
36    WI N T ER 20 1 8   VO L .  4 3 ,  N O.  4 	 www.usenix.org

STORAGEThe Modern Data Architecture
The Deconstructed Database

A M A N D E E P  K H U R A N A  A N D  J U L I E N  L E  D E M

Amandeep Khurana is 
cofounder and CEO at Okera, 
a company focused on solving 
data management challenges 
in modern data platforms. 

Previously, he was a Principal Architect at 
Cloudera where he supported customer 
initiatives and oversaw some of the industry’s 
largest big data implementations. Prior to that, 
he was at AWS on the Elastic MapReduce 
engineering team. Amandeep is passionate 
about distributed systems, big data, and 
everything cloud. Amandeep is also the 
coauthor of HBase in Action, a book on building 
applications with HBase. Amandeep holds an 
MS in computer science from the University of 
California, Santa Cruz. amansk@gmail.com

Julien Le Dem is the coauthor of 
Apache Parquet and the PMC 
chair of the project. He is also 
a committer and PMC Member 
on Apache Pig, Apache Arrow, 

and a few others. Julien is a Principal Engineer 
at WeWork working on data platform, and was 
previously Architect at Dremio and Tech Lead 
for Twitter’s data processing tools, where he 
also obtained a two-character Twitter handle 
(@J_). Prior to Twitter, Julien was a Principal 
Engineer and Tech Lead working on content 
platforms at Yahoo, where he received his 
Hadoop initiation. His French accent makes his 
talks particularly attractive. julien@ledem.net

Mainframes evolved into the relational database in the 1970s with 
the core tenet of providing users with an easier-to-use abstrac-
tion, an expressive query language, and a vertically integrated 

system. With the explosion of data in the early 2000s, we created the big 
data stack and decoupled storage from compute. Since then the community 
has gone on to build the modern data platform that looks like a deconstructed 
database. We survey the different technologies that have been built to sup-
port big data and what a modern data platform looks like, especially in the  
era of the cloud.

Modern data platform architectures are spurring a wave of innovation and intelligence by 
enabling new workloads that weren’t possible before. We will review three main phases of 
technology evolution to highlight how the user experience of working with data has changed 
over time. The article concludes with a review of the current state of data architectures and 
how they are changing to better meet demand.

From Mainframe to Database—A Brief Review
Mainframes were among the early platforms for applications and analytics done in a pro-
grammatic way, using what we know as modern computing systems. In the world of main-
frames, users had to write code to interact with data structures as stored on disk. Users had 
to know the details of the data storage with which they were working, including its location 
and storage format. These details had to be coded as a part of the application. You could still 
write arbitrarily complex logic to work with the data, but the paradigm was not very accessi-
ble or easy to understand by mainstream users. The technical complexity was a hurdle users 
had to overcome, thus limiting the adoption of this paradigm.

Fortunately, in the 1970s, the relational database was born. It was created based on a few 
core tenets:

◆◆ Simplify the data abstraction for the end user and make it more intuitive.

◆◆ Provide a rich language to facilitate the expression of computational logic.

◆◆ Hide the complexity of the underlying systems from end users.

These goals are clearly articulated in the first paragraph of Codd’s 1970 paper on relational 
models [1], one of the first papers on relational databases. You don’t have to read much past 
the first three sentences of his paper:

Future users of large data banks must be protected from having to know how 
the data is organized in the machine (the internal representation). A prompting 
service which supplies such information is not a satisfactory solution. Activities 
of users at terminals and most application programs should remain unaffected 
when the internal representation of data is changed and even when some aspects of 
the external representation are changed. Changes in data representation will often be 
needed as a result of changes in query, update, and report traffic and natural growth 
in the types of stored information.
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This means:

◆◆ Users of database systems should not have to worry about the 
underlying layouts, how and where data is stored, formats, etc.

◆◆ If changes need to be made to underlying files and structures, 
the applications should not be affected.

◆◆ Anything that provides more and better information about 
the underlying data structure doesn’t necessarily reduce the 
technical complexity.

