
36    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

STORAGEThe Modern Data Architecture
The Deconstructed Database

A M A N D E E P K H U R A N A A N D J U L I E N L E D E M

Amandeep Khurana is
cofounder and CEO at Okera,
a company focused on solving
data management challenges
in modern data platforms.

Previously, he was a Principal Architect at
Cloudera where he supported customer
initiatives and oversaw some of the industry’s
largest big data implementations. Prior to that,
he was at AWS on the Elastic MapReduce
engineering team. Amandeep is passionate
about distributed systems, big data, and
everything cloud. Amandeep is also the
coauthor of HBase in Action, a book on building
applications with HBase. Amandeep holds an
MS in computer science from the University of
California, Santa Cruz. amansk@gmail.com

Julien Le Dem is the coauthor of
Apache Parquet and the PMC
chair of the project. He is also
a committer and PMC Member
on Apache Pig, Apache Arrow,

and a few others. Julien is a Principal Engineer
at WeWork working on data platform, and was
previously Architect at Dremio and Tech Lead
for Twitter’s data processing tools, where he
also obtained a two-character Twitter handle
(@J_). Prior to Twitter, Julien was a Principal
Engineer and Tech Lead working on content
platforms at Yahoo, where he received his
Hadoop initiation. His French accent makes his
talks particularly attractive. julien@ledem.net

Mainframes evolved into the relational database in the 1970s with
the core tenet of providing users with an easier-to-use abstrac-
tion, an expressive query language, and a vertically integrated

system. With the explosion of data in the early 2000s, we created the big
data stack and decoupled storage from compute. Since then the community
has gone on to build the modern data platform that looks like a deconstructed
database. We survey the different technologies that have been built to sup-
port big data and what a modern data platform looks like, especially in the
era of the cloud.

Modern data platform architectures are spurring a wave of innovation and intelligence by
enabling new workloads that weren’t possible before. We will review three main phases of
technology evolution to highlight how the user experience of working with data has changed
over time. The article concludes with a review of the current state of data architectures and
how they are changing to better meet demand.

From Mainframe to Database—A Brief Review
Mainframes were among the early platforms for applications and analytics done in a pro-
grammatic way, using what we know as modern computing systems. In the world of main-
frames, users had to write code to interact with data structures as stored on disk. Users had
to know the details of the data storage with which they were working, including its location
and storage format. These details had to be coded as a part of the application. You could still
write arbitrarily complex logic to work with the data, but the paradigm was not very accessi-
ble or easy to understand by mainstream users. The technical complexity was a hurdle users
had to overcome, thus limiting the adoption of this paradigm.

Fortunately, in the 1970s, the relational database was born. It was created based on a few
core tenets:

◆◆ Simplify the data abstraction for the end user and make it more intuitive.

◆◆ Provide a rich language to facilitate the expression of computational logic.

◆◆ Hide the complexity of the underlying systems from end users.

These goals are clearly articulated in the first paragraph of Codd’s 1970 paper on relational
models [1], one of the first papers on relational databases. You don’t have to read much past
the first three sentences of his paper:

Future users of large data banks must be protected from having to know how
the data is organized in the machine (the internal representation). A prompting
service which supplies such information is not a satisfactory solution. Activities
of users at terminals and most application programs should remain unaffected
when the internal representation of data is changed and even when some aspects of
the external representation are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report traffic and natural growth
in the types of stored information.

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  37

STORAGE
The Modern Data Architecture: The Deconstructed Database

This means:

◆◆ Users of database systems should not have to worry about the
underlying layouts, how and where data is stored, formats, etc.

◆◆ If changes need to be made to underlying files and structures,
the applications should not be affected.

◆◆ Anything that provides more and better information about
the underlying data structure doesn’t necessarily reduce the
technical complexity.

One could argue that data analytics, as we know it today, was
made possible by the relational database. For the first time, com-
panies could leverage their data and extract value from it. The
relational database employed SQL (created in the early 1970s at
IBM) as the language to express computation, and 1986 saw the
first SQL standard, which has been updated several times since,
eventually becoming a global standard. SQL has some excellent
properties, including a strong separation of the query logic from
the execution details. The table abstraction and how it is stored
or indexed is opaque to the user, who can concentrate on the data
logic rather than the storage implementation. An optimizer is
charged with finding the best way to produce the requested data
and exploit the properties of the underlying storage (column-
oriented, indexed, sorted, partitioned). Additionally, ACID guar-
antees, integrity constraints, and transactions help to ensure
certain properties of the data.

