
www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  41

PROGRAMMING

It’s Better to Rust Than Wear Out
G R A E M E J E N K I N S O N

W hen a colleague of mine first enthused to me about Rust, I
was skeptical. Back in the day, I’d cut my programming teeth
developing software for safety-critical systems, and I’d learned

the hard way that programming languages are frequently less sane than
they first appear. Take C. Despite a considerable standardization effort, the
C specification remains riddled with unspecified, undefined, and imple
mentation-defined behaviors [2]. And even in 2016, researchers continue to
explore the differences between the C ISO standard and the de facto
usage [4].

While not all software engineers need be concerned with the seemingly esoteric issues of
what happens when a bit field is declared with a type other than int, signed int, or unsigned
int (it’s undefined [2]), I’d worked too long with safety-critical and security systems to switch
off this retentive part of my brain. And so, somewhat dismissively, I mentally parked Rust
along with Go, Haskell, and all the other technologies that sound cool, but which I could
never foresee actually using. Then early this year I had the opportunity to revisit Rust, and I
found I’d been a bit hasty.

I had been developing a prototype for a distributed tracing framework built on top of DTrace.
The prototype, written in C, acted as a DTrace consumer (interfacing with libdtrace) and
sent DTrace records upstream for further processing (aggregation, reordering, and so on)
using Apache Kafka. For a prototype this worked fine, but as the work progressed, I needed
to rapidly explore the design space.

This task favored adopting higher-level language, but which one to choose? Like all good
engineers, I started to list out my requirements. I needed a language that emphasized pro-
grammer productivity. It needed to easily and efficiently interface with libraries written in
C (such as libdtrace). I also needed easy deployment, therefore languages requiring a heavy
runtime (and Java specifically) were complete nonstarters. Good support for concurrency
and, ideally, prevention of data races would be nice. And, finally, with my security hat on, I
didn’t want to embarrass myself by introducing a bucket-load of exploitable vulnerabilities.
I thought back to that earlier conversation with my colleague; aren’t these requirements
exactly what Rust is designed for? And so I decided to give Rust a whirl, and I’m glad that I
did, because I really liked what I found.

So What’s Rust All About?
Rust’s vision is simple—to provide a safe alternative to C++ that makes system programmers
more productive, mission-critical software less prone to bugs, and parallel algorithms more
tractable. Rust’s main benefits are [5]:

Graeme Jenkinson is Senior
Research Associate in the
University of Cambridge’s
Computer Laboratory, leading
development of distributed

tracing for the Causal, Adaptive, Distributed,
and Efficient Tracing System (CADETS)
project. Prior to working on CADETS, he had 13
years’ experience working in the defense and
automotive industries.

This article first appeared in the Free
BSD Journal, Nov/Dec 2016.

42    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

PROGRAMMING
It’s Better to Rust Than Wear Out

◆◆ Zero-cost abstractions

◆◆ Guaranteed memory safety (without garbage collection)

◆◆ Threads without data races

◆◆ Type inference

◆◆ Minimal runtime

◆◆ Efficient C bindings

The Rust language has a number of comprehensive tutorials,
notably the “Rust Book” [5]. Therefore, rather than retreading
that ground, I will instead highlight the features of Rust that I
find particularly compelling. Along the way, I’ll discuss the fea-
tures of Rust that are most difficult to master. And, finally, I’ll
show how to get started programming in Rust on FreeBSD.

Fighting the Borrow Checker
Before diving in headfirst and firing up your favorite text editor
(vim, obviously), it is important to understand Rust’s most signif-
icant cost, its steep learning curve. On that learning curve, noth-
ing is more frustrating than repeatedly invoking the wrath of
the “borrow checker” (the notional enforcer of Rust’s ownership
system). Ownership is one of Rust’s most compelling features,
and it provides the foundations on which Rust’s guarantees of
memory safety are built. In Rust, a variable binding (the binding
of a value to a name) has ownership of the value it is bound to.
Ownership is mutually exclusive; that is, a resource must have a
single owner. It is the borrow checker’s job to enforce this invari-
ant, which it does by failing early (at compile time) and loudly.

