
www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  29

PROGRAMMINGHow to Reinvent the Bicycle
S E R G E Y B A B K I N

Sergey Babkin has been
employed as a Software
Engineer for well over 20 years.
His work experience includes
SCO, Sybase, Microsoft, and,

currently, Google. He likes to analyze and
improve things. sab123@hotmail.com

Using programming puzzles as part of job applicant interviews has
become common practice. While interviewing applicants, I’ve
noticed two patterns in how they go about solving these puzzles.

In this article, I examine these patterns and detail how programmers in
general need to problem solve using the best of both patterns.

The Intuition and the System
In conducting recent job interviews, I’ve met a spate of junior engineer candidates with a
similar issue: they quickly come up with a pretty good overall idea of the solution to a prob-
lem, and they can write code, but they fail to translate their solution into the code. They
couldn’t seem to organize the overall idea into components and then, step by step, work
through the details and interdependencies of those components and sub-components, even
with intense hinting from my side.

A bigger problem can always be seen as being composed of smaller, easier problems. The
easier problems aren’t necessarily easy, but two methods in dealing with them can be helpful:
First, you can subdivide them further into even simpler problems. Second, as you try to solve
a problem, you can gain an understanding of why it’s difficult, and this often provides insight
into solving the problem by avoiding it rather than overcoming it, by subdividing its parent
problem differently. Not that all problems can be avoided: some things have to be overcome.
The job applicants could come up with good ideas that solved difficult things that needed to
be overcome, but they couldn’t build a structure for the whole solution, where they could put
these good ideas to good use.

To illustrate through an analogy, some time ago I read about an artist who would ask people
to draw a bicycle from memory and then produce, as an art object, a bicycle based on the
drawing. The results were art objects because they were completely non-functional. If I were
to draw a bicycle without thinking, I would also produce something like that.

By spending some thought, any engineer should be able to reproduce a proper bicycle from
the general logic: the function of the main components (wheels, steering, seat, pedals, chain)
and the general considerations of the strength of the frame that shape it. The same logic can
be used to check that none of the main components were forgotten: for example, if you forget
about the chain, the pedals would be left disconnected from the rear wheel, so you’d have to
remember it. Each component might be very non-trivial (the said chain took a long time
to invent), but once you know the components, it should be impossible to put them in the
wrong place.

This is something that should be done almost mechanically, with little mental effort. And yet
these programming candidates could not do it. They tried to do it by intuition, but their intu-
ition was not strong enough to handle a complex problem in one gulp, and they didn’t know
how to use the systematic approach either. The hints didn’t help much; they didn’t cause the
right systematic associations.

30    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

PROGRAMMING
How to Reinvent the Bicycle

Two Skills
There are really two orthogonal skills involved in solving these
problems: to imagine the whole solution using highly developed
intuition; to subdivide the problem and work through it itera-
tively, backtracking as necessary. Both are required to be a good
engineer. A simple problem can be solved by using either of these
skills alone. But even a moderately complex problem requires
both skills; it’s too big for intuition to figure out every detail, and
too non-obvious for the systematic approach to find a good result
in any reasonable time.

The problem I ask is actually quite difficult, too difficult for a
perfectly adequate junior-to-mid-level engineer, and I’m not sure
if I myself would have solved it well some 20 years ago. I know
that I can solve it now, as it came from my real-life experience
where I had to solve it really quickly from scratch. So I don’t
expect a good solution from this category of candidates; for them,
a so-so solution is plenty good enough. Some of them actually do
very well, producing a fully completed optimal solution.

There is a marked difference in how people with the one-sided
development solve it, depending on which skill is their strong
one. People with poor intuition and strong systematics produce
a complete solution that is not very good. People with strong
intuition and poor systematics get the right overall idea, figuring
out the conceptual parts that I consider difficult and important
(that the systematic group never figures out), only to fail miser-
ably to work out all the details necessary to write the code. Not
that the code doesn’t get produced at all (though sometimes it
doesn’t), but what gets produced is closer to being an art object
than working code.

Intuition, the Harder Skill
And that feels like a shame, because intuition is usually consid-
ered the harder skill to develop, requiring more time for devel-
opment and being more rooted in natural ability. So there are
people who could be good engineers if only they learned how to
work systematically.

