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Interview with Sergey Bratus
R I K  F A R R O W

I first met Sergey Bratus during the USENIX Security Symposium in 2011. 
Sergey caught up to me in a stairwell at the Sir Francis Drake Hotel in 
San Francisco and started to make a pitch about something I had never 

heard of before. LangSec, short for Language Security, is a different way of 
thinking about both how to program more securely and why software gets 
exploited.

I found myself immediately intrigued, and Sergey has co-authored several articles and papers 
related to LangSec over the years. He also co-founded a LangSec workshop with Meredith 
Patterson, co-located with IEEE Security and Privacy (“Oakland”) [1]. When I was study-
ing papers at USENIX Security ’20, I noticed several that appeared to have strong tie-ins to 
LangSec and decided to invite Sergey for an interview.

Rik Farrow: Software gets hacked when presented with input that manipulates the software 
in unexpected ways. I recall from early LangSec articles that any input parser that is more 
complex than a pushdown automaton will be vulnerable to this type of hacking. Do I have this 
right, and why are more complex parsers vulnerable?

Sergey Bratus: The programmer who sits down to write a parser faces a task quite unlike any 
other engineering task. All other kinds of engineers design for some well-defined operating 
environment conditions: this much wind speed for a bridge, this much current for an elec-
tric circuit, this expected temperature interval for a chip, etc. Within these conditions, the 
design must behave predictably: safety comes from predictability. By contrast, input-taking 
software, i.e., its parser, is supposed to withstand any inputs at all, an operating environment 
that cannot be easily searched or simulated. Yet, as with any other engineering, safety only 
comes from predictability.

Thus safety of a parser critically depends on the ability of the programmer to correctly pre-
dict the parser’s behavior on all possible inputs. This is really hard, because reasoning about 
program behaviors in general is hard (or even algorithmically impossible) and is only feasible 
when the programmer walks a fairly narrow path, by correctly implementing automata that 
we can reason about and assuming no more about the inputs than these automata (if correctly 
implemented) can check.

Pushdown automata and their corresponding context-free languages are one particular sweet 
spot of predictability for which we have the mathematical and computing means of auto-
mated reasoning. This sweet spot is really something of a mathematical miracle, given how 
hard the general problem is.

In a word, every parser implemented on a general-purpose ISA wants to be a virtual machine 
on its inputs that matches the computing power of that ISA. Restraining it from being that 
machine for the attacker is what LangSec is about; it is surprising and fascinating that it is 
possible and practical to do so.
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Various caveats apply, which LangSec aims to address in ways 
practical for a programmer who is not looking to be a mathemati-
cian or formal language theorist. However, the thing that makes 
it at all possible is the language-based approach, which gives 
us just the predictability, that is, safety, properties that we can 
check for and that aren’t hard to express and understand.

Surprisingly, as the recent workshop’s morning keynote [1] David 
Walker argued, this is also true for predicting behaviors of not 
just parsers but also networks. So the surprising effectiveness 
of using language-based models of computing system behaviors 
extends beyond what we normally think of as parsers.

RF: Programmers often build parsers according to their reading 
of a protocol specification. An infamous example of this going 
wrong was Heartbleed, where the TLS protocol included two 
different length values, and a popular implementation checked 
one while using the other. At USENIX Security, the “Composi-
tion Kills” paper [2] examines how the intersection of three email 
sender authentication protocols—SPF, DKIM, and DMARC—
actually fail to authenticate the sender. Are protocols part of the 
problem that LangSec addresses?

SB: Yes. From its inception [17], LangSec has been calling atten-
tion not only to unintended behaviors of inputs on parsers, but also 
to security consequences of parser differentials, that is, divergent 
interpretations of the same messages by different parsers.

To have any predictability in a distributed system—which is 
really just a fancy name for a system with more than one com-
ponent—it is natural to implicitly assume that all of its parsers 
interpret messages passed between the components in the same 
way. Whenever this assumption, made explicitly or implicitly, is 
violated, vulnerability likely ensues.

Vulnerabilities with the root cause in parser differentials have 
been in the news lately. The HTTP Desync vulnerabilities [3] 
such as the F5 Big-IP vulnerability [4], the “Psychic Paper” 
vulnerability in MacOS [5], and a vulnerability in GitLab [6] all 
involve parser differentials. Major past examples include several 
Android Master Key vulnerabilities [7], a timeless classic.

LangSec’s perspective on the insecurity potential of parser 
differentials has been getting some notice. Another notable, 
recently published academic paper [8] discusses parsing of 
standard protocols and refers to LangSec. Dave Aitel drew atten-
tion to the LangSec nature of this growing vulnerability class on 
his DailyDave mailing list (https://seclists.org/dailydave/2020​
/q3/9). To quote Dave:

Ten years ago a lot of the security community had a 
discussion about “LangSec”…which turns out to have 
been entirely correct in retrospect….

