
38    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

COLUMNSPython
P E T E R N O R T O N

This column is being written in December, which ends another year,
which brings end of year holiday plans, deadlines (like the one for this
column), and a chance to challenge yourself to do something different

before the year is fully out and done.

For my part, over the last few years I’ve had a great time participating in the annual Advent
of Code (adventofcode.com), which is a great way to take a break from work where you have to
solve problems on a deadline, and... well, solve problems on a different deadline. But for fun.

It’s a great opportunity to learn more about your preferred language, to try out a new language,
or revisit how things work in a language you haven’t used in a while. You can also compare
notes with others and see how different languages can give you the tools you need (or how
hard it is to build them from scratch if that’s more to your taste).

For anyone who hasn’t participated in one of these online advent calendars, this one involves
creating a puzzle around Santa, elves, and a story arc adventure that you are on that gets
Santa closer to delivering presents for all the good girls and boys. Each day you get a story, a
problem description, an example of the data and what the results will be of the problem being
presented (yes, tests), and a data set that’s created for you so that your answer shouldn’t work
for anyone else (though the solutions should, of course). The answers are usually an integer,
summing up all the work you’ve done. And you’re rate limited to one answer per minute, so
you can’t just brute force the answer.

The problems are very much programming puzzler/interview type questions designed to let
you stretch your computer science legs—data structures, complexity, etc. without having any
serious stakes—and if you complete the puzzle you move on; it’s all just for a good time. The
problems are introduced day-by-day, but if you haven’t done the challenge already, you can
always visit the site as you read this column and participate if you feel like it.

What I enjoy about this is that it is so well executed. Very few programming interviews
that I’ve seen are as well thought out as the Advent of Code, which speaks volumes for the
organizers. The organizers have some themes—a variety of problems that require some
knowledge that may be common in some jobs and problem domains but which in others can
be novel and outside of the comfort zone.

Big-O Traps
One of the things you notice quickly is that solving the problems naively will lead you to qua-
dratic solutions that will take forever with the size of the input you’re provided. So one of the
fun parts is getting to think about each particular problem, to think about the big-O charac-
teristics of your code, and realizing your input is large enough to cause your computer to spin
and struggle uselessly until the heat death of the universe.

These problems often run over familiar themes—some will involve iterating over lists, find-
ing your way around other data structures forward and backward, over and over. As you may
imagine, if you start with a little bit of bookkeeping, that sometimes turns into a lot of book-
keeping, which is a lot of hassle. When that starts to happen, it’s helpful to step back. When

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  39

COLUMNS
Python

you can, sometimes stepping back includes treating the data like
streams. In Python this basically means iterators and generators
are your friends who take away the tedium. What’s interesting
and disappointing about this great and fun approach is how as
you get more sophisticated with using iterators, you can some-
times get subtle and surprising behaviors, which aren’t particu-
larly well-documented (at least as far as I’ve seen).

Iterator Side Effects
With all that said, this year’s Advent of Code had me encounter
one of these side effects, one that I found quite surprising. It is
simple, but I do think that in real-world usage it would cause
hard-to-find bugs.

The specific behavior is in the zip() built-in function. If you’ve
never used it before, it’s sometimes easier to think of as syntac-
tic sugar sprinkled over having to assign multiple variables in a
loop. It can turn the following somewhat tedious code:

def odious(l1, l2, l3, l4, l5):

 “””each argument is a list”””

 min_len = min(map(len, (l1, l2, l3, l4, l5,)))

 for iteration in range(min_len):

 v1 = l1[iteration]

 v2 = l2[iteration]

 v3 = l3[iteration]

 v4 = l4[iteration]

 v5 = l5[iteration]

 print(f”{v1}, {v2}, {v3}, {v4}, {v5}”)

into something much simpler. This prints each element of the
lists in the arguments as a group—first, all of the first elements,
then all of the second elements, etc. The short, zip()-ified way of
doing this looks like:

def melodious(l1, l2, l3, l4, l5):

 for v1, v2, v3, v4, v5 in zip(l1, l2, l3, l4, l5):

 print(f”{v1}, {v2}, {v3}, {v4}, {v5}”)

Which is still clear and easy to understand. Since zip can work
with any number of iterables, it’s pretty flexible. It’s been in
Python since 2.0, and there’s a lot more to read about it in PEP
201 at https://www.python.org/dev/peps/pep-0201/.

