
6    S U M M ER 20 1 8  VO L . 4 3 , N O. 2 	 www.usenix.org

SECURITYThe Cyber Grand Challenge and the
Future of Cyber-Autonomy
D A V I D B R U M L E Y

David Brumley is the CEO and
co-founder of ForAllSecure,
and a Professor at Carnegie
Mellon University in ECE and
CS. ForAllSecure’s mission is

to make the world’s software safe, and they
develop automated techniques to find and
repair exploitable bugs to make this happen.
Brumley’s honors include a United States
Presidential Early Career Award for Scientists
and Engineers (PECASE), a Sloan Foundation
award, numerous best paper awards, and
advising one of the world’s most elite
competitive hacking teams.
dbrumley@forallsecure.com

The Cyber Grand Challenge was about much more than a capture-the-
flag (CTF) competition between computers. The people who built
those systems had to learn how to replicate the behavior of human

hackers, perform binary program analysis, patch vulnerable applications—
or not, if installing the patch hurt performance or resulted in a functional
regression. In this article, based on my 2018 Enigma talk [1], I will describe
the competition, and also how human hackers and the CGC competitors’
systems have different strengths.

I want to begin by introducing you to the person whom I believe is one of the world’s best
hackers. His name is Loki and he’s an expert at web browser security. At the 2016 Pwn2Own
competition [2], Loki demonstrated three new vulnerabilities and was able to exploit them in
applications that would have enabled him to break into 85% of the computers in the world.

The rules for Pwn2Own are actually pretty simple. The people running the contest install
a fully patched version of an operating system on a laptop, and then they install the latest,
greatest, direct-from-developers version of a web browser. The goal is to break into the com­
puter through the web browser. If you think about it, this is pretty amazing because vendors
spent a lot of money trying to secure their operating systems. But Loki has been studying
computer security, is an expert in the internals of Google Chrome, and has been studying
web browsers for a long time.

Loki sat down in front of a laptop running Google Chrome on top of Windows and within two
minutes had demonstrated a vulnerability. What’s amazing is that over the course of the next two
days he also demonstrated new zero days in Microsoft Edge and Apple Safari. Those were the
three vulnerabilties that would have allowed him to break into 85% of the world’s computers.

Loki is the world’s best hacker, in my opinion, but he’s not a criminal. I don’t want to conflate
the terms hacker and criminal. Loki responsibly disclosed those vulnerabilities to vendors,
and those vendors issued updates that protected millions of people.

Over the course of that weekend Loki also made $145,000. Not bad for 15 minutes of work,
keeping in mind that like a professional athlete, Loki spent a lot of time preparing for this
contest.

Software and Vulnerabilities
Think of all the software that you use every day. And I’m not just talking about the software
that’s running on your computer, your laptop, or on your smartphone. I’m also thinking about
all this software that you interact with on nonobvious devices: IoT devices, your WiFi router,
even the software that powers the safety system on your car. Who’s checking it for security
vulnerabilities?

How do we go about doing what Loki does and do it at scale? On just the Google Play and
Apple stores, a new app is released every 13 seconds. How do we go about checking software
when a new app is released so frequently? I’ve been working on this problem for a long time,
along with other academic researchers. If we could take what Loki does and program com­
puters to emulate it, computers could do that work for us.

www.usenix.org	   S U M M ER 20 1 8  VO L . 4 3 , N O. 2  7

SECURITY
The Cyber Grand Challenge and the Future of Cyber-Autonomy

At Carnegie Mellon University, we built a tool called Mayhem
that takes off-the-shelf software and audits it for vulnerabilities.
As an example, we used Mayhem to explore iwconfig. Mayhem
systematically explored the state space in iwconfig and output
an exploit. You can take that exploit, give it as input to iwconfig,
and get a root shell. At a basic level, we enabled a computer to
take a software binary, autonomously find a security vulnerabil­
ity, and prove it with a working exploit. This isn’t the world that
we live in today, but I think this is the world that we need to live
in—one where not just developers can check for the security of
applications but anyone can, using systems like Mayhem.