In addition to a standard language to express data-processing
logic, Sun Microsystems released JDBC as a standard API,
which further abstracted the underlying SQL implementation
from the user (see Figure 1). An entire ecosystem of technologies
and applications was created around the relational database.

At the very core, it was ease of use, the accessibility and the
simplicity of the database, that led to its broad adoption. You no
longer needed to be an engineer to work with data.

The Birth of the Big Data Stack
In late 1990s and early 2000s, the relational database struggled
to keep up with the explosion of data. Technologists who worked
with large amounts of data re-evaluated data platform archi-
tectures. The reasons for this included scalability limitations,
the increasingly heterogeneous nature of data, and the types of
workloads people wanted to run. The database’s architecture
constrained these capabilities. SQL, as a language, was not
expressive enough, and the database wasn’t flexible and scalable
enough to support different workloads.

This reconsideration of data storage and processing was the
genesis of the big data stack and, later on, the concept of the
data-lake. The Apache Hadoop project was at the core of this.
Hadoop started in 2006 as a spin-off from Apache Nutch, a web
crawler that stemmed from Apache Lucene, the famous open
source search engine. The inspiration for this project came
from two Google papers describing the Google File System [2]
and a distributed processing framework called MapReduce [3].
These two components combined the extreme flexibility and
scalability necessary to develop distributed batch applications
in a simple way.

The Hadoop Distributed File System (HDFS)
HDFS provides a file system abstraction over a cluster of
mainstream servers. It also provides metadata on data place-
ment, which is exploited by MapReduce to process data where it
is stored. Back when network I/O was much more constrained
than disk I/O, this innovation was significant. HDFS files are
free form; there are no constraints on the format or any kind
of schema. We started to call this concept schema on read (as
opposed to schema on write in the world of databases).

MapReduce
MapReduce provides a simple framework to build distributed
batch applications on top of HDFS. Usually a job is defined by
scanning a data set in parallel, applying a Map function to the
content, and emitting key-value pairs. All values with the same
key are sent to the same machine, independent of where they
were produced, in a step called “the shuffle.” The key and its cor-
responding list of values are then passed to the Reduce function.
This simple framework allows us to build powerful distributed
algorithms. One example is the famous PageRank algorithm,
originally used by Google to rank websites based on how many
incoming links they get.

MapReduce is a very flexible paradigm. MapReduce simply edits
key-value pairs, and it is also composable, allowing its users to

Figure 1: The evolution of the technology stack from the mainframe to the
database

38    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

STORAGE
The Modern Data Architecture: The Deconstructed Database

realize complex algorithms by orchestrating multiple MapReduce
steps. For example, PageRank converges to a result after a
number of iterations. The inherent limitations of MapReduce,
however, come from the same attributes that make it strong. The
flexibility in file formats and the code used to process them offer
no support for optimizing data access. In that respect, the
MapReduce paradigm returns us to the world of mainframes at a
much larger scale. The MapReduce programmer must in fact know
quite a bit about storage details to write a successful program.

“MapReduce, a Major Step Backwards”
The database community eventually became annoyed by this
new wave of open source people re-inventing the wheel. Turing
Award winner Michael Stonebraker, of PostgreSQL fame and
recent co-founder of the distributed analytical database Vertica,
famously declared in 2008 [4] that MapReduce was “a major step
backwards.” Compared to the nice abstractions of the relational
model, this new model was too low level and complex.

Evolution of the Big Data Stack
Ten years later, the entire Hadoop ecosystem is much larger than
the two components it originally included. People argued about
where the boundary of that ecosystem really stopped. In the
cloud, you can even use a significant portion of the ecosystem
without Hadoop itself. New functional categories beyond storage
and compute have emerged: execution engines, streaming ingest,
resource management, and, of course, a long list of SQL-on-
Hadoop distributed query engines: Impala, Hive, SparkSQL,
Drill, Phoenix, Presto, Tajo, Kylin, etc. The ecosystem can be
broken down into the following categories:

Storage Systems
HDFS, S3, and Google Cloud Storage are the distributed file
system/object stores where data of all kinds can be stored.
Apache Parquet has become a standard file format for immu-
table columnar storage at rest.

Apache Kudu and Apache HBase provide mutable storage layers
with similar abstractions, enabling projection and predicate
pushdown to minimize I/O by retrieving only the data needed
from disk. These projects require explicit schema, and getting
that right is critical to efficient access.

