
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 29

SECURITY

Interview with Sergey Bratus
R I K F A R R O W

I first met Sergey Bratus during the USENIX Security Symposium in 2011.
Sergey caught up to me in a stairwell at the Sir Francis Drake Hotel in
San Francisco and started to make a pitch about something I had never

heard of before. LangSec, short for Language Security, is a different way of
thinking about both how to program more securely and why software gets
exploited.

I found myself immediately intrigued, and Sergey has co-authored several articles and papers
related to LangSec over the years. He also co-founded a LangSec workshop with Meredith
Patterson, co-located with IEEE Security and Privacy (“Oakland”) [1]. When I was study-
ing papers at USENIX Security ’20, I noticed several that appeared to have strong tie-ins to
LangSec and decided to invite Sergey for an interview.

Rik Farrow: Software gets hacked when presented with input that manipulates the software
in unexpected ways. I recall from early LangSec articles that any input parser that is more
complex than a pushdown automaton will be vulnerable to this type of hacking. Do I have this
right, and why are more complex parsers vulnerable?

Sergey Bratus: The programmer who sits down to write a parser faces a task quite unlike any
other engineering task. All other kinds of engineers design for some well-defined operating
environment conditions: this much wind speed for a bridge, this much current for an elec-
tric circuit, this expected temperature interval for a chip, etc. Within these conditions, the
design must behave predictably: safety comes from predictability. By contrast, input-taking
software, i.e., its parser, is supposed to withstand any inputs at all, an operating environment
that cannot be easily searched or simulated. Yet, as with any other engineering, safety only
comes from predictability.

Thus safety of a parser critically depends on the ability of the programmer to correctly pre-
dict the parser’s behavior on all possible inputs. This is really hard, because reasoning about
program behaviors in general is hard (or even algorithmically impossible) and is only feasible
when the programmer walks a fairly narrow path, by correctly implementing automata that
we can reason about and assuming no more about the inputs than these automata (if correctly
implemented) can check.

Pushdown automata and their corresponding context-free languages are one particular sweet
spot of predictability for which we have the mathematical and computing means of auto-
mated reasoning. This sweet spot is really something of a mathematical miracle, given how
hard the general problem is.

In a word, every parser implemented on a general-purpose ISA wants to be a virtual machine
on its inputs that matches the computing power of that ISA. Restraining it from being that
machine for the attacker is what LangSec is about; it is surprising and fascinating that it is
possible and practical to do so.

Sergey Bratus is a Research
Associate Professor of Com-
puter Science at Dartmouth
College. He helped co-found the
LangSec movement and is in-

terested in understanding and mitigating unin-
tended computation. He sees state-of-the-art
hacking as a distinct research and engineering
discipline that, although not yet recognized as
such, harbors deep insights into the nature of
computing. sergey@cs.dartmouth.edu

Rik is the editor of ;login:.
rik@usenix.org

Disclaimer: The views presented in this interview
are the author’s personal views and do not neces-
sarily represent the views of the U.S. Federal
Government or its components, which partially
funded some of the research presented at the
LangSec workshop.

30    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
Interview with Sergey Bratus

Various caveats apply, which LangSec aims to address in ways
practical for a programmer who is not looking to be a mathemati-
cian or formal language theorist. However, the thing that makes
it at all possible is the language-based approach, which gives
us just the predictability, that is, safety, properties that we can
check for and that aren’t hard to express and understand.

Surprisingly, as the recent workshop’s morning keynote [1] David
Walker argued, this is also true for predicting behaviors of not
just parsers but also networks. So the surprising effectiveness
of using language-based models of computing system behaviors
extends beyond what we normally think of as parsers.

RF: Programmers often build parsers according to their reading
of a protocol specification. An infamous example of this going
wrong was Heartbleed, where the TLS protocol included two
different length values, and a popular implementation checked
one while using the other. At USENIX Security, the “Composi-
tion Kills” paper [2] examines how the intersection of three email
sender authentication protocols—SPF, DKIM, and DMARC—
actually fail to authenticate the sender. Are protocols part of the
problem that LangSec addresses?