Scale
In one study we used Mayhem to examine 37,391 programs—
every Debian program available. We spent three years of CPU
time analyzing the programs: that amounts to five minutes per
application. We did this in an embarrassingly parallel way by
bringing up a bunch of Amazon nodes. We found 2.6 million new
crashes due to 13,875 new bugs in those programs. Of those, 250
exploits would allow getting a shell.

We want to be operating at the scale where we can check the
world’s software for exploitable bugs. Doing analysis like this
cost us 28 cents per new bug and $21 per exploit. Compare that to
Loki who made $145,000 for three working exploits.

Cyber Grand Challenge
We’ve been doing this research at CMU for over a decade, along
with other researchers such as Giovanni Vigna at UC Santa
Barbara, Dawn Song at UC Berkeley, and a much larger com­
munity. DARPA, the Defense Advanced Research Projects
Agency, stepped up to challenge this community in an open
forum. DARPA issued the Cyber Grand Challenge, wanting
to do for cyber what the autonomous driving challenge [3] did
for vehicles. DARPA wanted to turn cyber into something that
was completely autonomous and controlled by computers. They
challenged the community to combine the speed and scale of
automation with reasoning abilities that exceeded those of
human experts.

DARPA first issued an open call for proposals for a fully autono­
mous offense and defense contest, with a $2 million cash prize
for the winner. That got lots of attention, and over 100 US enti­
ties registered for the CGC. At the end of the first year, DARPA
pared down the entrants based on the same performance factors
to be used in the final contest, leaving seven contestants.

The final contest occurred at DefCon 2016. This contest was
different from the usual Capture the Flag (CTF), held at DefCon
every year, which pits human teams against one another. In
the CGC, it was computer against computer, with an air gap
separating the computers from any attempt at outside help or
interference.

DARPA structured the event by sending programs to all the
contestants’ systems. These systems needed to find vulner­
abilities in those programs and create patches that fixed those
vulnerabilities, sending patches back to the DARPA moderator.
The DARPA moderator system evaluated the security solu­
tions based on a number of factors. The first was if you created
an exploit, does it work against other people’s patched binaries.
DARPA called this “consensus evaluation”: you get points based
on whether your exploit works against other people’s running
programs—patched or not.

Second, the patch itself is evaluated for security, checking to see
whether the patch itself could be exploited.

But the world isn’t just about security. It’s also about things like
functionality. DARPA would take the patched binaries and make
sure that the system retained all its original functionality. After
all, if a patch breaks your system you’re not going to install it.
They also measured the performance of the patch. DARPA’s
moderator would look at things like memory overhead.

And so when you considered the type of contest, it wasn’t all
about security. It was about making decisions that operated
within a confined space to make sure that it wasn’t just the
most secure but also maintained performance and functional­
ity. To give you an idea, on our system, if we determined that our
patches had more than 5% overhead, it may have been better to
play the original buggy binary.

Round after Round
When a competitor found an exploitable bug and submitted a
patch, things didn’t end there, because that’s not how the world
works. DARPA changed the direction of the community by say­
ing the goal here is to win, and the way you win is by giving peo­
ple access to your patches. DARPA’s moderator would take our
patches and give them to our competitors, and the competitors
could do further analysis to see whether they could circumvent
them. They could try to steal our patches and use those patch
techniques themselves and submit them back to the DARPA
moderator round after round. So the CGC wasn’t just about
security and a point in time, but about security as it evolves. It
allowed attackers and defenders to learn from each other. And by
the end of the contest, we’d completed over 95 rounds to deter­
mine a winner.

When we looked at the scope of CGC, we had to do three things.
First, we needed to be able to automatically exploit software. We
had to do what Loki does to find vulnerabilities, and we had to
teach a computer to do it. Second, we had to be able to automati­
cally rewrite binaries to add in defenses to prevent them from
being exploited again. And third, just as importantly, we had to
make better decisions than our opponents. That was huge.

8    S U M M ER 20 1 8  VO L . 4 3 , N O. 2 	 www.usenix.org

SECURITY
The Cyber Grand Challenge and the Future of Cyber-Autonomy

Automatic Vulnerability Discovery
Let’s talk about how we went about doing the automatic vulner­
ability discovery. We needed to be able to perform code analysis
without source code. We built the binary analysis platform (BAP,
[4]) at CMU, available for free from GitHub. BAP allows us to
take a binary and raise it up to an intermediate representation
that is useful for doing program analysis.

