
www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  25

SRE AND SYSADMINAre We All on the Same Page?
Let’s Fix That

L U I S M I N E I R O

Luis’s broad background in
software engineering includes
experience in DevOps, system
administration, networking,
and more. Luis has been with

Zalando since 2013, working with approx
imately two hundred engineering teams
increasing the observability and reliability of
the Zalando e-commerce platform, currently
heading Site Reliability Engineering.
luis@zalando.de

Industry has defined as good practice to have as few alerts as possible, by
alerting on symptoms that are associated with end-user pain rather than
trying to catch every possible way that pain could be caused. Organiza-

tions with complex distributed systems that span dozens of teams can have
a hard time following such practice without burning out the teams owning
the client-facing services. A typical solution is to have alerts on all the layers
of their distributed systems. This approach almost always leads to an exces-
sive number of alerts and results in alert fatigue. I propose a solution to this
problem by paging only the team closest to the problem.

The Age of the Monolith
Many organizations became successful running a monolith. In the age of the monolith we
had single, large boxes that did everything—they handled every request. There were some
minor evolutions of this basic model, namely for redundancy and availability, but that’s not
so relevant. What’s important—monoliths were simple. They were easy to reason about and
easy to monitor.

This was the time of the Ops and Dev silos. The Ops people monitored the hardware and
checked whether the monolith process was up. The Devs monitored the requests and the
responses.

This approach had its own share of problems, particularly as businesses grew and the
approach didn’t allow the business to scale further. Microservices have become the solution
for those problems.

Modern Microservices
The diagram in Figure 1 is a possible representation of a typical business operation in
e-commerce websites—placing an order.

Founded in 2008 in Berlin, Zalando is Europe’s leading online fashion platform and con-
nects customers, brands, and partners. It has more than 200 software delivery teams.
Organizations such as Zalando can have north of 60 microservices involved in such a busi-
ness operation, including some so-called legacy ones. Other organizations can actually be
simpler or more complex, so mileage may vary. The relevant question is, how do we monitor
and alert on this?

The industry came up with new job roles, some call them DevOps, some call them SRE,
but the name is not important. We could call them Cupcake Fairies; it doesn’t matter. What
matters is how we monitor didn’t change much, and the new roles didn’t change anything.
We still check whether boxes are alive, processes are responsive, and individual micro
services succeed. Most times, we also check whether responses are fast enough.

When it comes to monitoring, I’d say that we’re just monitoring distributed monoliths.

26    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Problem Statement
What about alerting? What happens when the Accounting Ser-
vice from the example diagram in Figure 1 has an outage? What
almost always happens is that dozens (or hundreds) of alerts
come up, making it look like all services failed.

I call this the Christmas Tree effect. Lots of blinking lights,
almost the same as Christmas except the happiness level is
different, and definitely no one is getting any presents!

This approach almost always leads to an excessive number of
alerts and results in alert fatigue. Only one of those teams can
actually do something about it—the one operating the Account-
ing Service.

The alternative to this is to alert on symptoms instead. That’s
something the industry already accepted—in theory. How would
it look if we were alerting on symptoms?

We can measure signals like latency and errors where the Web
front end calls the Checkout Service. This is a good place to
measure such service level indicators, where the signal-to-noise
ratio is optimal and as close as possible to the customer pain.

What happens when alerting on the symptom if the Accounting
Service has an outage?

The alert created based on the symptom will be triggered. This
looks better. Is there anything wrong with the approach? What
happens with this approach if the Payment Service has an outage?
The same alert will be up. The team owning the client-facing
service, and typically the owner of the alert rule, gets the paging
alert for each and every possible failure in the distributed system!

This sort of pivoting is a serious problem that hasn’t been
addressed properly as far as I know. Alerting on all the layers
of the distributed system is not healthy, and the alternative,
alerting on symptoms, can result in bombing the team owning
the client-facing service.

In a Twitter thread [1] early this year, Jacob Scott (@jhscott)
brought up the question—“In a ‘microservices organization’
where teams own specific components/services of a distributed
production system, who is responsible for triage/debugging/
routing of issues that don’t present with a clear owner? And
how do they not hate their lives?” Charity Majors’ (@mipsytipsy)
reply, that I totally agree with, was “alright, this is a damn
good question. and tbh i am surprised it doesn’t come up more
often, because it gets right to the beating heart of what makes
any microservices architecture good or bad.” This captures the
essence of the problem. The so-called “microservices organiza-
tions” struggle to figure this out.

Figure 1: An example set of the microservices involved in fulfilling a customer request. Arrows show the flow through the services and also indicate
dependencies.

