
www.usenix.org	   S U M M ER 2020  VO L . 45 , N O. 2  51

BOOKSBook Reviews
M A R K L A M O U R I N E

Docker in Action, 2nd Edition
Jeff Nickoloff and Stephen Kuenzli
Manning Publications, 2019, 310 pages
ISBN 978-1-61-729476-1

I guess you could say that when a tech book reaches a second edi-
tion the software it describes has reached some kind of maturity.
Docker has inspired a whole new type of software infrastructure,
and today there are a variety of resources for the beginner build-
ing and using containerized software. It’s still a niche, however
large, and it’s still an advanced topic. Running containerized
software requires the skills of a software developer, systems and
network administrator, and operator.

The first edition of Docker in Action was one of the early books to
market. A lot has happened since 2016, and they’ve added a few
chapters and updated the rest.

Docker in Action follows the common narrative path for tuto-
rial style references. They start with justification, show basics,
and add features until they’ve covered the topic. Containers are
easier to start with than some things because of the presence
of public repositories of working images. With Docker, you can
create a functional default configured database or web server
in a few minutes. That’s enough to hook a reader early and give a
sense of what is possible. Nickoloff and Kuenzli use the first sec-
tion to teach the reader how to run single containers on a single
host. This includes adding storage, network communications,
and customized configuration to make a useful service.

The second section is devoted to creating new container images.
The chapter on creating containers really only touches on the
basics, as there are lots of good references on the details. The
section is about more than just building images. The succeed-
ing chapters show how to interact with public and private image
repositories and how to automate the production, testing, and
publication of new container images, all triggered from public
source code repositories. When combined, these capabilities
form a software development and delivery chain.

I like the authors’ writing style. They are clear and concise. The
theoretical exposition is balanced nicely with the practical ele-
ments. I do wish there were more external references, either in
the text or in the chapter summaries. I know from experience
that the Docker website has detailed references describing all of
the keywords available for creating Dockerfiles. The authors only
demonstrate the basics needed to get started, which is adequate
as they have limited space. However, I would have liked to see
reference callouts to those well-known stable resources.

In the final section, the authors introduce container orchestra-
tion. This is the idea of describing and automating clusters of
coordinating containers to form larger applications. It is pos-
sible to start a database container, a front-end web server, and a
middleware container to implement some kind of business logic,
and to do all this manually, a step at a time. Applications like
this form patterns, though, and the patterns make it possible to
build services to manage the deployment of these complex sets
of containers.

The authors use Docker Swarm to show the possibilities of
container orchestration. Swarm is an integral part of the Docker
application system and so is available anywhere that Docker
itself is. The alternatives, such as Kubernetes or the commer-
cial cloud offerings, each have whole books devoted to them, so
Swarm is a good choice for a first look. The authors admit that
Swarm probably isn’t suitable for large-scale deployments, but
perhaps it has a place in production in smaller shops.

Likewise, the authors make no mention of alternative container
runtime systems or tool sets. I used to liken the Docker suite
to the BASIC programming language. It is a good easy starting
point to engage and learn concepts, but it is possible to outgrow
its capabilities and its limits. The Open Container Foundation
describes a standard container format and a standard runtime
behavior. Docker is one compliant system, but there are others.

For a moderately experienced system administrator, this second
edition of Docker in Action will be a good introduction to con-
tainer systems. Like VMs, container management requires an
understanding of underlying storage and complex networking
that this book only glosses over. To go deeper, the reader will have
to keep learning, but this is enough to get started doing useful work.

Microservices and Containers
Parminder Singh Kocher
Addison-Wesley Professional, 2018, 283 pages
ISBN: 978-0-13-459838-3

I’m the kind of geek who likes a mix of theory and practice in
a tech book. For some reason, most of the books I’ve seen on
software containers and microservices tend to be tutorials for
specific technologies. In Microservices and Containers Kocher
does discuss the tools, but he doesn’t stick to just the syntax
and behavior. The first section is devoted to an overview of
Microservices.

The flexibility that microservices offer comes with some up-
front cost. People who first hear about how easy Docker is to use

52    S U M M ER 2020  VO L . 45 , N O. 2 	 www.usenix.org

BOOKS

for simple containers want to jump right in and port their appli-
cations to single containers. I like that Kocher doesn’t give in to
the temptation to get right to the sexy tech.

The term “microservice” refers to the components that are used
to make up a conventional application stack. In the original
LAMP (Linux, Apache, MySQL, PHP) stack, the components are
installed directly onto a host computer. Using software contain-
ers, it is possible to implement the same behavior running the
service components in containers rather than installing them
directly on the host.

Containers impose boundaries that conventional host instal-
lations do not. Porting an application to microservices tends to
expose the boundaries that are often neglected or left implicit in
a conventional deployment. Kocher does a good job of addressing
the challenges that porting an application poses.

