
86    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

SPA Design and Architecture
Emmit A. Scott, Jr.
Manning Publications, 2016, 288 pages
ISBN 978-1-61729-243-1

It’s been a long time since I worked on the front end of a Web
service. I’m passing familiar with JavaScript and completely
comfortable with HTML and the DOM. The ideas of AJAX and
REST services are clear. I thought I had a reasonable handle on
how the client side of Web applications were built.

The “SPA” in the title stands for “Single Page Application,” and
you’ve almost certainly used one. If you’ve used almost any of
Google’s applications or searched for local movies you’ve seen an
SPA.

SPAs have become prevalent in the last five years with the adop-
tion of the HTML5 standard and a set of JavaScript frameworks
which take care of much of the boilerplate and common behav-
iors. They are designed to move much of the application logic
to the client side (your browser) and to minimize the delays
involved in repeated page loads that characterized early Web
applications.

Scott’s goal in this book is to show you the internals of an SPA
and then how to assemble them into an application.

After the mandatory chapter introducing SPAs in general, I was
a little surprised that the next two didn’t seem to speak directly
to SPAs at all. In Chapter 2 Scott gives a survey of the MVC
(model view controller) pattern and its derivatives. All of the
JavaScript frameworks for SPAs are based on one of these mod-
els. Scott cites a number of the most popular ones as examples
and notes some of the benefits, costs, and quirks of each one
without picking a favorite.

Chapter 3 is a tutorial on modules in JavaScript. I would have
thought the module construct was a well-known idiom, but I
admit I learned a lot from Scott’s description.

My confusion resolved as I continued to read.

It turns out that this kind of book is hard to write and not easy to
read and understand at the first pass. Developing modern Web
applications requires fluency in at least three “languages” as
well as the behaviors and quirks of all of the major Web browser
rendering systems (even when using a framework to abstract
them). Designing and implementing the client side of an applica-
tion requires the developer to have an intricate understanding of

how the data flows from a server through the client application
and how that is, in turn, presented by the browser. Scott guides
the reader through these interactions from the browser back to
the server as well as touching on testing and debugging. That it
took me a couple of times through to digest it is a reflection of my
own meager background in this area.

Scott starts with application “routing” and the idea that in an
SPA there is only a single “Web page” but there are multiple
views of the service. The view is selected through the “router,”
which takes advantage of the browser URL history and the
ability of the browser to decompose a URL and respond as
instructed by some loaded JavaScript.

In the next chapter, Scott reveals how to control the layout and pre-
sentation of the views using HTML, CSS, and various templating
frameworks. This is where the application is given both a structure
and a style that (it is hoped) presents the user with the information
and behaviors they need to complete their tasks efficiently.

The JavaScript module pattern comes back to the fore now. Scott
shows how this pattern can be used to map logic to each view in
a clean, coherent manner. He also discusses how the data will
be represented in the client-side model of the application. This
leads nicely into the final active part of the SPA: communicating
with the server.

In this chapter Scott examines how to generate and respond to
asynchronous requests to the server both with several of the
major SPA framework mechanisms and using the XMLHttpRe-
quest method directly. He details asynchronous data exchange in
both directions and shows how to build the service interactions
into the modules that make up the client-side data model.

The final sections cover unit testing and client-side tasks. The
latter are actions that the client may take which are not directly
associated with any particular model or view. He presents them
as a means to run repetitive tasks during development such as
code CI and testing.

Scott doesn’t try to create a single application in his narrative.
Because he is reflecting on a number of different frameworks,
using their contrasts to highlight behaviors and features, no
single sample application would fit. He does include a short
application example using Angular.js and Backbone.js in the
appendices, but his presentation in the main body of the book is
fairly agnostic to any framework selection.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  87

BOOKS

Each chapter concludes with a set of questions and exercises that
are meant to help the reader set the main concepts in memory
and to give some active practice. These “challenges” are indeed
a challenge, not something you can merely cut-and-paste from
the text. A reader who follows through will get much more than a
casual reader.

In the end I liked Scott’s focus on concepts and options rather
than advocating for one framework or another. I think I was
not as prepared as I should have been to take this book on. My
knowledge of JavaScript and DOM is rusty, and I have not kept
up on current practice and idiom. This required me to go outside
and brush up to be sure I’d understood and absorbed what was
presented. This is a good book for someone who has gotten their
hands dirty with browser programming and is ready to start
learning how to design a fast modern Web service.

Single Page Applications: JavaScript End-to-End
Michael S. Mikowski and Josh C. Powell
Manning Publications, 2014, 408 pages
ISBN 978-1-617290-75-0

“You can do it all in JavaScript. Here’s how” is the message that
the authors offer in Single Page Applications: JavaScript End-
to-End. Their aim is to build an SPA demonstrator, client, and
server side completely in JavaScript. They go so far as to avoid
even the popular SPA JavaScript frameworks, choosing instead
to build the core functionality, the routing and view selection
logic, even the HTML template resolution directly in JavaScript.

