
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 83

COLUMNS

“Without data, you’re just another person with an opinion.”

—W. Edwards Deming

It is tempting to tune out the cyberattack news cycle, dismissing the
seemingly random assortment of reported attacks as nothing more
than chance encounters of lucky defenders with unlucky attackers. It

is easy to see the noise. It takes more effort—what amounts to digital wad-
ing—to find the signal, especially when dealing with public reporting on
cyberattacks, but wade we did to assess the extent of software supply chain
attacks. These attacks prey on the trust that makes code reuse possible and
that produces the modern software cornucopia enjoyed by software develop-
ers and consumers alike.

We read of the event-stream attack [1] where an individual with malicious intent took over
a popular JavaScript library and slipped code that steals cryptocurrency wallet credentials
into a dependency of the associated npm package; ShadowHammer [2] in which a back-doored
update utility with a legitimate certificate was distributed through official channels; and
of barrages of typosquatting attacks on package registries [3] such as npm, RubyGems, and
PyPI. Learning about these incidents led us to collect and review reports of software sup-
ply chain attacks in order to better understand the characteristics of these incidents and
trends. While doing so, we also noticed the emergence of more systematic research. There’s
been measurement of the susceptibility of package manager users to typosquatting [4], the
creation of a sophisticated malware detection pipeline for package managers [5], the building
of a package manager download client that protects users from malware [6], and other efforts
to gather and classify reports of software supply chain compromises [7–9].

We collected our data set in order to answer basic questions about software supply chain
attacks such as: How frequent are known instances of attacks? What is the relative occur-
rence of different attack types? What is the length of time from initial deployment of such
attacks to public discovery? However, while attempting to obtain these quantitative metrics,
we were also faced with more fundamental, qualitative questions, like: What is (and is not)
considered a software supply chain attack? What are the definitions of different attack types?
How should attack impact be defined and measured? We report on how we built this data set,
answer the quantitative questions that we set out to understand, and then, based on these
findings, offer some thoughts on how to use data to combat software supply chain attacks.

Software Supply Chain Compromises: Data Set and Analysis
We built a data set based on public reporting of software supply chain security compromises,
which is available at https://github.com/IQTLabs/software-supply-chain-compromises.
This data set defines software supply chain attacks as attacks that intentionally insert mali-
cious functionality into build, source, or publishing infrastructure or into software compo-
nents with the goal of propagating that malicious functionality through existing distribution
methods. Exploiting a vulnerability found within a software’s supply chain was insufficient

For Good Measure
Counting Broken Links: A Quant’s View of Software Supply
Chain Security

D A N G E E R , B E N T Z T O Z E R , A N D J O H N S P E E D M E Y E R S

Dan Geer is a Senior Fellow
at In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Bentz Tozer is a Senior Member
of Technical Staff in In-Q-
Tel’s Cyber Practice, where
he identifies and works with
startups with the potential for

high impact on national security. In previous
roles, he has performed security research
and software development with a focus on
IoT devices and embedded systems. He has
a PhD in systems engineering from George
Washington University. btozer@iqt.org

John Speed Meyers is a Data
Scientist in IQT Labs and a
researcher who focuses on
cybersecurity, especially
network traffic analysis and

software supply chain security. He holds a
PhD in policy analysis from the Pardee RAND
Graduate School. He’s ambivalent about
computers. jmeyers@iqt.org

84    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

COLUMNS
For Good Measure—Counting Broken Links: A Quant’s View of Software Supply Chain Security

to merit inclusion. We attempted to count three different units
of software supply chain security compromise: attacks, reports,
and incidents. An “attack” is a distinct action to compromise a
software supply chain, e.g., deliberate introduction of a vulner-
ability into source code. A “report” is a public disclosure of one
or more software supply chain attacks, e.g., a blog post from a
security researcher who has identified the existence of an attack
in an open source library. An “incident” is a single instance of
an attack reaching a target, e.g., the download of a compromised
application from a download server. In effect, we hoped to use
“incident” as a measurement of the impact of an “attack.”