Streaming Systems
Kafka is the most popular stream persistence system in the
data platform world today. It’s open source and is widely used
for streaming data at scale. Kinesis, an AWS service, is the
most popular hosted and managed streaming framework but
is not available outside the AWS environment. GCP provides a
similar service called PubSub. Another noteworthy platform is
Pulsar. Pulsar has interesting features for multi-tenancy and
performance of concurrent consumers on the same stream.

The project is more of a challenger that has yet to reach wide
adoption.

Query Engines
Since MapReduce, many other query engines have developed.
Originally, they were often layered on top of MapReduce, which
introduced a lot of latency; MapReduce is designed for web-scale
indexing and is optimized for fault tolerance, not quick response.
Its goal is to optimize for running very large, long-running jobs,
during which a physical failure of at least one component is likely.

For example, Hive (an SQL implementation) and Pig (a func-
tional DSL with similar capabilities) both originally compiled to
a sequence of MapReduce jobs.

As more people wanted interactive capability for data analytics,
Hadoop-compatible data-processing engines evolved and
MapReduce became less relevant. Spark has become a popular
alternative, with its richer set of primitives that can be combined
to form Data Availability Groups (DAGs) of operators. It includes
an in-memory cache feature that allows fast iterations on a data
set during a session of work. Tez is a lower level DAG of operator
APIs aimed at optimizing similar types of work. SparkSQL is a
SQL implementation on top of Spark. Hive and Pig both can now
run on either MapReduce, Spark, or Tez.

There are several SQL engines that provide their own runtime,
all with the goal of minimizing query latency. Apache Drill and
Apache Presto generate optimized Java bytecode for their opera-
tors, while Apache Impala uses LLVM to generate native code.
Apache Phoenix supports a SQL interface to Apache HBase and
takes advantage of HBase’s capabilities to reduce I/O by running
code in the database.

Tools such as Python, with the help of libraries like NumPy and
pandas and R, are also very popular for data processing and can
cater to a large variety of use cases that don’t need the scale that
MapReduce or Spark supports.

In addition to these, we’re seeing a variety of machine-learning
frameworks being created, such as Tensorflow, DL4J, Spark
MLLib, and H2O. Each of these is specialized for certain work-
loads, so we are going to see more of these emerge over the next
few years.

Query Optimizer
There is a query parser and optimizer framework in the Calcite
project, one of the lesser known but most important projects in
the ecosystem. Calcite powers the query execution in projects
such as Hive, Drill, Phoenix, and Kylin. Calcite is also used in
several streaming SQL engines such as Apex, Flink, SamzaSQL,
and StormSQL. It can be customized in multiple ways. Notably,
one would provide an execution engine, schema, and connectors
implementations as well as optimization rules either relevant to

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  39

STORAGE
The Modern Data Architecture: The Deconstructed Database

the execution engine, the storage layer, or both. Spark, Impala,
and Presto have their own query optimizers and don’t use an
external engine.

Serialization
Apache Arrow is a standard in-memory columnar representa-
tion that combines efficient in-memory query evaluation, allow-
ing for zero-overhead serialization, with standard simplifying
integration, removing unnecessary and costly conversion layers.
It also allows fast in-memory processing by enabling vectorized
execution.

Security
Access control policies can be put in policy stores like Apache
Sentry and Apache Ranger. In addition, there are proprietary tools
such as BlueTalon that enable access control on SQL engines.

Cataloging and Governance
There are a few offerings in this realm as well, but none that
truly solve the problems of today. The Hive Metastore is the
dominant schema registry. Apache Atlas is an open source
framework that’s focused on governance. Proprietary tools
such as AWS Glue, Cloudera Navigator, Alation, Waterline, and
Collibra are solving different aspects of the problem.

Towards a Modern Data Platform—The
Deconstructed Database
In parallel to the evolution of the data-lake concept and the big-
data stack, the world of cloud computing continues to redefine
technology architectures. Cloud computing normalizes variants
of infrastructure, platform, and applications as a service. We are
now seeing the emergence of Data-as-a-Service (DaaS). All these
trends constitute a significant paradigm shift from the world of
datacenters, in which enterprises had to either build their own
datacenters or buy capacity from a provider. The kind of data plat-
form that people want to build today, especially in the cloud, looks
very different from what we have seen so far. At the same time,
the modern data platform borrows many of the core tenets we val-
ued in previous generations. The core tenets of the cloud include:

1.	 Allowing choice between multiple analytics frameworks for
data consumers so they can pick the best tool for the workload.