I’m not sure most people would be willing to take on the extra
work that the SPA frameworks offload for you, but there’s cer-
tainly a lot to be learned by looking at how one would do it.

Mikowski and Powell follow the tried-and-true narrative of
building a simple demo app and enhancing it chapter by chapter.
In their case it actually shows a good Agile style progression,
although I’m not sure if that was their intent. Because they are
building both the client and the server in JavaScript, and you
don’t get to the server part until more than half way through, you
also learn a lot about mocking data and services in JavaScript.

They begin by building a skeleton for the application, which they
call the “Shell.” This is a kind of root module for the application.
Features will be hung off this module and will add functional-
ity as the development process progresses. From here they show
how to add logic and presentation to each new feature in a clean,
incremental way. They develop the data models and views in
conjunction so the reader can see how the back and front are
related and how data flows in and out.

On the server side, Mikowski and Powell use Node.js and Mon-
goDB. They promote the idea that using a single language for
both the client and server makes development easier. While in
general I agree, I wouldn’t normally have picked JavaScript as
my one language, but since the browsers have chosen for us it
will have to do. Certainly the use of JSON for data transfer and
storage does remove lots of the hassle of encoding and decoding
data both for communications and database storage.

The authors are very conscious of the development environment
and developer tasks. While developing the components, they also
lay out best practices for directory structure and file naming for
consistency and maintainability. These seem to mirror other
recommendations I’ve seen. They have an appendix devoted to a
set of JavaScript coding styles. For someone overwhelmed with
the actual design and implementation of a service, these nicely
structured guidelines are actually a time-saver when learned
and applied. There’s no need to spend time rediscovering what
others have already done (and likely as not having to refactor the
mess to conform when you find out what they already knew).

The final area Mikowski and Powell talk about in the main sec-
tion is actually something I hadn’t considered part of the normal
development process: design and adaptation to search engine
and analytics services that crawl your site, and third-party cach-
ing services. This section was an eye opener for someone who’s
never worked with these except as a user or out of intellectual
curiosity. In this section you learn some about how these ser-
vices work and how to make your application friendly to them.

I don’t think I’ll be adopting this approach to application design,
but what I learned here will certainly inform how I look at the
systems I work on and how I build new ones.

Go in Practice
Matt Butcher and Matt Farina
Manning Publications, 2016, 288 pages
ISBN 978-1-63343-007-6

I’m familiar with Manning’s “in Action” series and have actually
reviewed Go in Action here. I was curious what would be differ-
ent about Go in Practice. The cover notes that the book “includes
70 techniques.” It turns out that “in practice” means this is a Go
cookbook.

Most cookbooks I’ve read have spent most of the time on the
shelf gathering dust. Either the recipes are for things that are
either obvious or rare and obscure. I was pleasantly surprised
by Go in Practice. Butcher and Farina have managed to create a
reference for Go idiom and good practice. Given how quirky Go
can be, especially for someone coming from a scripting language
(I had some nostalgic flashbacks to my days coding C), a manual
of good practice is a welcome find.

88    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

BOOKS

I think Butcher and Farina may have the same impression of the
cookbook metaphor as I do. They avoid the term throughout the
book, substituting “task” and “technique.” The word “cookbook”
is only used once, in what I suspect is an editorial description on
the back cover. I’ll use their terminology because I think what
they present is better than a set of recipes.

Go in Practice is not a language reference. The authors do
highlight some of the significant language features in the first
section: multiple return values, dummy return values, goroutines,
and channels. They also discuss package management, revision
control, and Go’s relationship to other popular languages.

The next section is one I particularly liked and will use often: a
complete section on managing inputs and configuration for CLI
programs. This has always seemed to me to be an overlooked
part of most language teaching.

The full set of techniques covers things you’d expect—e.g., testing
and debugging, Web service communications—but it also includes
some things that I haven’t seen in other places, such as aspects
of coding for the cloud. This includes writing API interactions
with cloud services which avoid lock in and how cloud-hosted
programs can get VM information from the providers.

They close out the set of techniques with a section on code
reflection and automatic code generation in Go. These are
advanced techniques and probably shouldn’t be used lightly.
Most people will end up using annotations and tags for tasks like
JSON or XML processing. However unlikely it is, they also show
how to create new ones and then process them.

Each technique opens with a paragraph or two on the problem to
be solved, then a brief description of the solution. The meat is in
the discussion and code fragments that follow. The layout of the
code is clean and contains clear annotations. I often try to read
both the paper and ebook forms of the books I review. As much
as I love to have bound paper on a shelf, the ebook has an edge
in this case. The diagrams and code samples in the ebook have
color graphics and highlighting which add an appeal that the
black and white on paper can’t match.

The ebook format is also well suited to handy access on tablets
or browsers. For as long as I’m coding Go, I expect I’ll keep Go in
Practice close.