The trouble, I think, is that people are not really taught to do this
kind of thinking in programming. Books and college courses
describe the syntax of programming languages and the general
picture but leave a void between these layers. People may learn
this on their own from examples and practice. But the examples
and practice tend to train the intuition, and people are left to
figure out the systematic approach on their own, and they either
figure it out or they don’t. It looks like quite a few of the gener-
ally smart people either don’t or take a long time to develop it.
Yes, there are descriptions of how a problem has to be divided
into the smaller parts, but they tend to miss the backtracking
and the iterative redesign, making it look like intuition produces
the right subdivision in one go. Not to say that there is anything

wrong with intuition, it’s my favorite thing, but the systematic
approach allows you to stretch a good deal beyond the immediate
reach of intuition, and to strengthen future intuition.

I’ve recently seen a question on Quora—”As you gain more
experience, do you still write code that works but you don’t
know why?”—and this I think is exactly the difference between
the intuitive and systematic solutions. Intuition might give you
some code that works, or that possibly doesn’t. The systematic
approach lets you verify that what the intuition provided actually
does what it’s supposed to do and provides the stepping stones
for the intuition to go further, both to fix what is going wrong and
to produce more complex multi-leap designs.

Programming is not the only area with this kind of teaching
problem. I think math has the same issue. The way proofs of
various theorems are taught is usually not how the authors origi-
nally discovered them. These proofs get edited and adjusted a lot
to make them look easier to understand. But then the teaching
aspect of how to create new proofs through systematic trial and
error gets lost.

Teaching the Two Skills
So how would you teach it? The bicycle example suggests that
there is probably a general transferable skill too, and this skill
can be trained by puzzle games like the classic “The Incredible
Machine,” where the goal is to build a Rube Goldberg contraption
to accomplish the particular goal from a set of components. As in
real life, the tasks there might include the extra components that
look useful but don’t really work out, or provide multiple ways to
reach the goal. This of course requires that you achieve only one
exact goal, while in programming you have to solve a whole class
of related goals that include the corner cases. But this still might
be a good place to start.

Perhaps the way to do it for programming is by walking through
the solutions of complex problems, showing step by step how you
can try the different approaches, follow through their elements,
try to resolve the observed issues, and use this newly gained
experience to find easier approaches. There are books built
around somewhat different but closely related ideas: Program-
ming Pearls and More Programming Pearls by Jon Bentley come
to mind. The Practice of Programming by Brian Kernighan and
Rob Pike, and, dare I say, my own The Practice of Parallel Pro-
gramming are other examples.

A Systematic Puzzle
To give an example of what I think needs to be taught, I’ve
decided to create a programming puzzle based on another, sim-
pler interview problem that I used to use. The required insights
in that problem are much smaller; it’s much more about the
systematic approach.

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  31

PROGRAMMING
How to Reinvent the Bicycle

Since blindly remembering the solution to the problem is of no
use to anyone, I want instead to show how better solutions can
be born out of bad solutions. And it’s not just brute force versus
some ingenious algorithm. All the solutions to this problem are
essentially brute force, but some of them are better and simpler
than the others.

I’m going to start with the worst solution I can think of and then
gradually show the better solutions. The puzzle for you, the reader,
is to use the difficulties in these solutions as hints towards better
solutions that would take you as far ahead as possible.

I wrote those solutions as I would do at an interview, without
actually compiling and running the code on a computer, so they
might contain bugs, but hopefully not many bad ones.

The problem is to write a matcher for the very simple regular
expressions, that include only the operators “.” (any character)
and “*” (zero or more repetitions of the previous character). The
“*” is greedy, consuming as many matching characters as possi-
ble. There is no escape character like backslash. The string must
match completely, as if the regexp implicitly had anchors like “^”
at the front and “$” at the end. And let’s say that the string is in
plain ASCII, so we don’t need to bother with the wide characters.

The function declaration in plain C will be:

int match(const char *pattern, const char *text);

It will return 1 if the string matched the pattern and 0 if it didn’t.

Let’s start with the analysis. The first thing to notice about this
problem is that some patterns in it are impossible to match. The
“a*a” will never match anything because the greedy “a*” will
consume all the “a”s, and the second “a” will never encounter a
match. The same goes for “.*” followed by anything, because “.*”
will consume everything to the end of the string.

The first solution proceeds in the most complicated way I can
think of. You might have attended a college course on parsing that
talked about the finite machine matcher for regular expressions.
The most unsophisticated approach is to push this way blindly.

Before doing a finite machine, you’d really need to think of the
state machine graphs you would be building for various regu-
lar expressions. I really could not get this code right until I had
drawn the graphs.

Here are some examples: “a*b” is shown in Figure 1.

“.*b” (with “any” meaning “everything but \0”) is shown in Figure
2. This graph would never match anything, because it would
never get into the final state (X). The FSM for “a*b*c” is shown in
Figure 3, and “a*.*” in Figure 4.