Inevitably, when Kocher starts to talk about the implementation
of individual microservices, he is forced to revert to expressing it
in terms of an existing container system. Despite the existence of
a number of alternative runtime and container image build tools,
Docker remains the overwhelmingly dominant environment. In
the middle section of the book he provides the same catalog of
Docker commands that you’ll find in other books.

This book is one of the unfortunate cases where the print
and ebook versions are significantly different in appearance.
The ebook has color graphics that don’t convert well to gray-
scale. Furthermore, the code examples in the print version are
compressed to fit the pages to the point that they are nearly
unreadable.

The final chapter of this section covers container orchestra-
tion, and Kocher returns to implementation agnosticism. There
are whole books about Kubernetes, Mesos, and Swarm, and he
doesn’t try to go into depth about any of them before returning to
their common features: automation, service discovery, and global
metrics.

In the final section, Kocher distinguishes himself again with
a set of case studies in implementation and migration. Again,
this book isn’t long enough to be a comprehensive guide, but it
is sufficient to give the experienced reader a sense of the dif-
ferent challenges that microservice design, deployment, and
management present. Three cases are used to explore and then
contrast a monolithic deployment and a fully containerized one.
He includes an intermediate case where the application is in the
process of migration. Together, these case studies expose the
assumptions underlying a monolithic deployment and the com-
mon misconceptions about containerization that can undermine
a project.

I liked Kocher’s perspective and his approach to microservice
applications. He shows a thorough understanding of the issues

that I often see downplayed by other authors in their enthusi-
asm for the tech. I don’t think the full potential of microservice
architecture has made it to the mainstream yet. In Microservices
and Containers, Kocher presents a realistic path for application
designers to explore the possibilities.

An Illustrated Book of Bad Arguments, 2nd Edition
Ali Almossawi, illustrated by Alejandro Giraldo
The Experiment LLC, 2014, 56 pages
ISBN 978-1-61-519225-0

First Edition: http://bookofbadarguments.com
Creative Commons BY-NC license
ISBN 978-1-61-519226-7

It’s hard to swing a syllogism these days without hitting a bad
argument. It’s one thing, though, to know that something isn’t
right and another to know what’s not right about it. Aristotelian
logic was required for the engineering students where I went to
college, but most of the focus was on how to create and evaluate
good arguments. The most illustrative lesson on bad arguments
was the 10-minute comedy set at the beginning of the first
lecture in which the professor enumerated the ways students
would try to persuade him to give them a better grade, and why
he wouldn’t be swayed by any of them.

I also remember that most of the other students in the class were
intimidated by the professor and the topic. Logic has a reputa-
tion for being difficult and the province of nerds. Logic is like
grammar—people who make a big deal about rigor in daily life are
mostly annoying to others.

Making logic palatable, even amusing, is the challenge that
Almossawi took on in 2013 when he published the first edition
of An Illustrated Book of Bad Arguments as an online book. He
released it under a Creative Commons Non-Commercial license
then, and this second edition was published the following year
in print. As the title indicates, he focuses on how arguments go
bad. You won’t find more than the most basic definition of terms
needed to understand what a good argument is and is not.

Most of the arguments made in the public sphere today are con-
structed rather informally, and most of the ways they are broken
are informal as well. A formal argument is literally one that has
the correct form. There are logical fallacies related to the form
of an argument, that is, where the failure of the argument comes
from the failure of the structure of the argument, but most of
the fallacies you find in discourse today are not of this type. In
fact, Almossawi offers only one formal fallacy. The rest of the 19
total examples are informal fallacies. This makes them no less
significant.

Each pair of facing pages describes and demonstrates one form
of logical fallacy. The footer includes the fallacy’s place in the

www.usenix.org	   S U M M ER 2020  VO L . 45 , N O. 2  53

BOOKS

taxonomy of bad argument. Yes, fallacies have families. I hadn’t
realized until I saw the diagram in the front of the book that most
fallacies are a variation of a red herring. They divert attention
away from the actual argument by offering something unrelated
to the point. All of the informal fallacies are a form of non sequi-
tur, or “does not follow.”

The text for each page is brief and clear. The illustrations have
the style of 19th- and early-20th-century woodcuts. They remind
me of the illustrations from Alice in Wonderland or the animals
from my mother’s “Laughing Brook” books by Thornton W. Bur-
gess. The cover and pages are printed to look antiqued.

You’re not going to make any friends by pulling out this book and
pointing at a page the next time you’re on Facebook. It is useful
for understanding the myriad ways what you see there can be
wrong. It’s really important to understand that an invalid argu-
ment does not mean that the conclusion is false. It just means you
can’t prove it that way. It is good to have a taxonomy and a name
for each of the ways that an argument can go wrong, and it’s most
helpful for me to recognize when I find myself leaning on these
when my own biases and wishes try to lead me off the path. Bad
Arguments is a slim volume or URL to keep handy when you find
yourself thinking “Hey, wait a minute…”