SB: Yes. From its inception [17], LangSec has been calling atten-
tion not only to unintended behaviors of inputs on parsers, but also
to security consequences of parser differentials, that is, divergent
interpretations of the same messages by different parsers.

To have any predictability in a distributed system—which is
really just a fancy name for a system with more than one com-
ponent—it is natural to implicitly assume that all of its parsers
interpret messages passed between the components in the same
way. Whenever this assumption, made explicitly or implicitly, is
violated, vulnerability likely ensues.

Vulnerabilities with the root cause in parser differentials have
been in the news lately. The HTTP Desync vulnerabilities [3]
such as the F5 Big-IP vulnerability [4], the “Psychic Paper”
vulnerability in MacOS [5], and a vulnerability in GitLab [6] all
involve parser differentials. Major past examples include several
Android Master Key vulnerabilities [7], a timeless classic.

LangSec’s perspective on the insecurity potential of parser
differentials has been getting some notice. Another notable,
recently published academic paper [8] discusses parsing of
standard protocols and refers to LangSec. Dave Aitel drew atten-
tion to the LangSec nature of this growing vulnerability class on
his DailyDave mailing list (https://seclists.org/dailydave/2020​
/q3/9). To quote Dave:

Ten years ago a lot of the security community had a
discussion about “LangSec”…which turns out to have
been entirely correct in retrospect….

Most people look at HTTP Desync as simply using
Content-Length confusion—figuring out ways to make
one request look like it’s not the same length, and using
that for SSRF or XSS or various other attacks. But ANY
DIFFERENCE IN THE PARSERS leads to critical level
attacks.

The surface of LangSec analysis in distributed systems has only
been scratched, so there are likely many more major vulnerabili-
ties waiting to be discovered.

RF: LangSec seems to be heading in the direction of language-
based designs, that is, requiring language to provide security
assurances. Java was supposed to do this, but there are many
Java exploits. Some exist because there are extensions to Java
written in unsafe languages, like C. But I believe that people
have exploited Java via the bytecode itself.

SB: LangSec targets the root causes of insecurity on a differ-
ent level than efforts aimed at general-purpose programming
languages.

Java and other memory-safe languages target the ability of the
programmer to unwittingly (or deliberately) create memory
corruption or (non-corrupting) type confusion. For Java and
JavaScript, this ability was largely taken away from the devel-
oper, which is a net positive, but not a panacea.

The problem of unexpected and unchecked input remains. Now
these inputs are stored in memory-safe ways, but they are still
not what the processing code expects, and they are still acted on.
There is a lot of room in a general-purpose language to go wrong
when acting on data that’s not what the programmer expects. For
programs such as web apps that produce outputs and issue com-
mands, this problem will manifest as either the outputs or the
commands not being as expected.

LangSec, by contrast, aims to offer general solutions that focus
first and foremost on data languages, also called data formats.

Without a clear understanding of input and output data lan-
guages involved in a task, the programming language is only
exchanging one bug class for another. For example, Java and
JavaScript made memory corruption harder, although, as you
note, not impossible. Still, regular programmers cannot acciden-
tally corrupt memory with their code alone: it has to come from
flaws in the language runtime implementation or, more typically,
from their interactions. However, complexities of data languages
and their transformations immediately manifested themselves
in XSS, command execution bugs, parser differentials, etc., mak-
ing notionally memory-safe web apps notoriously vulnerable to
an array of attacks much less sophisticated than memory corrup-
tion exploits.

https://seclists.org/dailydave/2020/q3/9
https://seclists.org/dailydave/2020/q3/9

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 31

SECURITY
Interview with Sergey Bratus

Note that outputs and the code that creates them (“unparsers”)
are as important as the inputs and their handling code: see, for
example, [9] and the first workshop paper [1].