Each state node of the finite machine graph would be repre-
sented by a dynamically allocated structure that has a plain
array of the possible exits from that node, one per each character,
and a flag showing that this node is final.

struct Node {

 Node *exits[256];

 int final;

};

The \0 could be handled as one of the normal exits, pointing
to the final node. But there really isn’t much point in having a
separate node just to carry the final flag. It’s easier to just set the
final flag directly on a node that accepts an \0.

The graphs then become simpler, the graph in Figure 4 becoming
as shown in Figure 5.

Since we’re dynamically allocating the nodes, we need to take care
of freeing them too. And that means taking care of keeping track
of them while we use them. The inter-node links are no good for
this purpose, since they branch multiple ways, and some graphs
might even have some disconnected parts. But we can notice that
there would always be as many nodes as elements (plain letters or
starred letters) in the pattern, plus one. So we can just allocate the
nodes as a single array and then free them as a single array.

This is a good time to stop and think about the question, is there
really any point in bothering with the nodes? They will be strung
generally sequentially, just like the original pattern. So why not
just use the pattern directly? Indeed, this is a simpler approach.
Time to change gears.

Figure 1: Finite state machine (FSM) for matching “a*b”

Figure 2: FSM for matching “.*b”

32    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

PROGRAMMING
How to Reinvent the Bicycle

Matching directly by pattern also has harder and easier versions.
Again, let’s start with the harder version.

The loop will be working in very much the same way as the
matching loop in the parsed-pattern version (as some textbooks
would teach) but will read the pattern directly from the string as
it goes along.

Before writing the code, let’s talk through the logic: as we read
the next character of the text, we have a pointer to the next pat-
tern element to parse. We parse the pattern element and match
the text character to it. If the element is \0, we accept \0 and
stop. If the element is starred and the character matches, we
return the pattern back to the original position. If the element is
starred and the character doesn’t match, we try the next element
from the pattern. If the element is ‘.’, we accept everything but \0.
If the element is another character, we accept it literally.

bool match(const char *pattern, const char *text) {

 char last_pattern = ‘\0’;

 const char *p = pattern;

 for (const char *t = text; ; t++) {

 while (true) { // for starred sequences in pattern

 char element = *p++;

 if (element == ‘\0’) {

 return *t == ‘\0’;

 }

 if (*p == ‘*’) {

 if (element == ‘.’ && *t != ‘\0’

 || *t == element) { // matched

 --p; // return to the start of current element

 break;

 }

 // consume the star before reading the next element

 p++;

 continue;

 }

 if (element == ‘.’ && *t == ‘\0’

 || *t != element) { // didn’t match

 return false;

 }

 break;

 }

 }

 return false; // never reached

}

The inner loop is necessary to handle the sequences of multiple
starred characters, such as “a*b*c” matching the “c”. If we don’t
do the loop, “c” would get compared to “a”, and the match will be
considered failed.

The outer “for” loop here is interesting, without an exit condi-
tion. This is because the ‘\0’ is matched inside the inner loop
mostly in the same way as the normal characters: (*t != ele-

ment) handles the unexpected ‘\0’ in the same way as any other
unexpected character. It’s easy to start writing the loop with:

for (const char *t = text; *t != ‘\0’; t++) {

 ...

}

return element == ‘\0’;

But that would miss the situation where the pattern ends with a
sequence of starred characters. This is something that is easy to
miss, but it would be detected by a careful code analysis, a good
unit test, or by a helpful interviewer. Then the code would need
to be fixed by either bringing the handling of ‘\0’ entirely into the
inner loop as I have done here (there is no reason to be afraid of
the loops that look nonstandard, they can be quite useful) or by
moving the inner loop into a function and calling it again after
the main loop (then the function would still have to handle ‘\0’ as
the next character of the text). The handling of ‘\0’ in the inner
loop is not that easy to get right; I got it working right with ‘.’ only
on the second attempt.

Figure 3: FSM for matching “a*b*c” Figure 4: FSM for matching “a*.*”

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  33

PROGRAMMING
How to Reinvent the Bicycle

The Value in Being Systematic
This is a good place to talk about how to fix a bug after it has
been found. I’ve seen the people that are strong on intuition but
not systematic start semi-randomly changing the spots that
look vaguely plausible. I’ve literally seen a candidate do three
wrong changes in a row, hoping every time that the issue will get
resolved. This is the situation where thinking things through
systematically really shines. Good questions to start with are,
what do these values mean and how did their handling in the
code diverge from this meaning? And then you can proceed to
“Where did it happen?” and fix the bug. The same candidate,
after I asked these questions, was able to find and resolve the
bug on the first attempt in just a few seconds.

