
2    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org While musing, I like to wonder what it would be like to live in a

world without buggy software. That is, a world very unlike the
one we live in. As I write this, Boeing’s 737 MAX plane has been

grounded, apparently because buggy software and not documenting its pos-
sible dangerous effects have killed over 300 people in two separate crashes.
Businesses and home users regularly have their data encrypted by criminals
demanding ransom. And whole countries are in turmoil via careful manipu-
lation of opinion via social media.

I attend conferences looking for people with interesting and potentially useful ideas. I first
met Kostya Serebryany at Enigma 2016, where I tried to get him to write about the work he
has been doing in security. He deferred then. Kostya then contacted me in the Fall of 2018
excited about something I find exciting as well: adding security features to hardware. We’ve
published articles from several authors about hardware features to improve security, as well
as problems with hardware solutions, such as the ability to extract data from Intel’s secure
enclave, Meltdown [1].

Kostya most recently has worked on fuzzing, techniques for probing programs for potentially
exploitable bugs. In 2015, Peter Gutmann wrote about various fuzzing techniques, something
that Kostya has long worked on, and that’s related to what he wrote about for this issue [2].

Weaknesses in C/C++
I’ve long joked that C was a macro-assembly language: a convenience layer for those who
needed to write code near to the speed of assembly [3], but with the convenience of variable
labels, for loops, subroutine call handling, and structures. When I first encountered C, I
immediately fell in love with structures, as the concept made some of the things I needed to
do so much clearer than calculating offsets in assembler would have been. And, to be honest,
I was really bad at calculating offsets. C beat the hell out of writing in Intel assembly (or VAX
or Motorola assembler too).

But C and C++ lack certain safety features found in modern languages like Java, Go, Swift,
and certainly Rust. In C and C++, you could specify array indices far beyond the end of the
array you’d locally allocated, leading to buffer overflows on the stack. You could do this as
well in the heap, and you could also do this with pointers into memory. I consider C and C++
to be languages for expert programmers, because they made it so easy to do the wrong thing.
I always assumed that the authors of these languages were highly intelligent and expert pro-
grammers themselves, and that they had written these languages for their own convenience.
In the case of C, that was certainly true, although the authors would be sharing C with other
Bell Labs employees and, eventually, professors at various universities.

Bjarne Stroustrup, also at AT&T Bell Labs, came along a bit later, added classes to C, but
kept all its wonderful and dangerous flaws. That is, you could create classes and instantiate
objects, but you could also overrun arrays, leak memory, and abuse pointers.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  3

EDITORIAL
Musings

Smashing the Stack
The Internet Worm really made people aware of the danger of
buffer overruns. The finger daemon used the C function gets(),
which collects a string into an array previously allocated but
doesn’t check to see whether the length of the array is sufficient.
This function still exists in libc, and the man page includes the
warning, “Never use this function.” Makes you sort of wonder
why it’s still there.

I learned much more about smashing stacks from Elias Levy’s
famous article about buffer overflows [4]. I recreated the finger
daemon for class exercises and gave students short C programs
they could use to attack the finger daemon, whose real purpose
was to run the who command and return the results over the
network. When correctly exploited, the attack would instead
run /bin/sh.

And this was only part of the problem with C and C++. There
were also ways to exploit file structures that contain pointers to
functions, or to use a little known option of format() to carefully
overwrite portions of the stack, allowing exploits that used Return
Oriented Programming (ROP). And this is just a partial list.

There are other issues with C/C++ that have to do with pointers.
Using malloc() returns a pointer to a block of memory, and free()
releases that block. But it’s quite common for programmers to
either forget to free memory (a memory leak) or to use a pointer
to memory after it had been freed (use-after-free).

During the first time I met Kostya, he showed me dozens of
places in the Linux kernel where memory was used after it was
freed and was still unpatched upstream. I could tell he was agi-
tated about this.

Today C and C++ are the second and third most popular pro-
gramming languages (as of April 10, 2019) in the Tiobe Index [5].
Looking at language popularity in another way, I asked Chris
Wysopal of Veracode about how many programs in various
languages that they analyze each year, and Chris provided me
with the diagram in Figure 1. Veracode’s numbers, based on the
thousands for binary programs analyzed, present a different
picture, where C/C++ is less popular.

I found myself wishing that C would just go away, but Kostya
assured me that that’s not going to be happening, as IoT devices
will use slower CPUs and have less memory, and they are going
to need compact and fast languages. Damn.