One could argue that data analytics, as we know it today, was 
made possible by the relational database. For the first time, com-
panies could leverage their data and extract value from it. The 
relational database employed SQL (created in the early 1970s at 
IBM) as the language to express computation, and 1986 saw the 
first SQL standard, which has been updated several times since, 
eventually becoming a global standard. SQL has some excellent 
properties, including a strong separation of the query logic from 
the execution details. The table abstraction and how it is stored 
or indexed is opaque to the user, who can concentrate on the data 
logic rather than the storage implementation. An optimizer is 
charged with finding the best way to produce the requested data 
and exploit the properties of the underlying storage (column-
oriented, indexed, sorted, partitioned). Additionally, ACID guar-
antees, integrity constraints, and transactions help to ensure 
certain properties of the data.

In addition to a standard language to express data-processing 
logic, Sun Microsystems released JDBC as a standard API, 
which further abstracted the underlying SQL implementation 
from the user (see Figure 1). An entire ecosystem of technologies 
and applications was created around the relational database. 

At the very core, it was ease of use, the accessibility and the 
simplicity of the database, that led to its broad adoption. You no 
longer needed to be an engineer to work with data.

The Birth of the Big Data Stack
In late 1990s and early 2000s, the relational database struggled 
to keep up with the explosion of data. Technologists who worked 
with large amounts of data re-evaluated data platform archi-
tectures. The reasons for this included scalability limitations, 
the increasingly heterogeneous nature of data, and the types of 
workloads people wanted to run. The database’s architecture 
constrained these capabilities. SQL, as a language, was not 
expressive enough, and the database wasn’t flexible and scalable 
enough to support different workloads.

This reconsideration of data storage and processing was the 
genesis of the big data stack and, later on, the concept of the 
data-lake. The Apache Hadoop project was at the core of this. 
Hadoop started in 2006 as a spin-off from Apache Nutch, a web 
crawler that stemmed from Apache Lucene, the famous open 
source search engine. The inspiration for this project came  
from two Google papers describing the Google File System [2] 
and a distributed processing framework called MapReduce [3]. 
These two components combined the extreme flexibility and 
scalability necessary to develop distributed batch applications  
in a simple way.

The Hadoop Distributed File System (HDFS)
HDFS provides a file system abstraction over a cluster of 
mainstream servers. It also provides metadata on data place-
ment, which is exploited by MapReduce to process data where it 
is stored. Back when network I/O was much more constrained 
than disk I/O, this innovation was significant. HDFS files are 
free form; there are no constraints on the format or any kind 
of schema. We started to call this concept schema on read (as 
opposed to schema on write in the world of databases).

MapReduce
MapReduce provides a simple framework to build distributed 
batch applications on top of HDFS. Usually a job is defined by 
scanning a data set in parallel, applying a Map function to the 
content, and emitting key-value pairs. All values with the same 
key are sent to the same machine, independent of where they 
were produced, in a step called “the shuffle.” The key and its cor-
responding list of values are then passed to the Reduce function. 
This simple framework allows us to build powerful distributed 
algorithms. One example is the famous PageRank algorithm, 
originally used by Google to rank websites based on how many 
incoming links they get. 

MapReduce is a very flexible paradigm. MapReduce simply edits 
key-value pairs, and it is also composable, allowing its users to 

Figure 1: The evolution of the technology stack from the mainframe to the 
database
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realize complex algorithms by orchestrating multiple MapReduce 
steps. For example, PageRank converges to a result after a 
number of iterations. The inherent limitations of MapReduce, 
however, come from the same attributes that make it strong. The 
flexibility in file formats and the code used to process them offer 
no support for optimizing data access. In that respect, the 
MapReduce paradigm returns us to the world of mainframes at a 
much larger scale. The MapReduce programmer must in fact know 
quite a bit about storage details to write a successful program.

“MapReduce, a Major Step Backwards”
The database community eventually became annoyed by this 
new wave of open source people re-inventing the wheel. Turing 
Award winner Michael Stonebraker, of PostgreSQL fame and 
recent co-founder of the distributed analytical database Vertica, 
famously declared in 2008 [4] that MapReduce was “a major step 
backwards.” Compared to the nice abstractions of the relational 
model, this new model was too low level and complex.