2.	 Flexibility in the underlying data source systems but a consis-
tent means to enable and govern new workloads and users.

3.	 A self-service experience for the end user: no waiting on IT
and engineering teams to catch up and deliver on all the asks
from all the constituents they have to serve.

Agility and self-service require components to be loosely cou-
pled, easily available as a service or open source software, and
usable in different contexts. Systems that are loosely coupled
need to have common, standard abstractions in order to work

together. Many of these are missing today, which makes build-
ing a true modern data platform with the core tenets articulated
above challenging.

Given where the ecosystem is headed, new developments are
enabling the capabilities that people want. Key areas that are
experiencing significant innovation include:

1.	 Improved metadata repository and better table abstrac-
tions. There are many promising projects maturing in the
open source ecosystem. For example, the Iceberg project
from Netflix defines table abstractions to provide snapshot
isolation and serialization semantics (at a high level, not row
by row) to update data in a distributed file system. Iceberg
abstracts away formats and file layouts while enabling
predicate and projection push downs. Marquez is also a proj-
ect that defines a metadata repository to take advantage of
this work.

2.	 Access control and governance across different engines
and storage systems. Current methodologies are fragmented
and not fully featured. In the wake of GDPR and other privacy
acts, security and privacy are important aspects of the data
platform. Labeling private data appropriately to track its use
across the entire platform, and enabling only approved use
cases, has become a key requirement. The current ecosystem
does not deliver on this, and there are new developments that
will take place to fill this gap.

3.	 Unifying push-down logic. A great help toward more con-
sistent performance of query engines on top of Parquet and
other columnar storage would be unifying push-down logic.
Current implementations are very fragmented and duplicate
effort. The same concepts apply to streaming.

4.	 Arrow project adoption to enable better interoperability
between components. This would enable simpler and more
general interoperability between systems but, more impor-
tantly, would do so without sacrificing performance as lowest
common denominator type integrations often do.

5.	 A common access layer. A unified access layer that allows
push-downs (projection, predicate, aggregation) and retrieves
the data in a standard format efficiently will advance modern
data architectures. We need this capability whether or not
data storage is mutable (HBase, Cassandra, Kudu), batch-
oriented (HDFS, S3), or streaming-oriented (Kafka, Kinesis).
This unified access layer will improve interoperability and
performance, reduce duplication, and support more consis-
tent behavior across engines. A lot of other data management
problems can be solved at this layer. This is also in line with
Codd’s core tenet of databases: users of large data banks
should not have to deal with the internal semantics of data
storage.

40    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

STORAGE
The Modern Data Architecture: The Deconstructed Database

Conclusion
Bringing it all together, a modern data platform will look similar
to the stack shown in Figure 2. It will have a subset of these com-
ponents integrated as independent, specialized services. The
figure shows a few examples of the technologies at various levels
of the stack and is not an exhaustive list.

A typical deployment may not always consist of all the compo-
nents shown. Platform owners will be able to pick and choose
the most appropriate ones and create their own stack, giving end
users the flexibility and scale they need to run new workloads
in the enterprise. This modular approach is a powerful para-
digm that will further enable new capabilities for enterprises.
This will drive more innovation and disruption in the industry,
making businesses data-driven by shortening time to market of
applications that take advantage of the large volumes of data that
are defining the modern enterprise.

References
[1] E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM, vol. 13, no. 6 (June
1970), pp. 377–387: https://www.seas.upenn.edu/~zives/03f​
/cis550/codd.pdf.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google
File System,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03): https://static​
.googleusercontent.com/media/research.google.com/en//​
archive/gfs-sosp2003.pdf.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Communications of the
ACM, vol. 51, no. 1 (January 2008), pp. 107–113: https://static​
.googleusercontent.com/media/research.google.com/en//​
archive/mapreduce-osdi04.pdf.

[4] D. J. DeWitt and M. Stonebraker, “MapReduce: A Major
Step Backwards,” The Database Column, 2008: http://db.cs​
.berkeley.edu/cs286/papers/backwards-vertica2008.pdf.

Figure 2: The modern data platform stack

https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://db.cs.berkeley.edu/cs286/papers/backwards-vertica2008.pdf
http://db.cs.berkeley.edu/cs286/papers/backwards-vertica2008.pdf

