very little about. It can be fun to have some-
thing like this shoot you off on tangents (not to mention build
your procrastination muscles). For example, I had never heard of
a Confusion Matrix until I met AI::ConfusionMatrix. In case you
are curious, Wikipedia defines them as follows:

In the field of machine learning and specifically the
problem of statistical classification, a confusion
matrix, also known as an error matrix, is a specific
table layout that allows visualization of the
performance of an algorithm, typically a supervised
learning one (in unsupervised learning it is usually
called a matching matrix). Each row of the matrix
represents the instances in a predicted class while each
column represents the instances in an actual class (or
vice versa). The name stems from the fact that it makes
it easy to see if the system is confusing two classes (i.e.
commonly mislabeling one as another).

Similarly, I realized how woefully inadequate my understanding
of graph theory was when I encountered Graph::Maker::Other.
This appears to be a collection of modules for making graphs like
Beineke, bi-star, quartet tree, twindragon area tree, and others I
hadn’t heard of. Some are quite pretty—for example, that last one:

or hexgrid:

64    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

COLUMNS
Practical Perl Tools: Top of the Charts

or twin alternate area tree:

The documentation in this module distribution also references
a website called House of Graphs (https://hog.grinvin.org),
which is a “Database of interesting graphs.” And there goes that
afternoon…

To pull things back to the world of Perl, I’d like to highlight the
useful module File::HomeDir::Tiny, which describes itself as
follows:

This module is useful for the 90% of the time that
you only need 10% of File::HomeDir’s functionality.
It depends on no other modules and consists of just
fourteen lines of code.

so:

use File::HomeDir::Tiny;

$home = home;

Nothing complex, but highly useful. And if you want to have a
quick party trick up your sleeve (presuming you go to the right
parties) for when someone asks you about how nuts the Perl
punctuation can be, check out the part of the docs that begins
with:

If your code is only going to run on Unix, you do not
need to bother with any module. Just use the alien
spaceship operator:

($home) = <~> ;

From the “Increasing its reputation” section of this report,
there’s a whole bunch of interesting modules to look at. There’s
Damien Conway’s PPR (Pattern-based Perl Recognizer), which
scares the pants off of me. It is basically a distribution of Perl
regular expressions designed to match certain Perl constructs
in a Perl program. Unlike PPI (which we looked at in a recent
column), which actually parses Perl, this just allows you to easily
say, “Is there a comment in this Perl code?” or give me back the
code without the comment, the same way you might strip any-
thing else out of text using a regular expression. I was too scared
to look at the actual source code for this module.

Other interesting stuff:

◆◆ App::tt, a time tracking module/app. This is the sort of thing
that people who have to keep track of their time spent on
individual activities or projects would love. From the command
line, you can say “started” and then later “finished.” It can also
do spiffy things like look at a directory with a Git repo in it and
use the reflog there to automatically determine working times.

◆◆ App::RoboBot, an “event-driven, multi-protocol, multi-net-
work, user-programmable, plugin-based, S-Expression chatbot.
Any text-based chat service could be supported, with plugins
currently for IRC, Slack, and Mattermost included.” More info
can be found at: https://robobot.automatomatromaton.com.
Yup, there goes another afternoon.

◆◆ Promises, an implementation of Promises in Perl. If you ever
get the chance to venture out into the wider programming
world, especially in the world of JavaScript and the jQuery
library, you may encounter a programming construct called
“Promises.” Promises are an attempt to deal with the complex-
ity of writing reasonably sized asynchronous programs based
on callbacks. At a certain point, those programs devolve into
what people call “callback hell” because they invariably start to
have callbacks calling other callbacks. If the forest of callbacks
gets too thick or self-referential, it becomes very hard to debug
or even to understand how the program will behave. As the
doc says, “Promises give us back a top-to-bottom coding style,
making async code easier to manage and understand. It looks
like synchronous code, but execution is asynchronous.” If you
find yourself writing even medium-sized programs that are
event/callback based, it would probably behoove you to check
out the world of Promises to see how others are coping with the
complexity you are sure to encounter. The external references
in the docs are also well worth taking some time to go read.

StackOverflow Perl Report
Okay, last report. This one is less useful for finding cool mod-
ules or strange afternoon-wasting tangents and more helpful
for keeping your head in the Perl game and refreshing your Perl
knowledge. This section lists the top 10 rated Perl questions on
StackOverflow. It also lists the number of answers provided for
each. I find it useful to just scan the list each week to see if there
are any questions that pique my curiosity (or that make me feel
like “hmm, I know that” or “hmm, I really should know that”).
Table 2 shows the current list of questions for 12/9/17.

 1.	 Perl DBI (MySQL) puts single quote instead of actual param-
eter in prepared statement - [7/1]

 2.	 How to search and replace multiple lines with multiple lines
- [5/5]

 3.	 In perl, when assigning a subroutines return value to a
variable, is the data duplicated in memory? - [5/3]

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  65

COLUMNS
Practical Perl Tools: Top of the Charts

 4.	 Is there a way to configure the default mirror for
App::cpanminus (cpanm)? - [5/1]

 5.	 NBSP malformed while using Mojo::DOM - [5/0]

 6.	 How can I assign a weight for frequency score to a graph&’s
edge using Graph::Easy - [4/2]

 7.	 How to run multiple perl Dancer2 apps in same nginx server
- [3/2]

 8.	 How to accept self-signed certificates with LWP::UserAgent
- [3/2]

 9.	 Why are the referenced arrays values not changed? - [3/2]

10.	 Time::Piece (localtime/gmtime) calculation vs bash date
- [3/1]

And with that, we come to the end of these reports that are great
for finding interesting things in the Perl world. Take care, and
I’ll see you next time.

Table 2: The list at https://niceperl.blogspot.com/2017/12/cccxviii​
-stackoverflow-perl-report.html

https://niceperl.blogspot.com/2017/12/cccxviii-stackoverflow-perl-report.html
https://niceperl.blogspot.com/2017/12/cccxviii-stackoverflow-perl-report.html