Figure 1 describes the trend of reports and attacks by the year
in which the report or attack was announced, a decision that
reflects the limited data available about the starting date of many
of these attacks. The number of reports and attacks has been
increasing over time; though included here, years before 2010
include only a count of one in 2003 and one in 2008. Because
reporting can be delayed, 2020 and, perhaps, 2019 may be under-
counted as yet. (The lines are power-law fits; the exponent is 1.2
for count of reports and 2.5 for count of attacks.)

Table 1 groups these reports and attacks into major and minor
categories based on the actions of the attacker, not the perspec-
tive of the victim. These categories were inf luenced by the
work of the “in-toto” project [7] but were adapted and extended
organically while collecting this data set and do not represent

any established classification scheme. The development of a
standard taxonomy in the future would be beneficial.

Table 1 tentatively suggests that there is an inverse relationship
between the estimated level of effort required to execute an
attack type and the frequency of reported attacks of that type.
For example, 41 percent of attacks in our data set are classified
as typosquatting, which merely requires the attacker to create
an account on a package registry, identify unclaimed package
names that are plausible misspellings of legitimate packages,
and publish the malicious package under those names. On the
other end of the spectrum, a build system compromise is one of
the least common attack types in our data set, perhaps because
it involves several challenging steps, including obtaining access
to a target’s build environment and introducing a compromised
component into the build process without being detected. As
we discuss below, while the success of an attack is difficult to
objectively define and measure, it seems possible that the effort
required to successfully deploy an attack is directly proportional
to the number of incidents, with typosquatting attacks affecting
fewer individuals than a build system compromise like Shadow
Hammer. This indicates that increasing the level of effort
required to successfully deploy attacks on software registries
could significantly reduce the quantity of reported software
supply chain attacks.

Figure 1: The number of reports and attacks by year reported

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 85

COLUMNS
For Good Measure—Counting Broken Links: A Quant’s View of Software Supply Chain Security

Data on incidents is not consistently available, and metrics are
not consistent across attack types, making quantitative analysis
across this data set infeasible. For example, download metrics
were sometimes available for a malicious package accessible
on a software registry, but the number of victims and number
of times the package was executed after download are gener-
ally unknown. In other cases, a lower bound on the number of
compromised applications has been reported, but the extent of
propagation is unknown. However, the limited data that is avail-
able indicates the potential for widespread impact. In the case
of the event-stream attack, there were over 7 million package
downloads reported for the 53 days it was available on npm, and
some unknown number of those downloads were of the compro-
mised version, rather than older, non-malicious versions. For
ShadowHammer, Kaspersky, which identified and reported the
attack, stated that the attack affected over 57,000 of their users
and estimated that the attack was distributed to over 1 million
people. In the case of the typosquatting attacks identified by
Perica and Zekić, the one package where information is reported
was downloaded over 1700 times over nearly two years. While
details are limited, it is clear that the potential force multiplica-
tion caused by the propagation of an attack through existing
software delivery methods is highly appealing to attackers.

Another way to measure the success of a software supply chain
compromise is the length of time it is active. Known as “dwell
time,” it is the number of days a threat remains undetected
within a given environment; if the detection date is not available,
we use the public announcement date. Figure 2 displays the dis-
tribution of dwell time for all reports with available data (n=59).

Defending the Supply Chain
Our analysis of known software supply chain attacks indicates
that weaknesses in the software supply chain are numerous
and are being appropriated by cybercriminals with increasing
frequency. Per the usual, attacks as yet unknown are surely pres-
ent, so you should assume that we are undercounting. Counting

is hard. The spike in attacks in 2016 includes two special cases:
a research project where a student intentionally uploaded 214
typosquatting packages to various software registries to mea-
sure download frequency, and the intentional deletion of 273
npm packages by a developer who was angry that npm took a
package namespace away from him and wanted to wreak havoc.
Earlier this year, ReversingLabs found 700+ malicious packages
in RubyGems, while Duo found 500+ malicious Chrome exten-
sions, both evidently the first time anyone had looked into such
unknown unknowns. Counting is hard.

