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A s storage devices get faster, data management tasks rob the host of 
CPU cycles and DDR bandwidth. In this article, we examine a new 
interface to storage devices that can leverage existing and new CPU 

and DRAM resources to take over data management tasks like availability, 
recovery, and migrations. This new interface provides a roadmap for device-
to-device interactions and more powerful storage devices capable of provid­
ing in-store compute services that can dramatically improve performance. 
We call such storage devices “eusocial” because we are inspired by eusocial 
insects like ants, termites, and bees, which as individuals are primitive but 
collectively accomplish amazing things.

The Evolution of the Problem
Why Try Smart Storage Again, and Why Now?
Offloading storage processing has been around since the earliest days of computing. The idea 
of having a dedicated and cheaper I/O processor offloading the main processor complex made 
sense at a time when processor cycles were incredibly scarce and costly. However, over the 
years, processor cycle availability has geometrically increased and costs have plummeted 
making the utilitarian I/O processor costlier in terms of complexity in both hardware archi­
tecture and software. These fast and large CPU complexes permit general-purpose execution 
and I/O management, including data management. Data management tasks are beyond the 
basic tasks of storing and retrieving data, including services such as translation, map­
ping, deduplication, compaction, sorting, scrubbing, data movement, data redundancy, and 
recovery. 

Including I/O management created a tight coupling of storage with the server system archi­
tecture. With such compute resources available, storage devices need only do the media 
management and map logical placement information to physical placement information, 
leaving essentially all data management relegated to the general-purpose processor. Fur­
thermore, the simplistic API required to accomplish these goals treats every device as com­
pletely independent even though data management necessarily creates device relationships 
and dependencies, all of which have to be managed by the general-purpose processor. 

This has driven the evolution of the storage component towards a highly cost-efficient model 
that has resisted most attempts to offload tasks to the component. Attempts to push some 
of data management back into the device, such as SCSI OSD or Kinetic, have all failed due to 
the need for additional compute and memory in the device pushing up per-GiB costs. 

NAS Succeeds in Offloading
The one place where data management offloading was successful was Network Attached 
Storage (NAS). NAS environments offload all the data management to centralized servers on 
the network (Figure 1).

Client servers then use a network-based access protocol (NFS, CIFS) to store and retrieve 
data. The reason for the offloading was two-fold:
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1.	 Centralizing storage management 
2.	 Disaggregating the storage from the server 

The former is a straightforward centralization gain; by consolidating all of the server man­
agement touch points, management man hours were reduced. Disaggregation was driven by 
the need for sharing and availability. By separating data resources from the local server and 
its processor complex, these resources could be placed on a general-purposes network. This 
provided two big wins: the data could be shared by many servers, and data resources could 
remain available even with the loss of the local server. This did introduce additional costs 
into the data layer. It was made cost effective by scaling up the number of storage devices 
and, hence, the number of GiB available attached to a NAS server, driving down the per-GiB 
costs. Also, being a central resource, this cost was further diluted by the increased number of 
servers being served. Even with the gains, the NAS servers themselves were tightly coupled 
to the storage, which created scaling limits and vulnerable islands of storage.

So, what has changed?

1.	 The commodity smartphone market over the last 10 years has driven the cost of embedded 
multi-core 64-bit processors, such as ARM, way below the cost of server processors. 

2.	 The smartphone market also drove the power consumption of these embedded processors 
way down.

3.	 The densities of storage devices continue to skyrocket, making it easier to hide additional 
computing resources in the per-GiB cost.

4.	 New denser flash media is permitting the bandwidth aggregation of many discrete flash 
chips, making a single device capable of streaming GiB/s of throughput, and they will 
continue to get faster. This new performance level demands greater processor capabilities, 
and, as such, the processor costs are already partially priced into the per-GiB cost of flash 
devices.

But there is more. High-speed flash devices must be connected to the processor complex. 
Luckily, PCIe bandwidth has kept pace, growing rapidly with PCIe v3/v4, and PCIe v5 is on 
the horizon. However, the same cannot be said about the ultimate destination of data-system 
memory (Figure 2). System memory bandwidth is growing at a much slower pace than the 
flash devices and their interconnects. Since all I/O requests must ultimately be transferred 
into system memory, the system memory is already becoming the next real bottleneck. 

As the storage devices deliver higher and higher throughput, the system memory bottleneck 
will reduce the number of storage devices that a server can effectively utilize. This problem 
requires that the data transferred by the server to the storage be classified and prioritized. 
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Figure 1: NAS provides centralized storage management while disaggregating storage from the server.
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Data transfers strictly for data management (mapping/place­
ment, scrubbing, redundancy, recovery, and accessibility) is of 
less benefit than actual I/O transfers for real work and should be 
offload targets.