We then created tools to find vulnerabilities in software using
a technique called “symbolic execution.” We, and others in the
community, considered symbolic execution as a very academi­
cally promising technique that we could publish papers about
while advancing the frontiers of research. But we discovered
during this contest that trying to find the best single solution
was the wrong thing to do.

Instead, we realized that applying a portfolio of techniques, such
as fuzzing and crash exploration, would be more effective. If you
have a crash, the program has some sort of mental problem with
the world at that point. The program thinks the world is differ­
ent than it actually is; if there’s a bug in one place, there’s likely a
bug nearby as well. We also built a feedback loop between these
techniques which allowed us to find far more vulnerabilities
than any single technique alone.

At the end of the contest we found 67% of our bugs with fuzzing
and 33% with symbolic execution. But those percentages only
reflect the final uncovering of the bugs themselves. We found
that the symbolic executer would often reach a promising part
of a code then hand that over to a fuzzer, which used a different
set of techniques. It would be the fuzzer that ultimately found
the vulnerability, but only after being enabled by the symbolic
execution technique. We learned that building a portfolio of
techniques that work together cooperatively is always going to
outperform any single technique.

Defense
For defense, we had to be able to statically rewrite binaries.
We used data flow analysis as a basis to focus formal program
analysis on understanding how a program worked. We could
then derive an analysis that would rewrite the program. Here
too we used the portfolio, with two techniques. The first we
called hardening, rewriting the binary to essentially introduce
seatbelts: control flow integrity, stack canaries, ASLR, DEP,
and so on. Now these remediations are agnostic about whether
there is a vulnerability or not, but they make the program safer
overall. Second, when we found a particular bug, we’d automati­
cally rewrite that portion of the code where the bug occurred to
introduce safety checks.

After hardening the binary, we could add crash-specific patches
for vulnerabilities when we found them. For example, one of
the challenges DARPA gave us in CGC was based on the SQL

Slammer worm. When Mayhem receives a binary, it immediately
starts generating automatic regression tests, which function as
the baseline for the binary. We’d start patching, creating a hard­
ened binary and then replaying those test cases to make sure
that we had no loss of performance and functionality. We would
also go in and rewrite the patches, replaying those automatically
generated test cases to measure and ensure that functional­
ity and performance were maintained. Then we would have to
decide which of these patches to apply. Instead of having just one
patch, we had an array of patches based on the portfolio of tech­
niques. We would measure them and empirically determine the
best ones to deploy at a particular time. Finally, we had to build a
system that was completely autonomous.

Dynamic Scaling
When DARPA started the contest, we didn’t know whether
they were going to give us 10 programs, 100 programs, or 1000
programs. So we had to build in the capability to dynamically
scale our environment to dedicate resources where they were
going to matter most. For example, if we have a program that we
keep finding new bugs in, it would make sense to devote more
resources to that than to a program that’s not buggy.

Second, we had to make sure that we were playing the game the
optimal way. For example, if we created a patch and that patch
had 5% overhead, we might decide that it was too dangerous
to play since that 5% overhead would hurt our score unless we
thought someone was attacking us.

In a nutshell, we would do the binary analysis, we’d harden, we’d
find exploits, we’d patch, and we’d run through a decision process
that determined the best security solution. Then we’d deploy and
iterate through this process again and again and again.

In the CGC, we faced some of the most notable names in program
analysis out there: UC Berkeley and UC Santa Barbara, who have
been doing research on this forever; Raytheon, a large defense
contractor, was also in the final seven contestants. We also had
a two-person team from the University of Idaho who qualified,
beating out 93 other teams.

At the end of this contest, Mayhem won. ForAllSecure, the com­
pany we founded to continue the development, got the $2 million
cash prize. But when you looked at the contest, everyone had
little twists on their techniques that were different, and if you
look at the scores you’ll notice they’re not very far apart.