We believe there exist at least three major obstacles that prevent
software developers, security teams, and software users from
adequately protecting the software supply chain and from shield-
ing themselves or their organization from such attacks.

First, there is a striking absence of data collection and analysis
that would help identify and assess risks associated with these
attacks, especially those involving open source software. This
absence is surprising given the inherently public nature of open
source software development and the ubiquity of open source
dependencies within modern software applications. In other
words, much of the data needed to identify potential and actual
risks associated with a software component is hosted on publicly
accessible development platforms like GitHub and is thus avail-
able to any interested party. Unfortunately, much of this infor-
mation is not analyzed, allowing attackers to hide in plain sight.

To identify attacks, defenders will need to cull and analyze
software development-related data. To start, a software bill
of material that describes all dependencies of an application
provides transparency and allows for investigation of direct and
indirect dependencies. Other rich data sources are open source
code repositories and package registries, which contain infor-
mation about developer turnover, code commits, and version
releases stored in these repositories. Defenders can also expose
inconsistencies between independent data sources, verifying,
for instance, the relationships between source code stored in

Figure 2: Distribution of dwell time in days for reports; dwell time for 12 reports was zero days; the median=34.

Major Type Build, Source, and Publishing Infrastructure Software Registry

Minor Type Build System
Compromise

Firmware
Implant

Source Code
System

Compromise

Publishing:
Certificate

Attack

Publishing:
Delivery
System

Compromise

Account
Takeover

Dependency
Compromise

Malicious
Package Typosquatting

Count 11:13 7:32 9:39 6:18 29:35 11:14 12:333 51:1,373 15:1,247

Table 1: Count of Reports:Attacks by major and minor categories. (Note: Both reports and attacks can be assigned to multiple categories.)

86    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

COLUMNS
For Good Measure—Counting Broken Links: A Quant’s View of Software Supply Chain Security

a repository and a released library or executable stored in a
package registry. Countermeasures will also likely require an
understanding of the individuals and organizations that directly
or indirectly contribute to the development and distribution of
software, especially the individuals or organizations that can
publish changes. Importantly, defenders will need this informa-
tion for all dependencies of a distributed software application,
whether those dependencies are part of the build process, release
process, or are included at runtime. As always, the wellspring of
risk is dependence, and risk, unlike benefit, is transitive.

Second, existing application security products are unable to
identify the distinctive characteristics of software supply chain
attacks. Moreover, there has been limited adoption of what tools
and processes do exist in order to prevent instances of supply
chain attacks within released software. These issues force
software developers and users to trust—but not verify—vendors
and their products, rendering judgments about product software
supply chain quality impossible and compelling acceptance of
unknown risks within critical software.

These deficiencies should be a rallying cry for those who want to
develop and build a new class of application security products,
tools designed to uncover instances of software supply chain
attacks. Existing application security tools are designed to
identify defects in source code or executables and determine the
conditions under which those defects are exploitable. These tools
will not, however, identify a well-written software supply chain
compromise. These attacks arise from the existence of unde-
sired functionality with respect to the intended purpose of the
software. This new breed of application security products will
need context and an understanding of the expected use case of
the application, concepts lacking in current application security
products. This will not be easy.

Third, reducing the software supply chain attack surface also
requires adopting existing technologies and processes that pro-
vide the information needed to verify the origin and content of
source code and binaries, eliminating or mitigating many of the
risks of compromise. One practical step is using digital signa-
tures and certificates to verify file integrity. Employing repro-
ducible builds and publishing relevant metadata to an immutable
distributed ledger can also allow consumers to independently
verify the integrity of a software component. Best of breed tools
for network and endpoint protection should also be deployed
within the development, publication, and operational environ-
ment to limit opportunities for compromise pre-commit.