RocksDB as an Example
Take the example of a key-value store like RocksDB, a library 
that allows an application to maintain a key-value database. The 
real work by the application is not likely to be the storing and 
retrieving of data; rather, the application is dependent on being 
able to persistently put and get data to/from the RocksDB store. 
This means any I/O transfers done to map the data and ensure 
its durability, availability, or accessibility is work done outside of 
the knowledge of the application. 

RocksDB maps the key-value data through a data structure 
called a log-structured merge-tree (LSM). This LSM tree is 
implemented atop a file system, which in turn uses a block 
device to persistently store and retrieve data (Figure 3). The 
LSM tree itself constantly sorts the data as it comes into the 
store. This requires that large sections of data be read into the 
server memory via the file system and block device, manipulated 
and then stored into new file system structures. In addition, 
RocksDB ensures durability by checksumming the data as it is 
added to the store. It then periodically scrubs the data by trans­
ferring it to server memory and validating the checksums. All of 
this I/O can be considered north-south data transfers, moving 
data in and out of the storage device. RocksDB is not only con­
suming processor cycles in the sorting and scrubbing of data but, 
more importantly, is consuming memory bandwidth for its own 
data management outside of the application’s knowledge.

This example gets worse when considering availability, recovery, 
and accessibility. In this example, RocksDB is using local stor­
age resources. To guarantee availability of the store even if the 

server fails, the data would need to be replicated to other servers 
with storage resources. This means data has to be transferred 
not only to local storage controllers but also to network control­
lers, greatly increasing the memory bandwidth usage. These 
transfers can be considered east-west transfers because the data 
moves laterally from one server to another (Figure 4).

Recovery again potentially moves data east and west when 
there are failures. Data accessibility incurs east and west data 
movement for the purposes of tiering, caching, or load balancing 
across a set of servers. 

All of these activities increase the usage of the server memory 
bus for data management, putting the data management directly 
in contention with the application. With the advent of the cheap, 
low-power embedded processors, high-density storage devices, 
and high-speed devices, it is now time again to look at offloading 
data management to the devices themselves. 

Goals of the Solution
The current standard storage API characterizes a storage 
device’s available space as a static, linear address space of 
contiguous fixed-size data blocks. These address spaces can be 
segmented (partitioned) but have the same properties as the par­
ent address space. Data within these address spaces is accessed 
in block granularities by giving a location address (logical 
block address, LBA) within the address space and the number 

Figure 2: Throughput mismatch, based on Jae Do, “SoftFlash: Program-
mable Storage in Future Data Centers,” SNIA SDC 2017, Santa Clara, CA

Figure 3: Translations for data management and DMA use for data 
management. WAF/RAF stands for the write/read amplification in Flash 
devices.

Figure 4: When scaling out a key-value database, data moves in two dif-
ferent dimensions: within the scale-out server (north-south) and between 
servers (east-west).
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of sequential blocks to be transferred. This interface requires 
applications to locate their data by remembering the device, the 
partition, the LBA, and the length. 

This location-centric model provides no other alternatives for 
abstract data location, data layout, redundancy, deduplication, 
sorting, scrubbing, data movement, data recovery, QoS, etc. 
Therefore, offloading data management to a storage device is 
more than expansion of the current storage device API—it is 
indeed a complete sea change.

It is important to understand the scope and high-level goals of a 
new storage API. The goals are:

1.	 Data placement within a device should be abstracted from the 
I/O path. Consequently, data layout should be opaque. 

2.	 Data location should be abstracted from the I/O path.
3.	 Data movement from one device to another should be ab­

stracted from the I/O path.
4.	 Data availability should be configurable and abstracted from 

the I/O path.
5.	 Data recovery and repair should be abstracted from the I/O 

path.
6.	 Data attributes should be supported.
7.	 Data access at scale should be supported. 
8.	 Design should be mechanism-based, leaving policy to be de­

fined by the user.

Introducing Eusocial Storage 
Eusocial storage is a new API definition that drives data man­
agement activities into the device and sets a course towards in-
store compute functionality. It takes into account today’s scale 
requirements and builds on top of them. 

Software
Eusocial storage is a mechanism-based software abstraction 
that standardizes a network/fabric-based object protocol that 
supports variable-sized keys and objects (Figure 5). Eusocial

◆◆ inherently disaggregates, permitting composable systems;
◆◆ inherently abstracts data location, permitting dynamic systems 

like scale-out storage with data availability, scaled access, and 
dynamic balancing;

◆◆ inherently reduces failure domains; 
◆◆ supports peer-to-peer interactions, permitting autonomous 

data availability and data migrations between devices; 
◆◆ supports device class organization, permitting scaling on a 

class-of-service basis; 
◆◆ supports user-defined but autonomous data migrations be­

tween classes, providing for user-defined tiering and caching;
◆◆ supports in-store computing. 

Hardware
Eusocial places no hard requirements on the hardware other 
than it must support a bidirectional network or fabric to satisfy 
the disaggregation, peer to peer, cluster, and control require­
ments. Other than this network requirement, the hardware 
can be defined in any fashion and take any form. There are no 
restrictions on media type, form factor, capacity, components, 
and fabric type. For example, a eusocial storage device could be 
a small Ethernet-enabled SSD, a small sled of HDDs, an opti­
cal jukebox, or even a media-less gateway to S3. It is anticipated 
that manufacturers will compete on designing hardware that 
is highly optimized for the media type or the targeted class of 
service. 

Organization
Eusocial is organized into levels: storage devices, castes, and the 
cluster (Figure 6). The storage devices represent highly opti­
mized, autonomous units of object-based storage. These devices 
define the lines of service they provide, such as throughput, 
latency, media type, and in-store compute availability. Devices 
that have similar lines of service can be organized into castes. 
Within a caste, devices scale out a line of service providing for 
data availability, data accessibility, and potentially in-store 

Figure 5: Eusocial device Figure 6: Eusocial hierarchy
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compute. As an example, one can imagine having the following 
storage-media groupings:

◆◆ High-speed: a caste consisting of scaled out replicated enter­
prise eusocial SSDs

◆◆ Warm: a caste consisting of scaled out replicated eusocial 
HDDs

◆◆ Cold: a caste consisting of scaled out erasure-encoded and spin 
controlled eusocial HDDs

◆◆ S3: a caste consisting of a gateway to S3
◆◆ Compute: a caste consisting of scaled out in-store computing-

enabled eusocial devices

Once the devices are organized into castes, users can define the 
lifecycle of an object by defining caste relationships, called caste 
maps (Figure 7). These maps plot the trajectory of an object 
through a set of castes and what events trigger objects to move. 
Once a map is defined by a user, applications can tag objects with 
the appropriate map. Eusocial devices themselves are respon­
sible for following these maps and moving the data as dictated by 
the map.

Ultimately, the eusocial devices and castes exist inside a cluster 
that shares the whole configuration with all members. The clus­
ter is also responsible for managing events and event notifica­
tion. Clients also receive the configuration so that they can get 
and put data within the system. 

Because eusocial storage is a scale-out object protocol, tradi­
tional access methods such as block and file access would be 
implemented atop the eusocial protocol. 

The Evolution of the Solution
Changing the API is a significant issue since the block stor­
age APIs have been ingrained in our programming model for 
decades. Consequently, all server software has been written to 
the block interface. Changing this interface will require time 
and some strategy to occur. 

The good news is that there are significant numbers of appli­
cations that use placement abstraction storage APIs such as 
key-value or object. Today, these applications require a layer(s) 
of software like a file system to map the abstracted data to the 

block interface. Removing these mapping or translation layers 
can provide not only performance enhancements to the app but 
also can return processor cycles and DMA bandwidth back to 
the server. Paying close attention to these applications’ require­
ments creates a ready-made set of consumers for the new API.  

In addition to picking the right first-use cases, care needs to be 
taken on how to roll out the API’s inherent complexity. An API 
roadmap can be broken down into several discrete steps:

1.	 North-south data management offloading 
2.	 Disaggregation
3.	 East-west data management offloading 
4.	 In-store computing

North-South Data Management Offloading
A natural starting point for data management offloading is hap­
pening in the industry today. There are standards bodies already 
working on creating a simple key-value command set that will 
provide an alternative to the standard block command set. 
This work introduces the notion of an API that has abstracted 
placement information behind a key-value interface and places 
the work of maintaining the key value store inside the device. 
Although initially targeted for direct connect devices, this work 
is being done so that it can be easily used with disaggregated pro­
tocols as well. This step begins moving applications away from 
the block interface programming model and onto a key-value-
based interface.

The initial industry-based work will target those ready-made 
consumers who already use key-value APIs but have to depend 
on server software to implement key-value store. This effort will 
provide a proof point and beachhead for the eusocial API work.

Eusocial will build on this by completely providing a full object 
API between a eusocial device and a host. Initially this can be 
done on directly connected devices. 