CTF
At the end of the CGC, our system, Mayhem, got to participate
in the annual DefCon 24 CTF [5] (Table 1 shows the final results).
Just to give you an idea of the caliber of the people Mayhem played
against, the number three team DEFKOR had Loki on it, the person
who demonstrated three zero-days over the course of two days.

www.usenix.org	   S U M M ER 20 1 8  VO L . 4 3 , N O. 2  9

SECURITY
The Cyber Grand Challenge and the Future of Cyber-Autonomy

We had built Mayhem as part of ForAllSecure, and I’ve also
been the faculty mentor of the human hacking team at CMU,
PPP (Plaid Parliament of Pwning). So I have some insight into
what the machines could do versus what the humans could do.
Although the machine lost, you’ll notice from the scores that it
was competitive. For two out of the three days of the DefCon 24
CTF, the machine was beating some of the teams.

But there are differences. For example, if you look at the humans,
they have an incredible notion of being able to abstract details
(Table 2). It’s something that humans are great at, while the
machine has precision going for it. At one point in the contest, for
example, aPPP was looking at a line of code they thought might
be vulnerable but couldn’t figure out how to exploit. Mayhem was
able to create an exploit because it had to reason about program
branches and the particular program state, which was extremely
complicated and would far exceed human understanding. May­
hem was able to do that in a fraction of a second.

Second, humans have intuition, and this is extremely important
when you hack because you have to decide where to focus your
attention. You may think, this part of the code looks extremely
tricky, and therefore I’m going to focus my attention there.

Machines have brute force. Very simply, brute force is incredibly
useful when you’re trying to analyze, exploit, and patch applica­
tions at scale. And the way we see it from our research point of
view is that once a person has an intuition of where to look, brute
force can be used as a leverage point.

Finally, humans have creativity. The machine will only look
for vulnerabilities that it has been programmed to look for,
while humans aren’t restricted. Attackers and defenders get to
co-evolve. For example, there is a class of attacks called timing
attacks. The way I describe them is as follows: suppose my wife
asked me, “Do I look fat in these pants?” and I took a few seconds
to respond. It doesn’t really matter what my response is now. The
amount of time it took me to respond reveals all the information
needed. It’s the same way in security, where the amount of time it
takes to do something can reveal something about the secret.

Humans have this great creativity to invent new classes of
attacks. While the machine, once we program it to look for that
class of attacks, has enormous scalability in looking at all the
programs in the world.

Conclusion
In this article, there have really been two themes. The first
theme is that human effort alone does not scale. Apps are being
released at a pace that far outstrips people’s ability to examine
every one. Yet we need something as a safety checkpoint to make
sure we’ve looked at every piece of software for security vulner­
abilities. It’s just too important not to do.

Second, we can teach computers to hack. Humans can teach
computers to do at least a little bit of what Loki does and apply
that to every piece of software in the world.

References
[1] Enigma 2018 talk: https://www.usenix.org/conference
/enigma2018/presentation/brumley.

[2] A. Armstrong, Pwn2Own 2016—The Results: http://www​
.i-programmer.info/news/149-security/9556-pwn2own2016​
.html.

[3] https://www.darpa.mil/about-us/timeline/-grand
-challenge-for-autonomous-vehicles.

[4] Binary Analysis Platform: https://github.com/Binary
AnalysisPlatform/bap/graphs.

[5] DefCon 24 CTF: https://www.defcon.org/html/defcon-24
/dc-24-ctf.html.

Team Score

PPP 113555

b1o0p 98891

DEFKOR 97468

HITCON 93539

KaisHack GoN 91331

LC↯BC 84412

Eat Sleep Pwn Repeat 80859

Binja 80812

Pasten 78518

Shellphish 78044

9447 77722

Dragon Sector 75320

!SpamAndHex 73993
侍 73368

Mayhem 72047

Table 1: DefCon 24 CTF results [5]

Table 2: Human vs. machine qualities when it comes to hacking, as well as
other forms of problem solving

Human Machine
Abstraction Precision

Intuition Brute force

 Creativity Scalability

https://www.usenix.org/conference
http://www.i-programmer.info/news/149-security/9556-pwn2own2016.html
http://www.i-programmer.info/news/149-security/9556-pwn2own2016.html
http://www.i-programmer.info/news/149-security/9556-pwn2own2016.html
https://www.darpa.mil/about-us/timeline/-grand
https://github.com/Binary
https://www.defcon.org/html/defcon-24