Ultimately, securing the software supply chain of any prod-
uct requires continuous assessment of components, vendors,
and operational environments in addition to orchestration and
analysis of relevant data. These processes, to be successful,
require significant investment in automation and collaboration

between all participants in the software supply chain. Nothing
less is needed if sharing common software dependencies is to
be a strength, the topic of this column two issues ago [10], rather
than the liability it appears to be today.

References
[1] T. Hunter II, “Compromised npm Package: Event-stream,”
Intrinsic/VMware, November 26, 2018: https://medium.com​
/intrinsic/compromised-npm-package-event-stream​
-d47d08605502.

[2] “ShadowHammer: Malicious Updates for ASUS Laptops,”
Kaspersky Daily, March 25, 2019: https://www.kaspersky​
.com/blog/shadow-hammer-teaser/26149/.

[3] R. Perica and A. Zekić, “Mining for Malicious Ruby Gems,”
ReversingLabs, July 17, 2019: https://blog.reversinglabs.com​
/blog/suppy-chain-malware-detecting-malware-in-package​
-manager-repositories.

[4] N. P. Tschacher, “Typosquatting in Programming
Language Package Managers,” University of Hamburg,
Bachelor Thesis, 2016: https://incolumitas.com/data​
/thesis.pdf.

[5] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltafor
maggio, and W. Lee, “Measuring and Preventing Supply
Chain Attacks on Package Managers,” arXiv, February 4,
2020: https://arxiv.org/abs/2002.01139.

[6] M. Taylor, R. K. Vaidya, D. Davidson, L. De Carli, and ​
V. Rastogi, “SpellBound: Defending against Package
Typosquatting,” arXiv, March 6, 2020: https://arxiv.org/pdf​
/2003.03471v1.pdf.

[7] S. Torres, H. Afzali, A. Sirish, and L. Puehringer, “Soft-
ware Supply Chain Compromises,” November 11, 2019:
https://github.com/in-toto/supply-chain-compromises.

[8] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s
Knife Collection: A Review of Open Source Software Supply
Chain Attacks,” in Proceedings of the 17th Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2020): https://link.springer.com​
/chapter/10.1007/978-3-030-52683-2_2.

[9] T. Herr, J. Lee, W. Loomis, and S. Scott, “Breaking Trust:
Shades of Crisis Across an Insecure Software Supply Chain,”
Atlantic Council, July 6, 2020: https://www.atlanticcouncil.org​
/in​-depth-research-reports/report/breaking-trust-shades-of​
-crisis-across-an-insecure-software-supply-chain/.

[10] D. Geer and G. Sieniawski, “Who Will Pay the Piper for
Open Source Software Maintenance?” ;login:, vol. 45, no. 2
(Summer 2020): https://www.usenix.org/publications/login​
/summer2020/geer.

https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://www.kaspersky.com/blog/shadow-hammer-teaser/26149/
https://www.kaspersky.com/blog/shadow-hammer-teaser/26149/
https://blog.reversinglabs.com/blog/suppy-chain-malware-detecting-malware-in-package-manager-repositories
https://blog.reversinglabs.com/blog/suppy-chain-malware-detecting-malware-in-package-manager-repositories
https://blog.reversinglabs.com/blog/suppy-chain-malware-detecting-malware-in-package-manager-repositories
https://incolumitas.com/data/thesis.pdf
https://incolumitas.com/data/thesis.pdf
https://arxiv.org/abs/2002.01139
https://arxiv.org/pdf/2003.03471v1.pdf
https://arxiv.org/pdf/2003.03471v1.pdf
https://github.com/in-toto/supply-chain-compromises
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.usenix.org/publications/login/summer2020/geer
https://www.usenix.org/publications/login/summer2020/geer

