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“Without data, you’re just another person with an opinion.”

—W. Edwards Deming

It is tempting to tune out the cyberattack news cycle, dismissing the 
seemingly random assortment of reported attacks as nothing more 
than chance encounters of lucky defenders with unlucky attackers. It 

is easy to see the noise. It takes more effort—what amounts to digital wad-
ing—to find the signal, especially when dealing with public reporting on 
cyberattacks, but wade we did to assess the extent of software supply chain 
attacks. These attacks prey on the trust that makes code reuse possible and 
that produces the modern software cornucopia enjoyed by software develop-
ers and consumers alike.

We read of the event-stream attack [1] where an individual with malicious intent took over 
a popular JavaScript library and slipped code that steals cryptocurrency wallet credentials 
into a dependency of the associated npm package; ShadowHammer [2] in which a back-doored 
update utility with a legitimate certificate was distributed through official channels; and 
of barrages of typosquatting attacks on package registries [3] such as npm, RubyGems, and 
PyPI. Learning about these incidents led us to collect and review reports of software sup-
ply chain attacks in order to better understand the characteristics of these incidents and 
trends. While doing so, we also noticed the emergence of more systematic research. There’s 
been measurement of the susceptibility of package manager users to typosquatting [4], the 
creation of a sophisticated malware detection pipeline for package managers [5], the building 
of a package manager download client that protects users from malware [6], and other efforts 
to gather and classify reports of software supply chain compromises [7–9].

We collected our data set in order to answer basic questions about software supply chain 
attacks such as: How frequent are known instances of attacks? What is the relative occur-
rence of different attack types? What is the length of time from initial deployment of such 
attacks to public discovery? However, while attempting to obtain these quantitative metrics, 
we were also faced with more fundamental, qualitative questions, like: What is (and is not) 
considered a software supply chain attack? What are the definitions of different attack types? 
How should attack impact be defined and measured? We report on how we built this data set, 
answer the quantitative questions that we set out to understand, and then, based on these 
findings, offer some thoughts on how to use data to combat software supply chain attacks.

Software Supply Chain Compromises: Data Set and Analysis
We built a data set based on public reporting of software supply chain security compromises, 
which is available at https://github.com/IQTLabs/software-supply-chain-compromises. 
This data set defines software supply chain attacks as attacks that intentionally insert mali-
cious functionality into build, source, or publishing infrastructure or into software compo-
nents with the goal of propagating that malicious functionality through existing distribution 
methods. Exploiting a vulnerability found within a software’s supply chain was insufficient 
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to merit inclusion. We attempted to count three different units 
of software supply chain security compromise: attacks, reports, 
and incidents. An “attack” is a distinct action to compromise a 
software supply chain, e.g., deliberate introduction of a vulner-
ability into source code. A “report” is a public disclosure of one 
or more software supply chain attacks, e.g., a blog post from a 
security researcher who has identified the existence of an attack 
in an open source library. An “incident” is a single instance of 
an attack reaching a target, e.g., the download of a compromised 
application from a download server. In effect, we hoped to use 
“incident” as a measurement of the impact of an “attack.”

Figure 1 describes the trend of reports and attacks by the year 
in which the report or attack was announced, a decision that 
reflects the limited data available about the starting date of many 
of these attacks. The number of reports and attacks has been 
increasing over time; though included here, years before 2010 
include only a count of one in 2003 and one in 2008. Because 
reporting can be delayed, 2020 and, perhaps, 2019 may be under-
counted as yet. (The lines are power-law fits; the exponent is 1.2 
for count of reports and 2.5 for count of attacks.)

Table 1 groups these reports and attacks into major and minor 
categories based on the actions of the attacker, not the perspec-
tive of the victim. These categories were inf luenced by the 
work of the “in-toto” project [7] but were adapted and extended 
organically while collecting this data set and do not represent 

any established classification scheme. The development of a 
standard taxonomy in the future would be beneficial. 

Table 1 tentatively suggests that there is an inverse relationship 
between the estimated level of effort required to execute an 
attack type and the frequency of reported attacks of that type. 
For example, 41 percent of attacks in our data set are classified 
as typosquatting, which merely requires the attacker to create 
an account on a package registry, identify unclaimed package 
names that are plausible misspellings of legitimate packages, 
and publish the malicious package under those names. On the 
other end of the spectrum, a build system compromise is one of 
the least common attack types in our data set, perhaps because 
it involves several challenging steps, including obtaining access 
to a target’s build environment and introducing a compromised 
component into the build process without being detected. As 
we discuss below, while the success of an attack is difficult to 
objectively define and measure, it seems possible that the effort 
required to successfully deploy an attack is directly proportional 
to the number of incidents, with typosquatting attacks affecting 
fewer individuals than a build system compromise like Shadow
Hammer. This indicates that increasing the level of effort 
required to successfully deploy attacks on software registries 
could significantly reduce the quantity of reported software 
supply chain attacks.

Figure 1: The number of reports and attacks by year reported
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Data on incidents is not consistently available, and metrics are 
not consistent across attack types, making quantitative analysis 
across this data set infeasible. For example, download metrics 
were sometimes available for a malicious package accessible 
on a software registry, but the number of victims and number 
of times the package was executed after download are gener-
ally unknown. In other cases, a lower bound on the number of 
compromised applications has been reported, but the extent of 
propagation is unknown. However, the limited data that is avail-
able indicates the potential for widespread impact. In the case 
of the event-stream attack, there were over 7 million package 
downloads reported for the 53 days it was available on npm, and 
some unknown number of those downloads were of the compro-
mised version, rather than older, non-malicious versions. For 
ShadowHammer, Kaspersky, which identified and reported the 
attack, stated that the attack affected over 57,000 of their users 
and estimated that the attack was distributed to over 1 million 
people. In the case of the typosquatting attacks identified by 
Perica and Zekić, the one package where information is reported 
was downloaded over 1700 times over nearly two years. While 
details are limited, it is clear that the potential force multiplica-
tion caused by the propagation of an attack through existing 
software delivery methods is highly appealing to attackers.

Another way to measure the success of a software supply chain 
compromise is the length of time it is active. Known as “dwell 
time,” it is the number of days a threat remains undetected 
within a given environment; if the detection date is not available, 
we use the public announcement date. Figure 2 displays the dis-
tribution of dwell time for all reports with available data (n=59). 

Defending the Supply Chain
Our analysis of known software supply chain attacks indicates 
that weaknesses in the software supply chain are numerous 
and are being appropriated by cybercriminals with increasing 
frequency. Per the usual, attacks as yet unknown are surely pres-
ent, so you should assume that we are undercounting. Counting 

is hard. The spike in attacks in 2016 includes two special cases: 
a research project where a student intentionally uploaded 214 
typosquatting packages to various software registries to mea-
sure download frequency, and the intentional deletion of 273 
npm packages by a developer who was angry that npm took a 
package namespace away from him and wanted to wreak havoc. 
Earlier this year, ReversingLabs found 700+ malicious packages 
in RubyGems, while Duo found 500+ malicious Chrome exten-
sions, both evidently the first time anyone had looked into such 
unknown unknowns. Counting is hard. 

We believe there exist at least three major obstacles that prevent 
software developers, security teams, and software users from 
adequately protecting the software supply chain and from shield-
ing themselves or their organization from such attacks.

First, there is a striking absence of data collection and analysis 
that would help identify and assess risks associated with these 
attacks, especially those involving open source software. This 
absence is surprising given the inherently public nature of open 
source software development and the ubiquity of open source 
dependencies within modern software applications. In other 
words, much of the data needed to identify potential and actual 
risks associated with a software component is hosted on publicly 
accessible development platforms like GitHub and is thus avail-
able to any interested party. Unfortunately, much of this infor-
mation is not analyzed, allowing attackers to hide in plain sight.

To identify attacks, defenders will need to cull and analyze 
software development-related data. To start, a software bill 
of material that describes all dependencies of an application 
provides transparency and allows for investigation of direct and 
indirect dependencies. Other rich data sources are open source 
code repositories and package registries, which contain infor-
mation about developer turnover, code commits, and version 
releases stored in these repositories. Defenders can also expose 
inconsistencies between independent data sources, verifying, 
for instance, the relationships between source code stored in 

Figure 2: Distribution of dwell time in days for reports; dwell time for 12 reports was zero days; the median=34.

Major Type Build, Source, and Publishing Infrastructure Software Registry

Minor Type Build System 
Compromise

Firmware 
Implant

Source Code 
System 

Compromise

Publishing: 
Certificate 

Attack

Publishing: 
Delivery 
System 

Compromise

Account 
Takeover

Dependency 
Compromise

Malicious 
Package Typosquatting

Count 11:13 7:32 9:39 6:18 29:35 11:14 12:333 51:1,373 15:1,247

Table 1: Count of Reports:Attacks by major and minor categories. (Note: Both reports and attacks can be assigned to multiple categories.)
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a repository and a released library or executable stored in a 
package registry. Countermeasures will also likely require an 
understanding of the individuals and organizations that directly 
or indirectly contribute to the development and distribution of 
software, especially the individuals or organizations that can 
publish changes. Importantly, defenders will need this informa-
tion for all dependencies of a distributed software application, 
whether those dependencies are part of the build process, release 
process, or are included at runtime. As always, the wellspring of 
risk is dependence, and risk, unlike benefit, is transitive.

Second, existing application security products are unable to 
identify the distinctive characteristics of software supply chain 
attacks. Moreover, there has been limited adoption of what tools 
and processes do exist in order to prevent instances of supply 
chain attacks within released software. These issues force 
software developers and users to trust—but not verify—vendors 
and their products, rendering judgments about product software 
supply chain quality impossible and compelling acceptance of 
unknown risks within critical software.

These deficiencies should be a rallying cry for those who want to 
develop and build a new class of application security products, 
tools designed to uncover instances of software supply chain 
attacks. Existing application security tools are designed to 
identify defects in source code or executables and determine the 
conditions under which those defects are exploitable. These tools 
will not, however, identify a well-written software supply chain 
compromise. These attacks arise from the existence of unde-
sired functionality with respect to the intended purpose of the 
software. This new breed of application security products will 
need context and an understanding of the expected use case of 
the application, concepts lacking in current application security 
products. This will not be easy.

Third, reducing the software supply chain attack surface also 
requires adopting existing technologies and processes that pro-
vide the information needed to verify the origin and content of 
source code and binaries, eliminating or mitigating many of the 
risks of compromise. One practical step is using digital signa-
tures and certificates to verify file integrity. Employing repro-
ducible builds and publishing relevant metadata to an immutable 
distributed ledger can also allow consumers to independently 
verify the integrity of a software component. Best of breed tools 
for network and endpoint protection should also be deployed 
within the development, publication, and operational environ-
ment to limit opportunities for compromise pre-commit.

Ultimately, securing the software supply chain of any prod-
uct requires continuous assessment of components, vendors, 
and operational environments in addition to orchestration and 
analysis of relevant data. These processes, to be successful, 
require significant investment in automation and collaboration 

between all participants in the software supply chain. Nothing 
less is needed if sharing common software dependencies is to 
be a strength, the topic of this column two issues ago [10], rather 
than the liability it appears to be today.
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