
www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  75

COLUMNS

iVoyeur
Dogfood and the Art of Self-Awareness

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
Developer Evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

Y esterday, I ate lunch in a bar in Northwest Montana. I munched on
their fish-and-chips plate (which was way better than it had any
business being) and tried to ignore the Bones re-run playing in 4k

clarity while the old-timers drank and argued behind me.

The argument concerned a certain very old copper mine with a long and storied history of
screwing over everyone but their board of directors. I won’t get into the politics of it with you,
or bore you with my opinions, but suffice to say I could tell who was in the right, and I think
you could too if you were there.

It wasn’t so much the logic of the arguments, nor the passion with which they were delivered
by either side. It was the tone used by those in the wrong—a certain manner of speaking that
belies a particular mode of thought; I’m sure you would recognize it. I did. It was that same
tone we used in the Marine Corps in those tiny moments of uncertainty that always accom-
panied our preparations to do a bad thing in the name of some supposed greater good. Even
before that, though, I recognized it from the days of my youth, when I knew I’d done a bad
thing but I was trying to convince myself, or someone else (or both), that I had a good reason.

It was that guilty-as-sin yeah…but tone. We can all recognize it in others as long as we’ve
recognized it in ourselves; and we all have.

“Know thyself” was one of the Delphic maxims, did you know that? Literally carved in stone
into the temple of Apollo at Delphi. It’s one of our oldest and best thoughts; one of those
things we’ve been thinking since we’ve been capable of thinking about good and bad.

Sorry if I’m being a bit of a downer, but I actually find that a really comforting thought, that
our self-awareness carries with it a certain, well, inescapable self-awareness. All we have to
do is pay attention to ourselves.

Speaking of self-awareness, here’s an interesting but not often answered question from my
current day job:

What’s monitoring the monitoring system?

I know, that’s the kind of question asked by people who want to sell you something, but it’s
also one of those questions that triggers a certain degree of guilt within those of us who don’t
have a good answer for it. That’s why the pre-sales engineers love asking it. They intuit our
guilt because they’ve recognized it in themselves.

But how important a question is it really? I suppose it depends. There’s something of a
continuum of monitoring aptitude. The shops at the baseline competency level don’t really
distinguish between monitoring and alerting. Monitoring is the system that sends alerts, so
for them, a monitoring outage is an alerting outage. Those stakes aren’t very high honestly.
They may not be alerted to a problem, but once they do find out, they’ll SSH into that system
and poke around manually. That kind of sucks but it’s not the end of the world.

76    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

COLUMNS
iVoyeur: Dogfood and the Art of Self-Awareness

Moving up the continuum, however, you begin to encounter
shops that use monitoring as a means of understanding system
behavior. By that I mean, when an operations person wants to
know if the app slowness they’re experiencing is isolated to
them or a widespread issue, they turn to the monitoring system
to find the 95th percentile latency on HTTP requests. Then
maybe they’ll break out that data by node to find a misbehav-
ing instance, and tell the chatbot to destroy that instance and
replace it with a new one. In those sorts of shops, a monitoring
outage directly affects our ability to reason about and fix prob-
lems with our systems.

Losing visibility at that level in the continuum sucks even more,
but at Librato, we’re in an even worse pickle. The monitoring sys-
tem is not only our primary means of understanding the behav-
ior of our systems; it is our systems. We are a SaaS monitoring
shop, so a monitoring outage here equates to a catastrophic
business interruption. I know, weird, right? So in this issue I
thought it might be fun to explore the question of what monitors
the monitoring system at Librato.

The tl;dr is, of course: Librato, but the story of how is pretty inter-
esting and, I think, worth telling. In fact, Librato is the result of a
pivot [1] from a product called Silverline. Silverline was designed
to dynamically adjust the performance characteristics of a
machine image in order to save money on hosting costs (nerf-
your-CPU-so-you-spend-less-as-a-service). The engineers who
built Silverline obviously needed a scalable means of measuring
granular system performance, and so, like so many shops before
them, they built a custom metrics solution. However, unlike
so many shops before them, they did a really good job of it, and
Librato was born.

When metrics became the operational focus of the company, the
engineers were already quite accustomed to having unfettered
access to an essentially free, high-quality metrics and monitor-
ing tool. For them, building a thing and measuring its perfor-
mance were the same undertaking, so they naturally relied on
Librato to build and maintain everything. Put more succinctly:
they used Librato to monitor the operational characteristics of
Librato, thereby becoming their own biggest customer.

I cannot recommend this strategy for your monitoring endeav-
ors, but it worked out pretty well for us in practice. In many ways
it was even quite beneficial. It certainly brought us closer to our
customers, since literally every employee at Librato could pro-
vide customer support because everyone was using the tool every
day. It also gave us a far more solid baseline understanding of
the technical limitations of the system than most startups have,
since we were the ones who were stressing it the hardest.

It wasn’t long, however, before a few very large engineering shops
signed up, and UID1 (as we affectionately refer to ourselves) was
no longer even close to the most voluminous metrics source. And

as anyone who maintains an API will attest, along with more
and larger customers comes a certain amount of API abuse. So
it was with us. It really is remarkable that after 20 years in the
field, you can still be surprised by end-user behavior. Humbling,
but remarkable.