My understanding is that Google and Facebook had to integrate
intricate type systems with their web development tool chains to
just keep a lid on this problem, and their solutions are specialized
to their respective processes.

LangSec absolutely takes to heart the dictum of functional
programming: “Make illegal state unrepresentable.” This dictum
calls on a language designer or an API architect to construct the
language or the API so as to make it impossible for the program-
mer to create illegal state—at least not without the compiler
complaining very loudly. However, properly implementing this
dictum wherever inputs or outputs are involved requires under-
standing what are the legal and illegal states of input, and the
same for output. It requires LangSec.

RF: When I interviewed Natalie Silvanovich [10], she seemed
to conf late the use of dynamic languages (those that handle
memory allocation and freeing dynamically, like Rust and Go)
as part of LangSec. What do you think?

SB: I’d like to start by saying that LangSec greatly benefited from
interest and feedback from extraordinary vulnerability research-
ers, who were, in fact, among the first to grasp its practical value.
For example, the closing keynote of the first LangSec workshop
was by Felix “FX” Lindner, an early supporter of LangSec. This
makes perfect sense, because leading vulnerability researchers
see general patterns of software weaknesses, of input-driven
exploitation, and of how its non-systematic mitigations fail.
LangSec offered a unified and actionable way of explaining these
patterns, and top vulnerability researchers were among the first
to appreciate it.

In your interview, Natalie’s take on the nature and scope of
LangSec is spot-on:

[LangSec] views the root cause of security issues to be
that most protocols and other input formats are poorly
defined and often have many undefined states, and the
programming languages that process them also support
a huge amount of undefined behavior. [LangSec] thinks
all software should abstract out all input processing
code, and design and implement it in a way that is
verifiable, and has no undefined states or behavior.

As I mentioned earlier, and as Natalie notes, the common idea of
managed-memory languages is to make illegal memory states
impossible for the programmer to unwittingly create while
writing regular code. Notably, LangSec aims further than basic
memory corruption. Indeed, there are numerous examples of
memory-safe software with deep flaws due to ad hoc handling
of its input and output languages.

However, Natalie raised another important point in that inter-
view: there are and will be bugs in programming languages and
environments intended to be memory-safe or otherwise offer
safety assurances. In this year’s LangSec workshop’s amazing
invited talk, Natalie connected this insight with specific features
of JavaScript that have been causing huge headaches world-
wide, given how JavaScript has been “eating the Internet”—and
pinpointed the ways out. See her slides at [1] for the discussion
of these troublesome features. Natalie has a wonderful intuition
here, which is entirely LangSec but takes us beyond file and mes-
sage formats.

I would describe it as follows: Natalie sees data structures allo-
cated in memory as data languages, with the runtime memory
management code servicing these structures as parsers. Pro-
gramming language feature choices made by JavaScript or Go
about what kinds of objects and how their relationships are
representable in the language force the implementations of these
languages to handle ever more complex data languages of bytes
in memory: for example, on the heap. Consequently, unnecessary
complexity of these features causes the same devastating effects
as unnecessary format complexity does on the software that
processes the formats.

Any piece of the language’s native runtime, including the memory
manager and garbage collector, parses memory bytes all the time
and often must decide if a chunk it parses is valid or not before it
acts. Moreover, advanced memory management means that mul-
tiple actors read and write memory concurrently, and their pars-
ing actions must all be synchronized, or else corruption occurs.
There is a rich literature of hacker research here, including many
nifty attacks on browsers and OS kernels. This area is waiting to
be explored from the LangSec perspective, and Natalie’s invited
talk pointed out a very rich example.

RF: You’ve mentioned that language-based approaches could
turn out to be amazingly productive in understanding routing.
Can you explain how LangSec intersects with network routing?

SB: Routing and other network-processing tasks must process
streams of packets or, at a higher level, events. These packets or
events change the internal state of the receiving program. Essen-
tially, just like a parser, a network stack or function performs
input-driven computation. Many questions about routing come
down to modeling and understanding this computation, and
assuring that it is safe—that is, behaves predictably for all inputs
it might receive.