Most people look at HTTP Desync as simply using 
Content-Length confusion—figuring out ways to make 
one request look like it’s not the same length, and using 
that for SSRF or XSS or various other attacks. But ANY 
DIFFERENCE IN THE PARSERS leads to critical level 
attacks.

The surface of LangSec analysis in distributed systems has only 
been scratched, so there are likely many more major vulnerabili-
ties waiting to be discovered. 

RF: LangSec seems to be heading in the direction of language-
based designs, that is, requiring language to provide security 
assurances. Java was supposed to do this, but there are many 
Java exploits. Some exist because there are extensions to Java 
written in unsafe languages, like C. But I believe that people 
have exploited Java via the bytecode itself. 

SB: LangSec targets the root causes of insecurity on a differ-
ent level than efforts aimed at general-purpose programming 
languages.

Java and other memory-safe languages target the ability of the 
programmer to unwittingly (or deliberately) create memory 
corruption or (non-corrupting) type confusion. For Java and 
JavaScript, this ability was largely taken away from the devel-
oper, which is a net positive, but not a panacea.

The problem of unexpected and unchecked input remains. Now 
these inputs are stored in memory-safe ways, but they are still 
not what the processing code expects, and they are still acted on. 
There is a lot of room in a general-purpose language to go wrong 
when acting on data that’s not what the programmer expects. For 
programs such as web apps that produce outputs and issue com-
mands, this problem will manifest as either the outputs or the 
commands not being as expected. 

LangSec, by contrast, aims to offer general solutions that focus 
first and foremost on data languages, also called data formats.

Without a clear understanding of input and output data lan-
guages involved in a task, the programming language is only 
exchanging one bug class for another. For example, Java and 
JavaScript made memory corruption harder, although, as you 
note, not impossible. Still, regular programmers cannot acciden-
tally corrupt memory with their code alone: it has to come from 
flaws in the language runtime implementation or, more typically, 
from their interactions. However, complexities of data languages 
and their transformations immediately manifested themselves 
in XSS, command execution bugs, parser differentials, etc., mak-
ing notionally memory-safe web apps notoriously vulnerable to 
an array of attacks much less sophisticated than memory corrup-
tion exploits.

https://seclists.org/dailydave/2020/q3/9
https://seclists.org/dailydave/2020/q3/9
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Note that outputs and the code that creates them (“unparsers”) 
are as important as the inputs and their handling code: see, for 
example, [9] and the first workshop paper [1].

My understanding is that Google and Facebook had to integrate 
intricate type systems with their web development tool chains to 
just keep a lid on this problem, and their solutions are specialized 
to their respective processes.

LangSec absolutely takes to heart the dictum of functional 
programming: “Make illegal state unrepresentable.” This dictum 
calls on a language designer or an API architect to construct the 
language or the API so as to make it impossible for the program-
mer to create illegal state—at least not without the compiler 
complaining very loudly. However, properly implementing this 
dictum wherever inputs or outputs are involved requires under-
standing what are the legal and illegal states of input, and the 
same for output. It requires LangSec.

RF: When I interviewed Natalie Silvanovich [10], she seemed 
to conf late the use of dynamic languages (those that handle 
memory allocation and freeing dynamically, like Rust and Go) 
as part of LangSec. What do you think?

SB: I’d like to start by saying that LangSec greatly benefited from 
interest and feedback from extraordinary vulnerability research-
ers, who were, in fact, among the first to grasp its practical value. 
For example, the closing keynote of the first LangSec workshop 
was by Felix “FX” Lindner, an early supporter of LangSec. This 
makes perfect sense, because leading vulnerability researchers 
see general patterns of software weaknesses, of input-driven 
exploitation, and of how its non-systematic mitigations fail. 
LangSec offered a unified and actionable way of explaining these 
patterns, and top vulnerability researchers were among the first 
to appreciate it.

In your interview, Natalie’s take on the nature and scope of 
LangSec is spot-on:

[LangSec] views the root cause of security issues to be 
that most protocols and other input formats are poorly 
defined and often have many undefined states, and the 
programming languages that process them also support 
a huge amount of undefined behavior. [LangSec] thinks 
all software should abstract out all input processing 
code, and design and implement it in a way that is 
verifiable, and has no undefined states or behavior.

As I mentioned earlier, and as Natalie notes, the common idea of 
managed-memory languages is to make illegal memory states 
impossible for the programmer to unwittingly create while 
writing regular code. Notably, LangSec aims further than basic 
memory corruption. Indeed, there are numerous examples of 
memory-safe software with deep flaws due to ad hoc handling  
of its input and output languages.

However, Natalie raised another important point in that inter-
view: there are and will be bugs in programming languages and 
environments intended to be memory-safe or otherwise offer 
safety assurances. In this year’s LangSec workshop’s amazing 
invited talk, Natalie connected this insight with specific features 
of JavaScript that have been causing huge headaches world-
wide, given how JavaScript has been “eating the Internet”—and 
pinpointed the ways out. See her slides at [1] for the discussion 
of these troublesome features. Natalie has a wonderful intuition 
here, which is entirely LangSec but takes us beyond file and mes-
sage formats.

I would describe it as follows: Natalie sees data structures allo- 
cated in memory as data languages, with the runtime memory 
management code servicing these structures as parsers. Pro- 
gramming language feature choices made by JavaScript or Go 
about what kinds of objects and how their relationships are 
representable in the language force the implementations of these 
languages to handle ever more complex data languages of bytes 
in memory: for example, on the heap. Consequently, unnecessary 
complexity of these features causes the same devastating effects 
as unnecessary format complexity does on the software that 
processes the formats.

Any piece of the language’s native runtime, including the memory 
manager and garbage collector, parses memory bytes all the time 
and often must decide if a chunk it parses is valid or not before it 
acts. Moreover, advanced memory management means that mul-
tiple actors read and write memory concurrently, and their pars-
ing actions must all be synchronized, or else corruption occurs. 
There is a rich literature of hacker research here, including many 
nifty attacks on browsers and OS kernels. This area is waiting to 
be explored from the LangSec perspective, and Natalie’s invited 
talk pointed out a very rich example. 

RF: You’ve mentioned that language-based approaches could 
turn out to be amazingly productive in understanding routing. 
Can you explain how LangSec intersects with network routing?

SB: Routing and other network-processing tasks must process 
streams of packets or, at a higher level, events. These packets or 
events change the internal state of the receiving program. Essen-
tially, just like a parser, a network stack or function performs 
input-driven computation. Many questions about routing come 
down to modeling and understanding this computation, and 
assuring that it is safe—that is, behaves predictably for all inputs 
it might receive.

With modern verification tools we can try to prove that a distrib-
uted system has some desired behavioral properties. But which 
properties and models are tractable to explore?
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It turns out that thinking about sequences of networking events 
as a data language that drives language-processing tasks is sur-
prisingly productive for reasoning about and verifying network 
router behaviors. Not only that, but understanding the routers’ 
many configuration options as dialects of a common language 
was also an efficient way of organizing and searching the space 
of diverse configurations. The latter is arguably less surprising, 
because human designers of these spaces, as all humans, are 
creatures of language and tend to implicitly impose language-
based ordering on complex spaces.

This was the subject of this year’s workshop’s morning keynote 
by Princeton’s David Walker [1]. Of course, as the original Lang-
Sec paper [11] points out, treating observable system and network 
events as streams processed by input-driven automata predates 
LangSec. For example, Fred Schneider used this approach to 
characterize classes of enforceable security policies [12] and cited 
Lamport’s prior work. However, it’s still fascinating that formal 
language-based approaches are so productive far beyond parsing.

RF: Forms of distributed computing, such as cloud functions, 
are growing in popularity today. Cloud functions use RPCs and 
queues to communicate, and that seems to me to be an opportu-
nity to either make things better by observing LangSec or much 
worse through the use of ambiguous protocols. Would you com-
ment on that?

SB: This is very much the case: there is both the opportunity and 
the danger.

The danger is already manifesting itself in the surge of high-
impact parser differential bugs. Recall Dave Aitel’s quote above. 
Note that we don’t yet have effective ways of fuzzing for parser 
differentials. So we are in a much worse position with respect 
to parser differential bugs than we are with regard to memory 
corruption bugs, where coverage-driven fuzzing in combination 
with various sanitizers have gotten really good.

There is also the opportunity. Exposing interfaces without the 
false comfort of keeping them “private” and only receiving well-
formed data or only data from one particular writer applies evo-
lutionary pressure towards properly defining these interfaces. 
LangSec is there as a natural match for this problem.

The story of the Amazon API Mandate as told by Steve Yegge [13] 
is the story of such evolutionary pressure creating a qualitatively 
better platform. From the LangSec perspective, this story is not 
surprising—it is an iconic story of the correct intuition.

RPC messages are explicitly data languages, and open cloud envi-
ronments will exert pressure to validate RPC messages before 
acting on them. However, it is important to get the design of these 
data languages right, so that validating these inputs doesn’t grow 
into intractable problems we encounter with legacy formats.

As cloud systems grow rapidly, so could their technical debt. 
For example, for many application protocols, their expressions 
in Protocol Buffers happen to be the closest they ever got to a 
mechanized specification. However, these specifications them-
selves may be ambiguous and vulnerable to parser differentials. 
Critiques such as [14] strongly urge caution.

These problems are going to be very important as we move to 
serverless styles of programming (AWS Lambda and Fargate, 
Azure Functions, etc.). They will take a while to explore and 
understand, just like understanding the significance of parser 
differentials took almost a decade, but to avoid accumulating 
insurmountable amounts of technical debt, we should start now.

RF: The Rust programming language claims to offer unprec-
edented security assurances in systems programming. Rust’s 
secret weapon appears to be lightweight memory safety through 
compiler-imposed isolation, instead of having to rely on much 
more expensive safety solutions such as separating memory 
contexts with x86 hardware privilege rings or automatic memory 
management. Will LangSec remain relevant if Rust becomes the 
choice of systems programmers?

SB: The point of all programming language safety features, be it 
Java-like automatic memory management or Rust’s type system 
that enforces a discipline on pointers, is to avoid unintended 
state and, as a result of that state, unintended execution from 
that state onward. The difference between the languages and 
approaches is what kind of unintended state is being prevented 
and how this is done.

Historically, it was very easy for a programmer to unwittingly 
create unintended state. Classic ISAs use contents of memory  
or registers as addresses to access memory “randomly,” i.e., in 
arbitrary order and without checking what, if anything, was pre
viously stored in that memory and when or how it got there.  
C/C++ exposed this indirect memory addressing through point-
ers, which could point practically anywhere and allowed nearly 
arbitrary arithmetic to be applied to them. Reasoning about 
code—for example, what the code would do on all inputs hitting a 
module’s boundary—in the presence of arbitrary pointers is very 
hard (see Hind’s 2001 survey [15]). The power of arbitrary indi-
rect memory references is so great that it’s possible to (re)compile 
any program into just x86 MOV instructions and a single JMP or 
an equivalent way of looping backwards [16], which is, of course, 
really bad news for program analysis.

Java approached this problem by abstracting away almost all 
indirect memory references, to heavily restrict what memory 
addresses the CPU might access on behalf of the program 
(notionally mediated by the JVM, but also observed by JIT-ed 
code). To do so, it took memory management away from the 
programmer, which made it less desirable for OS programming, 
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where managing memory is a significant part of the task, and a 
single automated way of doing it just does not fit all needs. Rust, 
via its type system, controls pointers in a different way, but for 
the same purpose: restrict where and when indirect memory 
references can point so that they become tractable, unlike C’s 
pointers or assembly’s indirect MOVs [16].

In each case, the language makes memory-corrupting references 
hard or impossible for the programmer to create in ordinary 
code. However, as we’ve seen with web programming, memory 
safety alone does not preclude abuse of complex interfaces, and 
can actually make exploiting these interfaces easier, because the 
attacker doesn’t need to worry about crashing the system with a 
poorly crafted input. We often forget that memory safety without 
a clear understanding of what inputs and outputs are legal works 
both ways and can easily favor the attacker.

There is definitely a LangSec perspective on this: IPCs are data lan-
guages, and whatever Rust or any other compiler can do is all done 
for the purpose of consuming these languages safely and not letting 
them drive unintended computation in a module or microservice.

So the question is, once again: regardless of whatever kinds of 
checks can be done, what constitutes expected and valid IPC 
messages that, once validated, will cause only predictable system 
behaviors and no other “weird” behaviors? Can these expectations 
be precisely and unambiguously formulated and checked with 
tractable code, which could itself be checked for correctness?

Without a clear LangSec model of the inputs, validating IPC 
messages becomes an ill-defined game of guessing which kinds 
of memory corruption or command injection to mitigate, for 
example, by making the hardware explicitly protect some address 
ranges from access by all code except specially designated code 
parts (e.g., via x86 ring contexts). But what happens in other 
ranges and contexts? How can one guarantee that corruption 
spreading there would not trick a legitimately placed privileged 
(“ringed”) deputy into corrupting the protected region by pass-
ing it some unexpected inputs? This is a really hard question 
to answer, and it needs higher-level models of intended input-
driven behaviors.

So compilers and build environments in general should abso-
lutely be doing more work to make sure only intended state 
occurs, and it’s a great thing that they do.

LangSec, for its part, helps formulate what is and can be the 
intended, tractably checkable state when dealing with inputs, 
and helps system, protocol, and application designers avoid 
situations where ensuring predictability of input-handling code 
becomes unsolvable. So LangSec has a lot of work to do and many 
programming fields to help secure.
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