In the following example, taken from the “Rust Book” (The Rust
Programming Language, 2016), v is bound to the vector vec![1,

2, 3], a Rust macro creating a contiguous, growable array con-
taining the values 1, 2, and 3. The function foo() is the “owning
scope” for variable binding v. When v comes into scope, a new
vector is allocated on the stack and its elements on the heap;
when the scope ends, v’s memory (both the components on the
stack and on the heap) is automatically freed. Yay, memory safety
without garbage collection.

fn foo() {

 let v = vec![1, 2, 3];

}

Ownership can be transferred through an assignment let x = y
(move semantics). But remember, ownership is mutually exclu-
sive, so in the example below, when the variable v is referenced
(in the println! macro) after the transfer of ownership to v2, the
borrow checker cries foul: error: use of moved value: `v .̀

let v = vec![1, 2, 3];

let v2 = v;

println!(“v[0] is: {}”, v[0]);

In the next example, calling the function bar() passing the
vector v as an argument transfers the ownership of v. When the
owning scope, the function bar, ends, v’s memory is automati-
cally freed as before. Ownership of v can be returned to the caller
by simply returning v from bar. This approach would get tedious
pretty quickly, and so Rust allows borrowing of a reference (that
is, “borrowing” the ownership of the variable binding). A bor-
rowed binding does not deallocate the resource when the binding
goes out of scope. This means that after the call to bar(), we can
use our original bindings once again.

fn bar(v: &Vec<i32>) {

 // do something useful v here

}

let v = vec![1, 2, 3];

bar(&v);

println!(“v[0] is: {}”, v[0]);

Immutability by Default
By default, Rust variable bindings are immutable. Having spent
many an hour typing const, *const, and final in C and Java,
respectively, this feature alone fills me with joy; and what is
more, unlike const, it actually provides immutability. Variable
bindings can be specified as mutable using the mut keyword: let

mut x = 10. Also note the sensible use of type inference. Like
variable bindings, references are immutable by default and can
be made mutable by the addition of the mut keyword (&mut T).
Shared mutable state causes data races. Rust prevents shared
mutable state by enforcing that there is either:

◆◆ One or more references (&T) to a resource or

◆◆ Exactly one mutable reference (&mut T)

Choosing Your Guarantees
Rust’s philosophy is to provide the programmer with control
over guarantees and costs. Rust’s rule that there can be one or
more immutable references or exactly one mutable reference is
enforced at compile time. However, in keeping with the overall
philosophy, various different tradeoffs between runtime and
compile time enforcement are supported.

A reference counted pointer (Rc<T>) allows multiple “owning”
pointers to the same (immutable) data; the data is dropped and
memory freed only when all the referenced counter pointers are
out of scope. This is useful when read-only data is shared and
it is non-deterministic to when all consumers have finished
accessing the data. A reference counted pointer gives a differ-
ent guarantee (that memory is freed when all owned pointers go
out of scope) than the compile time enforced guarantees of the
ownership system. However, this comes with additional costs

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  43

PROGRAMMING
It’s Better to Rust Than Wear Out

(memory and computation to maintain the reference count).
Similarly, mutable state can be shared (using a Cell<T> type); this
again brings different tradeoffs for guarantees and costs.

Lifetimes
There is one final and rather subtle issue with ownership. Vari-
able bindings exist within their owned scope, and borrowed
references to these bindings also exist within their own separate
scope. When variable bindings go out of scope, the ownership
is relinquished and the memory is automatically freed. So what
would happen if a variable binding went out of scope while a
borrowed reference was still in use? In summary, really bad
things invalidate Rust’s guarantees of memory safety. Therefore,
this can’t be allowed to happen. Lifetimes are Rust’s mecha-
nism to prevent borrowed references from outliving the original
resource.

In Rust, every reference has an associated lifetime. However,
lifetimes can often be elided. The example below shows equiva-
lent syntax with the lifetime (‘a) of the reference s elided and
made explicit:

fn print(s: &str); // elided

fn print<’a>(s: &’a str); // expanded

Global variables are likely to be the novice Rust programmer’s
first interaction with lifetimes. Global variables are specified
with Rust’s special static lifetime as follows: static N: i32 =

5;. A static lifetime specifies that the variable binding has the
lifetime of the entire program (note that string literals possess
the type &’static str, and therefore live for the entire life of the
program). If I were to hazard a guess at where lifetimes next rear
their heads, it would be storing a reference in a struct. In Rust,
a struct is used to create complex (composite) datatypes. When
Rust structs contain references (that is, they borrow owner-
ship), it is important to ensure that any references to the struct
do not outlive any references that the struct possesses. There-
fore, a Rust struct’s lifetime must be equal to or shorter than
that of any references it contains.

Efficient Inheritance
In contrast to C++ and Java’s heavyweight approach to inheri-
tance, Rust takes a muted approach; in fact, the word inheri-
tance is studiously avoided. With traditional inheritance gone
AWOL, classes are no longer needed. Having been freed from
the confines of classes, methods can be defined anywhere, and
types can have an arbitrary collection of methods. As in Go,
inheritance in Rust has been boiled down to simply sharing a
collection of method signatures. This approach is sometimes
referred to as objects without classes. Rust Traits group together
a collection of methods signatures—a Rust type can implement
an arbitrary set of Traits. Thus, Traits are similar to mixins.

Fighting the Borrow Checker Redux
What makes Rust’s ownership system so tricky to master?
Ownership is not a complexity introduced by the Rust language;
it is an intrinsic complexity of programming regardless of the
language being used. Languages that fail to address owner-
ship fail at runtime with data races and so on. In contrast, Rust
makes issues of ownership explicit, allowing the language to fail
early and loudly at compile time. Rust’s borrow checker is like
that friend you couldn’t quite get on with on first meeting. Over
time, and once they’ve helped you out multiple times, you realize
that they’ve actually got some pretty great qualities and you’re
glad to have made their acquaintance.

Foreign Function Interface (FFI)
Another of Rust’s features that particularly appealed to me is its
support for efficient C bindings: calling C code from Rust incurs
no additional overhead. Efficient C bindings support incremen-
tal rewriting of software, allowing programmers to leverage
the large quantities of C code that are not going away anytime
soon. External functions fall beyond the protections of Rust and
thus are always assumed to be unsafe. It is important to note
that there are many behaviors, such as deadlocks and integer
overflows, that are undesirable but not explicitly unsafe in the
Rust sense.

In Rust, unsafe actions must be placed inside an unsafe block.
Inside the unsafe block, Rust’s wilder crazier cousin “Unsafe
Rust” rules. “Unsafe Rust” is allowed to break limited sets of
Rust’s normal rules, the most important being that it is allowed
to call external functions.

In practice, calling C functions from Rust isn’t always quite
so straightforward as tutorials make out. Consider calling the
function dtrace_open() from libdtrace. The C prototype for
dtrace_open() is shown below:

dtrace_hdl_t *

dtrace_open(int version, int flags, int *errp)

{

	 ….

}

To call dtrace_open() from Rust, we first specify the dtrace_

open()’s signature in an extern block (extern “C” indicates the
call uses the platform’s C ABI). We can then call that function
directly from an unsafe block.

extern crate libc;

...

44    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

PROGRAMMING
It’s Better to Rust Than Wear Out

extern “C” {

 fn dtrace_open(arg1: ::std::os::raw::c_int,

 arg2: ::std::os::raw::c_int,

 arg3: *mut ::std::os::raw::c_int) -> *mut dtrace_hdl_t;

}

fn main() {

 let dtrace_version = 3;

 let flags = 0;

 Let mut err = libc::c_int = 0;

 let handle = unsafe {

 dtrace_open(dtrace_version , flags, &mut err)

 };

}

But there is one significant problem: where is the type dtrace_

hdl_t defined? While dtrace_hdl_t can be specified by hand,
it contains many, many fields, which in turn use yet more new
types that must be defined. Specifying all this by hand would
be extremely tedious and error prone. Fortunately, there is a
solution. C bindings can be generated automatically using Rust’s
bindgen crate, cargo install bindgen. Unfortunately, bindgen
is not a very mature tool. And, as a result, manually tweaking its
outputs is often required (usually adding or removing mutabil-
ity). With SWIG (Simplified Wrapper and Interface Generator)
support for Rust not looking imminent, better native tooling for
generating Rust bindings is desperately needed.

Package Management
The final, and in many ways most important, feature that
attracted me to Rust was its support for modern application
package management. Rust provides a flexible system of crates
and modules for organizing and partitioning software and man-
aging visibility. Rust crates are equivalent to a library or package
in other languages, and Rust modules partition the code within
the crate.

A Rust program typically consists of a single executable crate,
which optionally has dependencies on one or more library crates.
Reusable, community-developed library crates are hosted at
crates.io, the central package repository for cargo, Rust’s pack-
age management tool (crates.io is broadly equivalent to Python’s
PyPI). Rust’s cargo tool fetches project build dependencies from
crates.io and manages building of the software. Yeah, I know,
does the world really need yet another mechanism for packaging
software, resolving dependencies, and building software? Well
perhaps not, but cargo actually works really well, though for
those with experience with Maven, the bar hasn’t been set that
high.