With modern verification tools we can try to prove that a distrib-
uted system has some desired behavioral properties. But which
properties and models are tractable to explore?

32    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
Interview with Sergey Bratus

It turns out that thinking about sequences of networking events
as a data language that drives language-processing tasks is sur-
prisingly productive for reasoning about and verifying network
router behaviors. Not only that, but understanding the routers’
many configuration options as dialects of a common language
was also an efficient way of organizing and searching the space
of diverse configurations. The latter is arguably less surprising,
because human designers of these spaces, as all humans, are
creatures of language and tend to implicitly impose language-
based ordering on complex spaces.

This was the subject of this year’s workshop’s morning keynote
by Princeton’s David Walker [1]. Of course, as the original Lang-
Sec paper [11] points out, treating observable system and network
events as streams processed by input-driven automata predates
LangSec. For example, Fred Schneider used this approach to
characterize classes of enforceable security policies [12] and cited
Lamport’s prior work. However, it’s still fascinating that formal
language-based approaches are so productive far beyond parsing.

RF: Forms of distributed computing, such as cloud functions,
are growing in popularity today. Cloud functions use RPCs and
queues to communicate, and that seems to me to be an opportu-
nity to either make things better by observing LangSec or much
worse through the use of ambiguous protocols. Would you com-
ment on that?

SB: This is very much the case: there is both the opportunity and
the danger.

The danger is already manifesting itself in the surge of high-
impact parser differential bugs. Recall Dave Aitel’s quote above.
Note that we don’t yet have effective ways of fuzzing for parser
differentials. So we are in a much worse position with respect
to parser differential bugs than we are with regard to memory
corruption bugs, where coverage-driven fuzzing in combination
with various sanitizers have gotten really good.

There is also the opportunity. Exposing interfaces without the
false comfort of keeping them “private” and only receiving well-
formed data or only data from one particular writer applies evo-
lutionary pressure towards properly defining these interfaces.
LangSec is there as a natural match for this problem.

The story of the Amazon API Mandate as told by Steve Yegge [13]
is the story of such evolutionary pressure creating a qualitatively
better platform. From the LangSec perspective, this story is not
surprising—it is an iconic story of the correct intuition.

RPC messages are explicitly data languages, and open cloud envi-
ronments will exert pressure to validate RPC messages before
acting on them. However, it is important to get the design of these
data languages right, so that validating these inputs doesn’t grow
into intractable problems we encounter with legacy formats.

As cloud systems grow rapidly, so could their technical debt.
For example, for many application protocols, their expressions
in Protocol Buffers happen to be the closest they ever got to a
mechanized specification. However, these specifications them-
selves may be ambiguous and vulnerable to parser differentials.
Critiques such as [14] strongly urge caution.

These problems are going to be very important as we move to
serverless styles of programming (AWS Lambda and Fargate,
Azure Functions, etc.). They will take a while to explore and
understand, just like understanding the significance of parser
differentials took almost a decade, but to avoid accumulating
insurmountable amounts of technical debt, we should start now.

RF: The Rust programming language claims to offer unprec-
edented security assurances in systems programming. Rust’s
secret weapon appears to be lightweight memory safety through
compiler-imposed isolation, instead of having to rely on much
more expensive safety solutions such as separating memory
contexts with x86 hardware privilege rings or automatic memory
management. Will LangSec remain relevant if Rust becomes the
choice of systems programmers?

SB: The point of all programming language safety features, be it
Java-like automatic memory management or Rust’s type system
that enforces a discipline on pointers, is to avoid unintended
state and, as a result of that state, unintended execution from
that state onward. The difference between the languages and
approaches is what kind of unintended state is being prevented
and how this is done.