Evolution of the Big Data Stack
Ten years later, the entire Hadoop ecosystem is much larger than 
the two components it originally included. People argued about 
where the boundary of that ecosystem really stopped. In the 
cloud, you can even use a significant portion of the ecosystem 
without Hadoop itself. New functional categories beyond storage 
and compute have emerged: execution engines, streaming ingest, 
resource management, and, of course, a long list of SQL-on-
Hadoop distributed query engines: Impala, Hive, SparkSQL, 
Drill, Phoenix, Presto, Tajo, Kylin, etc. The ecosystem can be 
broken down into the following categories:

Storage Systems
HDFS, S3, and Google Cloud Storage are the distributed file 
system/object stores where data of all kinds can be stored. 
Apache Parquet has become a standard file format for immu-
table columnar storage at rest.

Apache Kudu and Apache HBase provide mutable storage layers 
with similar abstractions, enabling projection and predicate 
pushdown to minimize I/O by retrieving only the data needed 
from disk. These projects require explicit schema, and getting 
that right is critical to efficient access.

Streaming Systems
Kafka is the most popular stream persistence system in the 
data platform world today. It’s open source and is widely used 
for streaming data at scale. Kinesis, an AWS service, is the 
most popular hosted and managed streaming framework but 
is not available outside the AWS environment. GCP provides a 
similar service called PubSub. Another noteworthy platform is 
Pulsar. Pulsar has interesting features for multi-tenancy and 
performance of concurrent consumers on the same stream. 

The project is more of a challenger that has yet to reach wide 
adoption.

Query Engines
Since MapReduce, many other query engines have developed. 
Originally, they were often layered on top of MapReduce, which 
introduced a lot of latency; MapReduce is designed for web-scale 
indexing and is optimized for fault tolerance, not quick response. 
Its goal is to optimize for running very large, long-running jobs, 
during which a physical failure of at least one component is likely.

For example, Hive (an SQL implementation) and Pig (a func-
tional DSL with similar capabilities) both originally compiled to 
a sequence of MapReduce jobs.

As more people wanted interactive capability for data analytics, 
Hadoop-compatible data-processing engines evolved and 
MapReduce became less relevant. Spark has become a popular 
alternative, with its richer set of primitives that can be combined 
to form Data Availability Groups (DAGs) of operators. It includes 
an in-memory cache feature that allows fast iterations on a data 
set during a session of work. Tez is a lower level DAG of operator 
APIs aimed at optimizing similar types of work. SparkSQL is a 
SQL implementation on top of Spark. Hive and Pig both can now 
run on either MapReduce, Spark, or Tez. 

There are several SQL engines that provide their own runtime, 
all with the goal of minimizing query latency. Apache Drill and 
Apache Presto generate optimized Java bytecode for their opera-
tors, while Apache Impala uses LLVM to generate native code. 
Apache Phoenix supports a SQL interface to Apache HBase and 
takes advantage of HBase’s capabilities to reduce I/O by running 
code in the database.

Tools such as Python, with the help of libraries like NumPy and 
pandas and R, are also very popular for data processing and can 
cater to a large variety of use cases that don’t need the scale that 
MapReduce or Spark supports.

In addition to these, we’re seeing a variety of machine-learning 
frameworks being created, such as Tensorflow, DL4J, Spark 
MLLib, and H2O. Each of these is specialized for certain work-
loads, so we are going to see more of these emerge over the next 
few years.

Query Optimizer
There is a query parser and optimizer framework in the Calcite 
project, one of the lesser known but most important projects in 
the ecosystem. Calcite powers the query execution in projects 
such as Hive, Drill, Phoenix, and Kylin. Calcite is also used in 
several streaming SQL engines such as Apex, Flink, SamzaSQL, 
and StormSQL. It can be customized in multiple ways. Notably, 
one would provide an execution engine, schema, and connectors 
implementations as well as optimization rules either relevant to 
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the execution engine, the storage layer, or both. Spark, Impala, 
and Presto have their own query optimizers and don’t use an 
external engine.

Serialization
Apache Arrow is a standard in-memory columnar representa-
tion that combines efficient in-memory query evaluation, allow-
ing for zero-overhead serialization, with standard simplifying 
integration, removing unnecessary and costly conversion layers. 
It also allows fast in-memory processing by enabling vectorized 
execution.

Security
Access control policies can be put in policy stores like Apache 
Sentry and Apache Ranger. In addition, there are proprietary tools 
such as BlueTalon that enable access control on SQL engines.

Cataloging and Governance
There are a few offerings in this realm as well, but none that 
truly solve the problems of today. The Hive Metastore is the 
dominant schema registry. Apache Atlas is an open source 
framework that’s focused on governance. Proprietary tools 
such as AWS Glue, Cloudera Navigator, Alation, Waterline, and 
Collibra are solving different aspects of the problem.