Disaggregated Storage 
Many and diverse solutions prove that disaggregation is ben­
eficial to storage workloads: NAS, Ceph, Swift, Gluster, etc. 
Hence the eusocial approach is revolutionary not because it is 
arguing for disaggregation. The novelty is the granularity of that 
disaggregation is now properly attributed to singularly capable 
devices rather than a singular server (potentially far over-
scoped) responsible for a collection of dependents. So instead of 
having to fan-in clients only to fan-out to media (Figure 1), the 
eusocial approach constructs a virtual crossbar allowing clients 
to talk directly to all the storage devices (Figure 8).

The resulting shift increases the number of devices that need 
to be managed by some type of service, and that can be seen as a 
detriment to eusocial storage. However, we argue that this added 

Figure 7: Eusocial caste hopping
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complexity is just added flexibility. A software-defined storage 
layer with many options can make better choices for applications 
that need a certain class of storage with a certain level of quality 
of service. 

Eusocial storage can take advantage of existing tools such as 
software-defined networking to centralize management of data 
path and management into simple interfaces, while maintaining 
storage disaggregation. As an example, we have a set of euso­
cial castes which are connected via a software-defined, fully 
connected crossbar, meaning that the latency of requests from 
any device in any caste to any other device is similar. The actual 
physical architecture connecting all of these devices may dif­
fer, but the way they are advertised to client applications is this 
simple crossbar. 

This means two things to two different groups of individu­
als. First, the application team enjoys a remarkable degree of 
freedom in choosing the type of eusocial caste their data should 
live and act in, without having to consider the underlying system 
architecture. Second, because the underlying architecture is 
obfuscated from the application by this layer of software-defined 
networking, the system infrastructure group that maintains the 
various devices participating in the eusocial castes has freedom 
in architecting the disaggregation of devices so long as they do 
not violate the higher level QoS guarantees being advertised by 
a particular eusocial caste to applications. Combined, these two 
groups of people are happy, and the underlying infrastructure is 
more efficiently consumed.

East-West Data Management Offloading
Once eusocial devices are disaggregated, the balance of the data 
management features of eusocial can be delivered. This includes 
scale access, data movement, data redundancy, data recovery, 
and caste hopping. These features all require peer-to-peer 
operations, or east-west data movement.  

In-Store Computing
The design of eusocial storage naturally progresses towards 
“in-store computing,” that is, performing computing such as data 
filtering, transformation, and even more compute-intensive ana­

lytics within a storage device (Figure 9). The evolution observed 
so far shows a slow increase of data management offloading onto 
storage devices, slowly increasing the requirement for process­
ing in the device (e.g., translation layers in flash and shingled 
magnetic recording disks). East-west communication among 
in-store computing devices will enable functionalities such as 
deduplication, secret sharing, and divergent replication (i.e., 
each replica has a different layout). We anticipate that due to the 
increase in cost, in-store computing devices will be separate 
from the main storage and reside in their own caste.

Because scale out is done within the caste, implementers are free 
to determine the number of in-store computing eusocial devices, 
how they are replicated, and, through the use of caste maps, 
when old data should be moved out. Datacenter uses will focus 
around big-data processing and search. A caste of IoT eusocial 
devices deployed at the edge store acquired data and then do 
first-pass processing before shuttling the data back to the home 
office castes. 

The benefits from in-store computing have been studied by 
Seagate. While many details could not be made available for this 
article, some of the results are promising: using benchmarks 
that include MapReduce, search, and data maintenance tasks, 
Seagate was able to double storage throughput and reduce host 
CPU utilization by 15–20% by offloading these tasks to devices 
capable of in-store computing. Seagate also found evidence 
that in-store computing can increase uploading speeds. In one 
case, uploading speeds increased by a factor of 10 over a Hadoop 
installation with traditional devices. All these results are mainly 
due to scale-out effects of offloading data-intensive operations 
to many devices where the data already resides and where data 
transfers to hosts become unnecessary.

Conclusion
This paper has examined the effects of rapidly growing stor­
age throughput on our computing environments as well as the 
need for scale environments. Both of these issues are forcing a 
dramatic change in the roles and responsibilities of components 
in our systems. Previously, it was desirable to have dumb and 
cheap devices that a system could program and manage. But as 

Figure 8: Full crossbar disaggregation Figure 9: In-store compute caste
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their capacities and speeds grow, it is becoming clear that their 
management and some data processing belong to the devices 
themselves. The eusocial concept is a design space that is open­
ing the door to just such a future. 
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