Historically, it was very easy for a programmer to unwittingly
create unintended state. Classic ISAs use contents of memory
or registers as addresses to access memory “randomly,” i.e., in
arbitrary order and without checking what, if anything, was pre
viously stored in that memory and when or how it got there.
C/C++ exposed this indirect memory addressing through point-
ers, which could point practically anywhere and allowed nearly
arbitrary arithmetic to be applied to them. Reasoning about
code—for example, what the code would do on all inputs hitting a
module’s boundary—in the presence of arbitrary pointers is very
hard (see Hind’s 2001 survey [15]). The power of arbitrary indi-
rect memory references is so great that it’s possible to (re)compile
any program into just x86 MOV instructions and a single JMP or
an equivalent way of looping backwards [16], which is, of course,
really bad news for program analysis.

Java approached this problem by abstracting away almost all
indirect memory references, to heavily restrict what memory
addresses the CPU might access on behalf of the program
(notionally mediated by the JVM, but also observed by JIT-ed
code). To do so, it took memory management away from the
programmer, which made it less desirable for OS programming,

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 33

SECURITY
Interview with Sergey Bratus

where managing memory is a significant part of the task, and a
single automated way of doing it just does not fit all needs. Rust,
via its type system, controls pointers in a different way, but for
the same purpose: restrict where and when indirect memory
references can point so that they become tractable, unlike C’s
pointers or assembly’s indirect MOVs [16].

In each case, the language makes memory-corrupting references
hard or impossible for the programmer to create in ordinary
code. However, as we’ve seen with web programming, memory
safety alone does not preclude abuse of complex interfaces, and
can actually make exploiting these interfaces easier, because the
attacker doesn’t need to worry about crashing the system with a
poorly crafted input. We often forget that memory safety without
a clear understanding of what inputs and outputs are legal works
both ways and can easily favor the attacker.

There is definitely a LangSec perspective on this: IPCs are data lan-
guages, and whatever Rust or any other compiler can do is all done
for the purpose of consuming these languages safely and not letting
them drive unintended computation in a module or microservice.

So the question is, once again: regardless of whatever kinds of
checks can be done, what constitutes expected and valid IPC
messages that, once validated, will cause only predictable system
behaviors and no other “weird” behaviors? Can these expectations
be precisely and unambiguously formulated and checked with
tractable code, which could itself be checked for correctness?

Without a clear LangSec model of the inputs, validating IPC
messages becomes an ill-defined game of guessing which kinds
of memory corruption or command injection to mitigate, for
example, by making the hardware explicitly protect some address
ranges from access by all code except specially designated code
parts (e.g., via x86 ring contexts). But what happens in other
ranges and contexts? How can one guarantee that corruption
spreading there would not trick a legitimately placed privileged
(“ringed”) deputy into corrupting the protected region by pass-
ing it some unexpected inputs? This is a really hard question
to answer, and it needs higher-level models of intended input-
driven behaviors.

So compilers and build environments in general should abso-
lutely be doing more work to make sure only intended state
occurs, and it’s a great thing that they do.

LangSec, for its part, helps formulate what is and can be the
intended, tractably checkable state when dealing with inputs,
and helps system, protocol, and application designers avoid
situations where ensuring predictability of input-handling code
becomes unsolvable. So LangSec has a lot of work to do and many
programming fields to help secure.

34    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
Interview with Sergey Bratus

References
[1] The Sixth Workshop on Language-Theoretic Security
(LangSec), at IEEE Security & Privacy (May 2020): http://​
spw20.langsec.org/workshop-program.html.

[2] J. Chen, V. Paxson, J. Jiang, “Composition Kills: A Case
Study of Email Send Authentication,” 29th USENIX Security
Symposium (Security ’20):https://www.usenix.org/conference​
/usenixsecurity20/presentation/chen-jianjun.

[3] HTTP Desync attacks: https://portswigger.net/research​
/http-desync-attacks-request-smuggling-reborn.