Towards a Modern Data Platform—The 
Deconstructed Database
In parallel to the evolution of the data-lake concept and the big-
data stack, the world of cloud computing continues to redefine 
technology architectures. Cloud computing normalizes variants 
of infrastructure, platform, and applications as a service. We are 
now seeing the emergence of Data-as-a-Service (DaaS). All these 
trends constitute a significant paradigm shift from the world of 
datacenters, in which enterprises had to either build their own 
datacenters or buy capacity from a provider. The kind of data plat-
form that people want to build today, especially in the cloud, looks 
very different from what we have seen so far. At the same time, 
the modern data platform borrows many of the core tenets we val-
ued in previous generations. The core tenets of the cloud include:

1.	 Allowing choice between multiple analytics frameworks for 
data consumers so they can pick the best tool for the workload.

2.	 Flexibility in the underlying data source systems but a consis-
tent means to enable and govern new workloads and users.

3.	 A self-service experience for the end user: no waiting on IT 
and engineering teams to catch up and deliver on all the asks 
from all the constituents they have to serve.

Agility and self-service require components to be loosely cou-
pled, easily available as a service or open source software, and 
usable in different contexts. Systems that are loosely coupled 
need to have common, standard abstractions in order to work 

together. Many of these are missing today, which makes build-
ing a true modern data platform with the core tenets articulated 
above challenging.

Given where the ecosystem is headed, new developments are 
enabling the capabilities that people want. Key areas that are 
experiencing significant innovation include:

1.	 Improved metadata repository and better table abstrac-
tions. There are many promising projects maturing in the 
open source ecosystem. For example, the Iceberg project 
from Netflix defines table abstractions to provide snapshot 
isolation and serialization semantics (at a high level, not row 
by row) to update data in a distributed file system. Iceberg 
abstracts away formats and file layouts while enabling 
predicate and projection push downs. Marquez is also a proj-
ect that defines a metadata repository to take advantage of 
this work.

2.	 Access control and governance across different engines 
and storage systems. Current methodologies are fragmented 
and not fully featured. In the wake of GDPR and other privacy 
acts, security and privacy are important aspects of the data 
platform. Labeling private data appropriately to track its use 
across the entire platform, and enabling only approved use 
cases, has become a key requirement. The current ecosystem 
does not deliver on this, and there are new developments that 
will take place to fill this gap.

3.	 Unifying push-down logic. A great help toward more con-
sistent performance of query engines on top of Parquet and 
other columnar storage would be unifying push-down logic. 
Current implementations are very fragmented and duplicate 
effort. The same concepts apply to streaming.

4.	 Arrow project adoption to enable better interoperability 
between components. This would enable simpler and more 
general interoperability between systems but, more impor-
tantly, would do so without sacrificing performance as lowest 
common denominator type integrations often do. 

5.	 A common access layer. A unified access layer that allows 
push-downs (projection, predicate, aggregation) and retrieves 
the data in a standard format efficiently will advance modern 
data architectures. We need this capability whether or not 
data storage is mutable (HBase, Cassandra, Kudu), batch-
oriented (HDFS, S3), or streaming-oriented (Kafka, Kinesis). 
This unified access layer will improve interoperability and 
performance, reduce duplication, and support more consis-
tent behavior across engines. A lot of other data management 
problems can be solved at this layer. This is also in line with 
Codd’s core tenet of databases: users of large data banks 
should not have to deal with the internal semantics of data 
storage.
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Conclusion
Bringing it all together, a modern data platform will look similar 
to the stack shown in Figure 2. It will have a subset of these com-
ponents integrated as independent, specialized services. The 
figure shows a few examples of the technologies at various levels 
of the stack and is not an exhaustive list.

A typical deployment may not always consist of all the compo-
nents shown. Platform owners will be able to pick and choose 
the most appropriate ones and create their own stack, giving end 
users the flexibility and scale they need to run new workloads  
in the enterprise. This modular approach is a powerful para-
digm that will further enable new capabilities for enterprises. 
This will drive more innovation and disruption in the industry, 
making businesses data-driven by shortening time to market of 
applications that take advantage of the large volumes of data that 
are defining the modern enterprise.
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