I also found the behavior of iterators interesting. Iterators are
thoroughly ingrained in Python and feel very natural to use.
However, they have a very specific definition, and if you want
to know exactly what that is, I encourage you to read PEP 234:
https://www.python.org/dev/peps/pep-0234/.

As I mentioned above, iterators allow us as Python program-
mers to have a potentially lazy stream of items, with only a few
tradeoffs. On the upside, you can have infinite input that you can
iterate over easily with for or next(); you can compose them with
comprehensions and with really cool functions available in the

itertools module! And iterators have led to generators with yield
and generator comprehensions. A lot has been written in these
pages about iterators, generators, co-routines, etc., so I will refer
anyone interested to the excellent material in past ;login: issues,
which have gone into a lot of depth and breadth on the matter.

The downside of the tradeoff for how excellent iterators are is
that we lose some of the flexibility of having a list or a special
type or class whose position and indexability puts it entirely
under our control. For an iterator to be useful, we must know
that we’re going to use it from beginning to end in a linear fash-
ion—no rewinding, arbitrary glances at indexes, etc. In so many
cases this is not a limitation but is specifically and exactly what
we want, which is why iterators are so fantastic.

So, with that said, let me talk about the interesting problem
that I ran into. The code involved looks something like this (in
Python 3.7):

import itertools

def walk_forward(char_iter):

 “””Consume input_iter, which is an iterator that provides

 one character at a time. When two characters match the

 filter criteria, remove them both and break so that the

 data can be walked backward to see if the new state has

 affected the keep_list.

 returns a list of characters that we want to keep

 “””

 first_char = next(char_iter)

 keep_list = list()

 for second_char in char_iter:

 result = keep_or_remove(first_char, second_char)

 if not result:

 # Don’t put the result into the keep list

 return keep_list

 keep_list.append(first_char)

 first_char = second_char

 return keep_list

def walk_backward(keep_list, char_iter):

 “””A match has been found, and now we want to know if the

 combination of the last letter in the keep list, and the

 first letter in the char_iter could start eliminating each

 other. Essentially this works from the middle out as long

 as the characters would be eliminated. Once we find a pair

 that are keepers, we can exit from here and resume walking

 forward.

 Returns a list of characters - those that we still want to

 keep.

 “””

 #Walk the keep_list backward

 first_gen = (x for x in keep_list[-1::-1])

https://www.python.org/dev/peps/pep-0201/
https://www.python.org/dev/peps/pep-0234/

40    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

COLUMNS
Python

 for first, second in zip(first_gen, char_iter):

 result = keep_or_remove(first, second)

 # Return the results in the same order we got them

 if result:

 return list(itertools.chain([second, first], \

 first_gen])[-1::-1]

This works fine—with a main() function that walks forward
until there is some elimination, then walks backward, then
forward, and so on. This should basically work to eliminate pairs
of letters that match the keep_or_remove() function, which I
haven’t included here.

The hidden problem in walk_backward is that the use of zip will
always try to consume the first element from each iterator. So
when the keep_list is shorter than the remaining contents of
char_iter (as it is likely to be towards the beginning), every-
thing is fine. However, if it’s the second iterator that becomes
exhausted, as may happen, then zip will have already consumed
from the first_gen, and you can’t put it back. So, in this case,
you may have lost data. It’s only one datapoint, which is exactly
enough to make people very upset in the right circumstances,
that is, outside the world of fun puzzles.

Now that we’ve looked at this with some more context, let’s look
at a simpler reproducer case:

>>> a = (x for x in ‘abcde’)

>>> for first, second in zip(a, ()):

... print(f”{first}, {second}”)

...

>>> rest = list(a)

>>> print(f”{rest}”)

[‘b’, ‘c’, ‘d’, ‘e’]

Working Around the Problem
Once I understood the issue, it bothered me because working
around it made the program harder to read since the obvious
workaround is tedious. Tedious solutions beg for better ones,
especially when they’re for fun. However, in this case it also
led me to wonder why there isn’t already a better solution, and
maybe a bit about whether my idea of a better solution was in fact
better at all.

If this were a problem that a lot of people cared about, a PEP on it
would probably have appeared. I expect that since this is a small
wart in one tiny part of the language, most people with work
to do would solve this by avoiding zip, or by not using iterators,
relying instead on lists or similar types with known, queryable
lengths and ensuring that these lengths were uniform for each
argument to zip, which is the sweet spot for a safe and reliable
zip. This thought makes me sad because it would be nice if
Python offered a better way to handle this.

So let’s think about it a bit more and see what comes out of it.

One simple approach to fixing this problem would be to make a
more robust iterator, and doing that is pretty easy. However, to
be useful it would require the iterator protocol to be more robust.
For example, you could envision a new class that allows some
interrogation, like peeking or, maybe a bit less ambitious, the
ability to ask whether it’s primed (by which I mean it still may
have more values in the future) or stopped (StopIteration has
been raised) without losing a value.

Unfortunately, these aren’t small self-contained decisions. A
fundamental thing like altering the behavior of the iterator pro-
tocol would probably, in the worst case, mean that every battery-
included function or expression that consumes an iterator and
handles StopIteration would have to know that there is this new
capability, which is now a lot of work with a lot of sharp edges
ready to poke you.

So let’s just start with the easy part for now, and we can explore
the harder parts later.

Taking advantage of the iterator protocol, let’s start with a naive
first try—we’ll write an iterator that lets us ask whether there’s
more data while otherwise behaving like a regular iterator.

class SnitchIterator(object):

 def __next__(self):

 while True:

 return next(self.iterator)

 def __iter__(self):

 return self

 def __init__(self, src):

 “””Using a source iterator, list, etc. create a new

 iterator that lets you non-destructively ask if there

 is a next element or not”””

 self.iterator = iter(src)

 def more(self):

 try:

 res = next(self)

 if res:

 self.iterator = itertools.chain([res], \

 self.iterator)

 return True

 except StopIteration:

 return False

Now we can ask “Is there more to this?” and get an answer. But
to solve the earlier problem, we’ll also need a slightly different
zip function to take advantage of this new feature, or else we’re
at a dead end. The special-case zip, or snitch_zip, would look
like this:

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  41

COLUMNS
Python

def snitch_zip(*args):

 “””Iterables must be a container, not an iterator. We must

 be able to go through them more than one time”””

 if False in [‘__iter__’ in dir(it) for it in args]:

 raise TypeError(‘All variables in *args must have \

 __iter__’)

 while True:

 for series in args:

 if not series.more():

 raise StopIteration

 yield [next(series) for series in args]

You can see that creating a modified zip is pretty easy. However,
this becomes a special case, which detracts from the simplicity
of the iterator model, is going to perform worse than the built-in
zip, and will probably have issues that we will cut ourselves on.
There’s nothing wrong with doing this for yourself when the use
is appropriate, but it feels like something that, to be useful, would
be better if it were in the language or at least in the standard
library.

Doing something like this in the core language might have some
niche usefulness but would come with the potential to break a
lot of existing code, or at least make that code confusing. Some
languages have macros and other practices to enable extending
existing functionality for experimentation, and Python has at
least one project that does this as well. If I can, I’ll see if I can get
zip to work with the SnitchIterator and discuss that next time.

Governance Follow-Up
Also, as a follow-up to the last column, the vote for the new gov-
ernance model for Python has been counted, and PEP 8016, the
steering council model, has been accepted: https://www.python​
.org/dev/peps/pep-8016/.

This means that the BDFL model will be replaced by a five-
person elected steering committee with the goal of taking care
of the language, and they will be subject to oversight by the core
team members—those who actively contribute to the community.

You can see the results of the actual vote at https://discuss​
.python.org/t/python-governance-vote-december-2018-results​
/546.

Again, I encourage anyone interested to follow this process
closely.

Happy New Year!

https://www.python.org/dev/peps/pep-8016/
https://www.python.org/dev/peps/pep-8016/
https://discuss.python.org/t/python-governance-vote-december-2018-results/546
https://discuss.python.org/t/python-governance-vote-december-2018-results/546
https://discuss.python.org/t/python-governance-vote-december-2018-results/546