The Lineup
Jasmine Peled, Bendert Zevenbergen, and Nick Feamster have
written a column about ethics, regarding something I had never
heard of, called mcTLS. You might think that something with
TLS in its name has to do with encrypting Internet traffic, and
you’d be right. However, mcTLS has to do with creating a method

so that TLS can be decrypted by middle boxes. If you think
this is a bad idea, Peled and her co-authors agree with you, and
explain why even the initial researchers should have considered
this. Note that the IETF isn’t happy about mcTLS either, mainly
because including TLS in the name violates copyright as well as
having the ability to confuse people about their Internet traffic
actually being secure.

Kostya Serebryany has written about a security extension in
hardware, something I consider a wonderful idea (in case you
skipped the earlier part of this column). Sun, now part of Oracle,
first came up with the notion of including tags to help prevent a
variety of bugs and the successful exploitation of those bugs, and
now ARM plans on doing this as well.

I interviewed Mark Loveless, aka Simple Nomad. I’ve known
Mark for many years, and we got together during Enigma ’19 to
chat and begin this interview. Mark is definitely someone you
should call a hacker, unlike Beto O’Rourke, whose membership
in the Cult of the Dead Cow predates most of the cDc’s hacking
activities. Mark has interesting stories to tell.

Anuj Kalia, Michael Kaminsky, and David Andersen have writ-
ten about eRPC. You might recognize the authors’ names from
an earlier article about RDMA. This article, like the first one, is
based on a paper, this time at NSDI ’19. While their paper takes
a deeper dive, Kalia et al. explain how this open source RPC
library can be faster than those that rely on niche networking
technologies.

Daniel Bittman, Peter Alvaro, Darrell Long, and Ethan Miller
write about how to avoid bit-flipping in programming data struc-
tures. Based on a FAST ’19 paper, Bittman et al. explain why
bit-flipping may be considered harmful for persistent memories,
like Micron’s XPoint. But what I particularly like about their
work is that it offers a different way of thinking about, and using,
traditional data structures like linked-lists and B-trees that is
often faster—and involves smaller structures and fewer bit flips.

Figure 1: Popularity of programming languages based on programs
analyzed for vulnerabilities by Veracode

4    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

EDITORIAL
Musings

Vladimir Legeza and Anton Golubtsov tell us how to make log-
ging much more useful. Legeza, now working at Google, and
Golubtsov (Amazon) suggest what should be commonsense
methods for having standards for your logging messages. Legeza
first suggested this idea as an opinion article, but I consider it
much more along the line of best practices. I wish I had read
such an article 35 years ago!

Laura Nolan considers complexity, taking a different perspective
from Dave Mangot’s “Boring Tech” article [6] in the Spring 2019
issue. Laura first describes what is meant by software complex-
ity, then how systems complexity differs from the software
version. Laura does a great job, and she has volunteered to write
columns about SRE issues.

Peter Norton has written about how you can use a tool based
on Python to create portable configuration files. The external
format is YAML, and the code performs static type checking,
helping to prevent errors in configuration.

Mac McEniry decided to cover the use of password managers.
Mac has previously written about Hashicorp’s Vault (Winter
2017) [7], but this time around he looks at three different Go
libraries for secure storage of passwords for use by applications:
Keychain (Mac), Windows Credential Manager, and a library
called keyring that will work on Linux and the other OSes as well.

Dave Josephsen considers just how weird and wonderful it is to
be living in the middle of nowhere in Montana. Then Dave gets
down to business and begins explaining why he likes Prometheus
for monitoring so much and how it’s used.

Dan Geer ponders about just how common exploited software
bugs might be. Working from various data sources, Dan tells us
that the problems with software bugs are much worse than you
likely suspect, and even worse than I imagined.

Robert Ferrell suggests that we tone down our expectations for
technology. After all, flying cars are still experimental, and even
Amazon has decided that having a special button just for order-
ing laundry detergent might not be the best use of technology.

Mark Lamourine has written three book reviews, covering
Refactoring (second edition), Concurrency in Go, and Cloud
Native Go. I reviewed David Clark’s Designing an Internet, and
also wrote two short reviews of books for summertime reading:
Marcia Bjornerud’s Timefulness and Max Gladstone’s Empress
of Forever.

In Closing
There are problems with all programming languages. For exam-
ple, while Rust is much safer by design, you can write Rust code
in unsafe mode, disabling its safety features. Java does checks
and prohibits array overruns, but the JVM is written in C++, and
it has had numerous vulnerabilities over the years.

I also asked Chris Wysopal if he could tell me what proportion
of exploitable bugs came from code that processed input, and
he answered 75%. If you’ve been reading ;login: for the last five
years, you will have noticed, and hopefully read, many articles
relating to LangSec, for example [8, 9]. LangSec, roughly, is the
notion that security could be tremendously improved by paying
more attention to input parsing, and Chris’s comment about the
majority of vulnerabilities coming from input parsing problems
supports this.

When I heard about LangSec and learn about efforts to create
better support for security in hardware, I imagine that the prob-
lem of software insecurity will soon be solved. But I am forget-
ting several things.

First, most programmers are, by definition, of average skill level.
Second, few programmers know much about security, and far
fewer have a clue about LangSec. Third, some protocols, like
the text (versus binary) version of X.509 certificates, cannot be
parsed securely because the design requires a complex parser.
And finally, even when ARM or Intel produce security features
that will greatly reduce successful exploits, most people won’t
enable them, either because they don’t understand them or
because such features cause programs to fail sometimes—an
indication of programming flaws they’d prefer to ignore.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  5

EDITORIAL
Musings

References
[1] D. Gruss, D. Hansen, B. Gregg, “Kernel Isolation: From an
Academic Idea to an Efficient Patch for Every Computer,”
;login:, vol. 43, no. 4 (Winter 2018): https://www.usenix.org​
/publications/login/winter2018/gruss.

[2] P. Gutmann, “Fuzzing Code with AFL,” ;login:, vol. 41, no. 2
(Summer 2016) : https://www.usenix.org/publications/login​
/summer2016/gutmann.

[3] Wikipedia, “Assembly Language: Macros,” last modified
on March 25, 2019: https://en.wikipedia.org/wiki/Assembly​
_language#Macros.

[4] E. Levy, “(Aleph One), Smashing the Stack for Fun and Profit,”
Phrack, vol. 7, no. 49: http://phrack.org/issues/49/14.html.

[5] Tiobe Index, April 2019: https://www.tiobe.com/tiobe-index/.

[6] D. Mangot, “Achieving Reliability with Boring Technol-
ogy,” ;login:, vol. 44, no. 1 (Spring 2019): https://www.usenix.org​
/publications/login/spring2019/mangot.

[7] C. McEniry, “Go: HashiCorp’s Vault,” ;login:, vol. 42, no. 4
(Winter 2017): https://www.usenix.org/publications/login​
/winter2017/schock.

[8] S. Bratus, M. Patterson, and A. Shubina, “The Bugs We Have
to Kill,” ;login:, vol. 40, no. 4 (August 2015): https://www.usenix​
.org/publications/login/aug15/bratus.

[9] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for Parsing
and Generating Data Formats,” ;login:, vol. 40, no. 1 (February
2015): https://www.usenix.org/publications/login/feb15/bangert.

The 2019 USENIX Annual Technical Conference will bring together leading systems researchers for cutting-edge
systems research and the opportunity to gain insight into a wealth of must-know topics, including virtualization,
system and network management and troubleshooting, cloud and edge computing, security, privacy, and trust,
mobile and wireless, and more.

2nd USENIX Workshop on
Hot Topics in Edge Computing
July 9, 2019
www.usenix.org/hotedge19
Join researchers and practitioners
from academia and industry to discuss
work in progress, identify novel trends,
and share approaches to the many
challenges in design, implementation,
and deployment of diff erent aspects of
edge computing.

Register Today!

Register by June 17 and save!

ATC ’19
USENIX 2019 USENIX Annual

Technical Conference
JULY 10–12, 2019 • RENTON, WA, USA
www.usenix.org/atc19

11th USENIX Workshop on Hot
Topics in Storage and File Systems
July 8–9, 2019
www.usenix.org/hotstorage19
Researchers and industry practitioners
will come together for this two-day
workshop on the cutting edge in storage
technology and research and explore
and debate longer-term challenges and
opportunities in the fi eld.

11th USENIX Workshop on
Hot Topics in Cloud Computing
July 8, 2019
www.usenix.org/hotcloud19
HotCloud brings together researchers
and practitioners from academia and
industry working on cloud computing
technologies to share their perspec-
tives, report on recent developments,
discuss research in progress, and
identify new and emerging trends in
this important area.

HotStorage ’19 HotCloud ’19 HotEdge ’19
Co-located with USENIX ATC ’19

https://www.usenix.org/publications/login/winter2018/gruss
https://www.usenix.org/publications/login/winter2018/gruss
https://www.usenix.org/publications/login/summer2016/gutmann
https://www.usenix.org/publications/login/summer2016/gutmann
https://en.wikipedia.org/wiki/Assembly_language#Macros
https://en.wikipedia.org/wiki/Assembly_language#Macros
http://phrack.org/issues/49/14.html
https://www.tiobe.com/tiobe-index/
https://www.usenix.org/publications/login/spring2019/mangot
https://www.usenix.org/publications/login/spring2019/mangot
https://www.usenix.org/publications/login/winter2017/schock
https://www.usenix.org/publications/login/winter2017/schock
https://www.usenix.org/publications/login/aug15/bratus
https://www.usenix.org/publications/login/aug15/bratus
https://www.usenix.org/publications/login/feb15/bangert