Getting Started on FreeBSD
Rust’s platform support is divided into three tiers, each provid-
ing a different set of guarantees. FreeBSD for x86_64 is cur-
rently a Tier 2 platform. That is, it is guaranteed to build but not
to actually work. Despite the lack of a guarantee, in practice,
things generally seem to work pretty well. Tier 2 platforms
provide official releases of the Rust compiler rustc, standard
library std (pkg install rust), and package manager cargo (pkg

install cargo). FreeBSD’s binary Rust package is currently (at
the time of writing) at v1.12 with v1.13 being the latest stable
release. Once installed, Rust can be updated to the latest version
by executing the rustup script:

curl -sSf https://static.rust-lang.org/rustup.sh | sh

32-bit FreeBSD sits in Rust’s lowly third tier where, without
guarantees about either building or working, things are pretty
unstable. For example, Rust 1.13 recently shipped in spite of a
serious code generation bug on ARM platforms using hardware
floating point. Here be dragons, so beware!

Where Are We Now?
Rust started life in 2009 as a personal project of Mozilla
employee Graydon Hoare. In subsequent years, Rust has tran-
sitioned to a Mozilla-sponsored community project with over
1,200 contributors. Since the 1.0 release, delivered in June 2015,
Rust has been used in a number of real-world deployments. June
2016 saw another major milestone on the road to maturity, with
Mozilla shipping Rust code for the Servo rendering engine in
Firefox 48.

So people are using Rust, but does it really deliver on its vision
of providing a safe alternative to C++? I think the answer is
pretty much yes, though the differences aren’t all that huge. For
example, in C++, a unique_ptr owns and manages an object and
disposes of that object when the unique_ptr goes out of scope.
Furthermore, ownership can be transferred using std::move;,
and as a bonus, there is type inference using the auto keyword.
But in spite of these similarities, smart pointers don’t give every-
thing that Rust’s ownership system does. In the example below
[3], accessing orig after the move results in a segmentation fault
at runtime—a morally equivalent example in Rust would fail to
compile. Failing early is a good thing. That a careful and skilled
C++ programmer wouldn’t make such mistakes is somewhat of a
circular argument, because if such mistakes weren’t widespread,
languages attempting to prevent them wouldn’t exist in the first
place. C++ also lacks a module system and has a number of pretty
ropey features like header files and textual inclusion. These are
all wins for Rust.

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  45

PROGRAMMING
It’s Better to Rust Than Wear Out

#include <iostream>

#include <memory>

using namespace std;

int main ()

{

 unique_ptr<int> orig(new int(5));

 cout << *orig << endl;

 auto stolen = move(orig);

 cout << *orig << endl;

}

How does Rust compare with C++ on performance? Control
studies comparing the performance of idiomatic C++ and Rust
are hard to find. A comparison between Firefox’s Servo and
Gecko rendering engines (written in Rust and C++, respectively)
reported that the Rust Servo engine was on the order of twice
as fast [1]. While these figures should be taken with a pinch of
salt, the consensus opinion is that Rust is at least comparable in
terms of performance to C++. One of the reasons for this is that
Rust features, like genuine immutability, allow optimizations
that can’t be made in C++. And Rust’s semantics bring signifi-
cant potential for further optimizations.

Despite the advances made in deploying Rust in production
environments, problems remain. The Rust ABI is unstable, and
as with the Glasgow Haskell compiler, a stable ABI may never
happen, almost certainly not anytime soon. This problem most
impacts Rust native, shared libraries because without a stable
ABI, they are incompatible across major version changes. But
ABI instability isn’t a showstopper. So is there a technical bar-
rier to upstreaming Rust code to FreeBSD, for instance? In my
opinion, I don’t think so, but I’d be interested to hear others’ opin-
ions on both the technical and political challenges of doing so.

I like Rust. It’s fun. And isn’t that what really makes us come into
work in the morning?

References
[1] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K.
McAllister, J. Moffitt, and S. Sapin, “Engineering the Servo
Web Browser Engine Using Rust,” in Proceedings of the 38th
International Conference on Software Engineering Companion
(May 2016), pp. 81–89.

[2] L. Hatton, Safer C, 1st ed. (McGraw-Hill, 1995).

[3] S. Klabnik, Unique Pointer Problems, Steve Klabnik’s home
page: http://www.steveklabnik.com/uniq_ptr_problem/.

[4] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D.
Chisnall, R. N. Watson, and P. Sewell, “Into the Depths of C:
Elaborating the De Facto Standards,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (June 2016), pp. 1–15.

[5] The Rust Programming Language, “Getting Started”:
https://doc.rust-lang.org/book/getting-started.html.

http://www.steveklabnik.com/uniq_ptr_problem/
https://doc.rust-lang.org/book/getting-started.html