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  27

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Adaptive Paging
At Zalando we started addressing this problem with a custom
alert handler that leverages the causality from tracing and Open-
Tracing’s semantic conventions to page the team closest to the
problem. We called it Adaptive Paging.

Five-Minute Introduction to OpenTracing
OpenTracing is a set of vendor-neutral APIs and a code instru-
mentation standard for distributed tracing. A trace tells the
story of a transaction or workflow as it propagates through a
distributed system. It’s basically a directed acyclic graph (DAG),

with a clear start and a clear end—no loops. A trace is made up of
spans representing contiguous segments of work in that trace.

You can find a lot more details by checking distributed tracing’s
origins, namely the Dapper paper [2].

It’s worth mentioning that OpenTracing has merged with
another instrumentation standard—OpenCensus—resulting in
OpenTelemetry. OpenTelemetry will offer backwards compat-
ibility with existing OpenTracing integrations. The concepts
and strategy for Adaptive Paging are still valid.

Spans
A Span is a named operation which records the duration, usually
a remote procedure call, with optional Tags and Logs. This is
probably the most important element of OpenTracing. A trace is
a collection of spans.

Operations can trigger other operations and depend on their out-
come. For example, place_order triggers and depends on all the
other operations, including update_account in the accounting-
service. This causality is important.

Tags
The other most relevant element from OpenTracing is Tags. A
tag is a “mostly” arbitrary key-value pair, where the value can be a
string, number, or bool. Every operation can have its own set of tags.

We can consider Tags as metadata that enrich the operation
abstraction (the span) with additional context.

Figure 2: An example trace containing many spans from different
microservices

Figure 3: Screen capture of a trace in the open source tracing tool Jaeger [3]

28    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Semantic Conventions
OpenTracing’s semantic conventions establish certain tag names
and their meanings. The existing conventions are strong enough
to set certain expectations and enable tools to apply different
behaviors when analyzing the tracing data.

OpenTracing Monitoring Signals
OpenTracing can provide, implicitly, measurements for latency
and throughput (number of operations over a certain time period).
Through the semantic conventions it’s also possible to measure
errors, by checking the spans with the error tag set to the Bool-
ean value true.

Latency, traffic, saturation, and errors are the Four Golden Sig-
nals [4]. If you can only measure four metrics of your user-facing
system, focus on these four. They are great for alerting.

In this article we’ll focus on one concrete signal—errors.

Alert Handler
Let’s assume that an alert was configured for the place_order
operation which has a service level objective (SLO) of 99.9 suc-
cess rate. A typical way to measure this would be to query the

tracing back end for spans that match a certain criteria. The
keys operation and component are implicit on most tracing sys-
tems and represent the named span and the microservice itself,
respectively. An expression such as component: checkout_service
&& operation: place_order represents the symptom and is where
we want to measure customer pain. Different tools, open source
and commercial, will usually provide different means to config-
ure the alert itself. That’s not in the scope of this article.

Adaptive Paging is an alert handler, and its architecture is
broken down into three main components. The transformer is
the actual alert handler, typically a webhook, and it’s vendor
specific. It’s possible to have multiple alert handlers. The web-
hook receives alerts and converts them into symptoms. Then the
symptom is passed to an evaluator, which implements the actual
root-cause identification algorithm. The evaluator tries to deter-
mine the most probable root cause and generates a report. After
the report is created it is made available to any reporter(s) which
can deliver the page via different vendor-specific implementations
or store debugging data to troubleshoot the alert handler itself.

Transformer
The transformer receives or collects vendor-specific exemplars
and converts them into a vendor-agnostic data model that we
called Symptoms. Exemplars are traces that should be represen-
tative of the symptoms that led to the alert being triggered. Some
vendors can include exemplars as part of the alert payload. If
they’re not part of the payload, the transformer can query the
tracing back end for exemplars that match the same criteria of
the alert rule during the time of the incident.

Figure 5: Collection of traces (exemplars) that contain the failed operations (error=true)

Figure 4: Adaptive Paging components and data flow

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  29

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Evaluator
The evaluation algorithm can have many different implemen-
tations. There can be different implementations for different
signals—latency or errors, for example, or for any other known
criteria for which a certain root-cause-identification algorithm
performs better.

Example Errors Algorithm
The following example is one possible implementation to identify
the probable root cause for errors. All exemplars (traces) are ana-
lyzed. Starting at the span that was defined as the signal source,
each trace is inspected in a recursive way. For every child span,
its tags and respective values are checked to decide which path
to take.