Unexpected patterns of end-user behavior are an inevitability
for which no Chaos-Monkey can prepare you. We saw custom-
ers doing things that we’d never imagined, because honestly,
they’re kind of unimaginable. Can you imagine a scenario where
you’d need to insert an epoch timestamp into the source name of
a metric when you were going to plot in a line graph where x is
time/day anyway? I mean why would you ever need to create a
new, unique metric and source object for every single measure-
ment you take?

That’s just one of the many, many real-life things that we’ve seen
real-life customers do in real life.

With time-series [2] datastores you make certain assump-
tions about the cardinality of measurement sources. We can
handle high-cardinality measurements as long as we can make
assumptions like those. I won’t bore you with the details, but
the accidental generation of high-cardinality sources can really
wreak havoc on an optimized datastore like ours. Really any sort
of behavior that causes us to create rows on the order of millions
of unique IDs (or anything else that isn’t proper time-series data)
per minute or second is basically guaranteed to trigger pager
duty to wake me up in the pre-dawn.

When problems like that happen, we need to be able to get to our
own metrics to diagnose the issue, and we can’t do that if the
system is being effectively DOS’d by another end user.

Enter Dogfood
Our solution to this problem is an environment we named Dog-
food (in reference to that somewhat gross Microsoft colloquial-
ism [3], eating your own dog food).

Dogfood is pretty much a mini-Librato—a miniature re-creation
of our production environment just for our use. It resides on AWS
in US-West, on the opposite coast of the US from our Production
and Staging environments. It is fed data by way of our production
stream-processing tier, which is a custom-built stream process-
ing system we’ve talked publicly about in the past [4].

Well-implemented stream processing is a lovely thing, and at
Librato we rely very heavily on the combination of SuperChief
(our own beloved Storm replacement) and Kafka [5], which we
use as a cache between our various stream-processing entities.
These components make it possible for us to quickly persist
raw-resolution measurements as they arrive to our API while
simultaneously processing them for alerting and copying them
over to the Dogfood environment.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  77

COLUMNS
iVoyeur: Dogfood and the Art of Self-Awareness

The pattern is simple. Worker threads from one service take
measurements off the wire and write them to Kafka queues (top-
ics in Kafka parlance). Workers from other services read them
out of queue and process them in parallel. A single measurement,
for example, that hits our API is immediately copied to several
places by our ingestion pipeline:

◆◆ Directly to a fast-path service designed to persist it in Cassandra

◆◆ To a Kafka topic read by the Alerting service (for alert detection)

◆◆ To a Kafka topic for the service that processes 60-second roll-ups

◆◆ To a Kafka topic read by Dogfood workers

◆◆ Kafka topics for other stuff I can’t talk about yet

The Dogfood path is triggered for every measurement that’s
submitted by user: UID1. We implemented Dogfood duplication
as a stream-processing job like this so that any metrics we create
in our day-to-day work will automatically be picked up and sent
to Dogfood. Monitoring systems succeed when they’re easy to
use, so I feel pretty strongly that this is a critical component to
Dogfood’s success. It just wouldn’t work if, as an engineer, you
had to remember to create every metric twice: once in produc-
tion and once in Dogfood.

But What About Ingestion Pipeline Problems?
The downside of using production streaming infrastructure to
tee off metrics to Dogfood is the possibility that we will have a
critical blocking outage in the production stream processing tier
that will affect Dogfood metrics. Problems like this are actually
relatively rare given both the simplicity of Dogfood process-
ing (it’s just a single write operation) and the parallel nature of
stream processing with Kafka. In fact the most wonderful thing
about our stream processing is how well it isolates workloads
from each other. Given separate Kafka topics and dedicated
services behind each, it’s very rare in practice for us to experi-
ence an issue that crosses multiple topics, much less unrelated
ones. Those sorts of issues are pretty much always going to be
upstream of us at AWS (where Dogfood won’t help us anyway).

Another downside is the possibility of a problem in the API
ingestion pipeline upstream of the stream-processing tier. If
the metrics can’t make it into the stream-processing tier, then
they won’t make it to Dogfood either. This is a more likely failure
mode, and one that we’ve experienced in the past. In practice,
however, because of the nature of our architecture, the absence
of Dogfood metrics is a pretty damning indicator of an ingestion
problem, so when this happens we already know exactly where
to look.

Most of us prefer to use live data from production day-to-day
because it’s the same system our customers use, but if we ever
experience a service degradation, we can switch to Dogfood
seamlessly to diagnose the problem and work toward a fix. Dog-
food might be the most elaborate answer ever to the question of
What’s monitoring the monitoring system, but then who can put a
price on self-awareness?

Take it easy.

References
[1] Wikipedia, “Pivot,” last modified on Sept. 13, 2016: https://
en.wikipedia.org/wiki/Lean_startup#Pivot.

[2] Dave Josephsen, “Sensical Summarization of Time-Series”
(blog entry), August 11, 2014: http://blog.librato.com/posts
/time-series-data.

[3] Wikipedia, “Eating your own dog food,” last modified
on Sept. 3, 2016: https://en.wikipedia.org/wiki/
Eating_your_own_dog_food.

[4] SuperChief: http://www.heavybit.com/library/blog
/streamlining-distributed-stream-processing-with-superchief/.

[5] J. Shekhar and A. Khurana, “Streaming Systems and
Architectures,” ;login:, vol. 41, no. 1 (Spring 2016): https://www
.usenix.org/system/files/login/articles/login_spring16_03
_shekhar.pdf.

https://en.wikipedia.org/wiki/Lean_startup#Pivot
https://en.wikipedia.org/wiki/Lean_startup#Pivot