Returning to this solution, the problem that it solves is under-
specified. It doesn’t tell you what to do in case the pattern is
invalid, either starting with a star or containing multiple stars
in a row. This is by design, to see if the candidate will notice
this and ask for a clarification, and my answer to this clarifica-
tion question is, “What do you think is reasonable?” to see if the
candidate is able to enumerate the pros and cons of different
approaches: either return some error indication or handle it
silently in some reasonable way.

I’ve made this solution do the silent handling, simply because
it’s easier to do in a small code snippet: it treats the “wrong”
stars as literals. From the caller’s standpoint it might be either
good or bad: the good is that the caller won’t have to handle the
errors, and the bad is that the author of the incorrect pattern
might be surprised by its effect and might never find out that it’s
incorrect.

But even this version is not great. The nested loops and re-parsing
the pattern on each text character are convoluted; I got it right
only on the second attempt. When the going gets hard, it’s usually
a good indication that a different approach should be tried.

What should the other approach be? It’s up to your intuition to
supply the ideas, for that’s its line of work. This is why you need
both intuition and systematics; one is not enough.

For this problem, it’s much easier to go the other way around,
iterating through the pattern and consuming the matching char-
acters from the text:

bool match(const char *pattern, const char *text) {

 const char *t = text;

 for (const char *p = pattern; *p != 0; p++) {

 if (p[1] == ‘*’) {

 if (*p == ‘.’) {

 while (*t)

 ++t;

 } else {

 while (*t == *p)

 ++t;

 }

 ++p; // adjust to consume the star

 } else if (*p == ‘.’) {

 if (*t++ == 0)

 return false;

 } else {

 if (*t++ != *p)

 return false;

 }

 }

 return *t == 0;

}

This version is much smaller and much easier to follow through.
It explicitly selects by the type of each pattern element, so each
one of them has its own code fragment, which avoids spreading
its logic through the code and mixing it with the logic of the other
elements. And all this makes the creation of bugs more difficult.

This whole problem is not very imaginative and can be solved
well by just hammering out the code systematically. But this
nice, short version contains an item that requires at least a little
leap of intuition: it looks ahead by two characters, not just one, to
detect whether the current pattern character is followed by a star.
It’s not something that’s usually taught, but it makes the code a
lot easier. As I like to say, it’s not people for the programming pat-
terns, it’s programming patterns for the people. Don’t be afraid to
step away from a taught pattern if it makes your code better.

This version also has a theoretical foundation: it’s a recursive-
descent LL(1) parser of the text, except that the regular expres-
sions define a non-recursive language, so there is no recursion.
It really is perfectly per textbook; you’ve just got to pick the right
textbook! It also parses, not a fixed grammar, but one given in the
regular expression pattern. So it’s an LL(2) parser of the pattern,
with the nested LL(1) parsers of the matching substrings in
the text. The 2 in LL(2) means that we’re looking ahead by two
characters. The pattern can also be parsed by an LL(1) parser,
but looking ahead by two characters makes it easier.

Figure 5: The improved FSM from Figure 4

34    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

August 14–16, 2019 • Santa Clara, CA, USA

The 28th USENIX Security Symposium brings together researchers, practitioners, system administrators,
system programmers, and others to share and explore the latest advances in the security and privacy of
computer systems and networks.

The Symposium will span three days, with a technical program including refereed papers, invited talks,
posters, panel discussions, and Birds-of-a-Feather sessions. Co-located workshops will precede the
Symposium on August 12 and 13.

Program Co-Chairs
Nadia Heninger, University of Pennsylvania

Patrick Traynor, University of Florida

Registration will open in May 2019.

Save the Date!

www.usenix.org/sec19

PROGRAMMING
How to Reinvent the Bicycle

Conclusion
This is the version that came to mind almost right away when I
first thought about this problem. But I can’t really say that it just
popped into my mind out of nowhere. I do size up the different
approaches in my mind intuitively and try the ones that look
simpler first. It doesn’t mean that this first estimation is always
right. Sometimes I go pretty deep with one approach before
deciding to abandon it and apply the lessons learned to another
approach. And sometimes this other approach ends up being
even worse, but the lessons learned there help to get through the
logjam of the first approach.

So if you start with poor approaches, you can still arrive at better
ones by listening to the hints that the code gives to you as you
write it. When you see an easier way to go, use it. You can also
power through the difficult approaches systematically to the
successful end, but that tends to be much more difficult than
switching the approach to an easier one. Intuition and system-
atic logic working hand-in-hand can get you much farther than
either one of them alone.