In the example from Figure 6, none of the operations take-
payment, evaluate_risk, or push_order_event were tagged as
failed (error=true).

The accept_order operation in the order-service was tagged.
The algorithm follows the path where error=true.

The same process is repeated. None of the operations of the
order-service, stock-reservation-svc, logistics-svc, or the others
which were triggered by accept_order were tagged with errors.

Only the update_account operation in the accounting-service
was tagged as failed.

Without any child spans to continue the traversal, the update_
account operation in the accounting-service is selected as the
most probable cause of the errors.

After all exemplars are analyzed, a Report is generated.

Reporting
The Report generated by the evaluation algorithm contains
information about the operation and microservice that is con
sidered the most probable root cause. For reporters that page
on-call engineers, the implementation needs to map the opera-
tion and/or service to the respective team or on-call escalation.

Putting It All Together
Going back to the original example, what happens if the Account-
ing Service has an outage and we’re using Adaptive Paging? As
you can guess, the team that operates the Accounting Service
will get the single page triggered.

A similar situation would happen if any of the services involved
in the “Place Order” operation breached its SLO, but the team
that operates the probable root cause is the only one getting the
paging alert—the one that will be able to actually do something
about it—that is, no more page bombing.

Challenges
As mentioned before, the detection algorithm can adopt many
different strategies. Zalando’s current implementation uses a
couple of heuristics that are easy to reason about.

Some of the things we had to work around when creating
Adaptive Paging were:

 3 Multiple child spans tagged as errors: follow each path, attribute
the probable cause a score. Analyze more exemplars and adjust
the scores. Worst case scenario, page multiple probable causes.
Paging two teams is still better than paging everyone.
 3 Missing instrumentation or circuit breaker open: either of these
situations results in a premature evaluation of the probable root
cause. We leveraged the semantic conventions to allow the caller
to identify the callee, suggesting to the evaluator algorithm who
to page, using the peer.service=foo and span.kind=client tag to
suggest which service would be the target. This has the side
effect of being a good incentive for teams to instrument their
services.
 3 Mapping services to escalation: the service identified as prob-
able root cause may not have a mapping to an on-call escalation.
The evaluator keeps a stack of the probable causes and uses the
one that is available and hopefully closest.

Finding probable causes due to latency is a challenge of its
own. The strategy that we considered requires us to query the
baselines for each operation and service combination, using that
information to select which combination has a bigger variation
at the time of the incident. This strategy can be a bit expensive,
increasing the time to dispatch the paging alert.

Figure 6: Probable root cause algorithm inspecting failed operations

30    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Next Steps
Adaptive Paging was created with a multi-vendor reality in mind.
Observability still has a ways to go, and some vendors are push-
ing the boundaries as we speak. Distributed tracing is still not
a commodity, just like unit testing wasn’t when it was initially
introduced. No one would challenge the benefits of unit testing,
and I believe no one will challenge the benefits of proper observ-
ability of distributed systems.

We’ve also started looking at some excellent work from LinkedIn
—MonitorRank [5] from 2013, which fits nicely into Adaptive
Paging; it’s something we’re considering as a possible improve-
ment to the evaluator.

With Adaptive Paging we hope to contribute to improve the alert-
ing situation, in particular paging alerts that burn out humans.

References
[1] Twitter thread on page bombing: https://twitter.com​
/mipsytipsy/status/1120911207903268864.

[2] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, C. Shan‑bhag, “Dapper, a
Large-Scale Distributed Systems Tracing Infrastructure”:
https://ai.google/research/pubs/pub36356.

[3] Jaeger: https://www.jaegertracing.io/.

[4] Four Golden Signals: https://landing.google.com/sre/sre​
-book/chapters/monitoring-distributed-systems/.

[5] M. Kim, R. Sumbaly, S. Shah, “Root Cause Detection
in a Service-Oriented Architecture,” SIGMETRICS ’13:
http://infolab.stanford.edu/~mykim/pub/SIGMETRICS13​
-Monitoring.pdf.

XKCD	 xkcd.com

https://twitter.com/mipsytipsy/status/1120911207903268864
https://twitter.com/mipsytipsy/status/1120911207903268864
https://ai.google/research/people/LuizBarroso/
https://ai.google/research/people/author24014/
https://ai.google/research/people/author907/
https://ai.google/research/people/author8115/
https://ai.google/research/pubs/pub36356
https://www.jaegertracing.io/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
http://infolab.stanford.edu/~mykim/pub/SIGMETRICS13-Monitoring.pdf
http://infolab.stanford.edu/~mykim/pub/SIGMETRICS13-Monitoring.pdf