[4] F5 vulnerability: https://research.nccgroup.com/2020/07​
/12/understanding-the-root-cause-of-f5-networks-k52145254​
-tmui-rce-vulnerability-cve-2020-5902/.

[5] “Psychic Paper” vulnerability: https://siguza.github.io​
/psychicpaper/.

[6] GitLab vulnerability: https://about.gitlab.com/blog/2020/03​
/30/how-to-exploit-parser-differentials/.

[7] Android Master Key vulnerabilities: http://www.saurik.com​
/id/17, http://www.saurik.com/id/18, and http://www.saurik​
.com/id/19.

[8] S. McQuistin, V. Band, D. Jacob, and C. Perkins, “Parsing
Protocol Standards to Parse Standard Protocols,” in Proceed-
ings of the Applied Networking Research Workshop (ANRW ’20),
pp. 25–31.

[9] L. Hermerschmidt, S. Kugelmann, and B. Rumpe, “Towards
More Security in Data Exchange: Defining Unparsers with
Context-Sensitive Encoders for Context-Free Grammars,” in
2015 IEEE CS Security and Privacy Workshops: pp. 134–141:
http://spw15.langsec.org/papers.html#unparse.

[10] N. Silvanovich and R. Farrow, “Interview with Natalie
Silvanovich,” ;login:, vol. 43. no. 2 (Summer 2020): https://www​
.usenix.org/publications/login/summer2020/farrow-0.

[11] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto,
“Security Applications of Formal Language Theory,” IEEE
Systems Journal, vol. 7, no. 3 (September 2013), pp. 489–500.

[12] F. B. Schneider, “Enforceable Security Policies,” ACM
Transactions on Information and System Security, vol. 3, no. 1
(February 2000), pp. 30–50: https://www.cs.cornell.edu/fbs​
/publications/EnfSecPols.pdf.

[13] S. Yegge, “Stevey’s Google Platforms Rant,” October 2011:
https://gist.github.com/chitchcock/1281611.

[14] S. Maguire, “Protobuffers Are Wrong,” Reasonably Poly-
morphic blog, October 10, 2018: https://reasonablypolymorphic​
.com/blog/protos-are-wrong/index.html.

[15] M. Hind, “Pointer Analysis: Haven’t We Solved This Prob-
lem Yet?” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE ’01), pp. 54–61: https://courses.cs.washington​
.edu/courses/cse501/15sp/papers/hind.pdf.

[16] C. Domas, MOVfuscator: https://github.com/xoreaxeaxeax​
/movfuscator.

[17] D. Kaminsky, M.L. Patterson, and L. Sassaman, “PKI Layer
Cake: New Collision Attacks Against the Global X.509 Onfra-
structure,” in Proceedings of the 14th International Conference
on Financial Cryptography and Data Security (FC 2010), pp.
289–303: https://www.esat.kuleuven.be/cosic/publications​
/article-1432.pdf.

http://spw20.langsec.org/workshop-program.html
http://spw20.langsec.org/workshop-program.html
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://siguza.github.io/psychicpaper/
https://siguza.github.io/psychicpaper/
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
http://www.saurik.com/id/17
http://www.saurik.com/id/17
http://www.saurik.com/id/18
http://www.saurik.com/id/19
http://www.saurik.com/id/19
http://spw15.langsec.org/papers.html#unparse
https://www.usenix.org/publications/login/summer2020/farrow-0
https://www.usenix.org/publications/login/summer2020/farrow-0
https://www.cs.cornell.edu/fbs/publications/EnfSecPols.pdf
https://www.cs.cornell.edu/fbs/publications/EnfSecPols.pdf
https://gist.github.com/chitchcock/1281611
https://reasonablypolymorphic.com/blog/protos-are-wrong/index.html
https://reasonablypolymorphic.com/blog/protos-are-wrong/index.html
https://courses.cs.washington.edu/courses/cse501/15sp/papers/hind.pdf
https://courses.cs.washington.edu/courses/cse501/15sp/papers/hind.pdf
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf

