
	84    ;login:  VOL. 37, NO.4

The Scrum Field Guide: Practical Advice for Your
First Year
Mitch Lacey
Addison-Wesley, 2012. 365 pp.
ISBN 978-0-321-55415-4

As the author points out, Scrum (which is one of the extended
and incestuous family of Agile programming techniques) is
simple but not easy. All you need to do is change everything
about how your programmers work and how that work is
specified and directed; what could possibly go wrong? For
most organizations, converting to Scrum is like moving to
another hemisphere. This book is aimed at providing useful
advice for this transition, and the author speaks with the
practical voice of experience, providing effective ways of
making the transition.

As a “first year” book, it’s not just about techniques; it’s also
an introduction to the common problems, inevitable miser-
ies, and eventual joys of the transition. This kind of roadmap
is a great thing to have when you are wondering whether
you screwed things up, your team is hopeless, or this is just
one of those bad patches that happen in every transition. It
is inspirational; it did a good job of making me feel that this
is a plausible transition. Furthermore, it covers a relatively
wide range of situations, including outsourcing, operational/
support groups, and at least one way of handling common
functions like security and user interface design that span
multiple teams. Daily team meetings are one thing if you’re
on a single team. What if you’re on three or more? It is more
applicable to isolated teams than to entire organizations
going to Scrum, which brings up new issues. Getting buy-in
for a single team is a different deal from getting buy-in when
it’s an edict from above.

Machine Learning for Hackers
Drew Conway and John Myles White
O’Reilly, 2012. 293 pp.
ISBN 978-1-449-30371-6

Suppose you have a pile of data, and you have a sense that
what the fancy guys do with this stuff involves machine
learning, but you have neither the time nor the inclination
to go out and learn a whole bunch of new theory. This is the
book for you, although you should note that for many, many
people there is simply no practical approach to machine
learning without picking up a language or two along the way,
so you should be prepared to learn more than straightforward
techniques. This book uses R for its examples in order to get
something with a lot of power and less overhead than install-
ing an entire Hadoop cluster. This is a tradeoff; if you already
have Big Data around, somebody probably has already
installed a Hadoop cluster or so for you, so that using R may
actually be more work, both in installation and in trimming
data sets to fit on a single machine. Still, it gives a consistent
base to work from.

If you don’t already have machine-learning people doing
specialized stuff, you may be surprised at the amount of
progress that can be made with algorithms that are not
particularly smart. A few tricks will go a long way. If you do
have such people, a little learning will help you talk to them. I
found this an approachable introduction to the base tech-
niques, although not without quirks. Some sections are made
much more difficult to follow by having lovely big graphs.
That sounds like a plus, but when a page introduces 5 graphs,
which then show up on the 5 following pages with supporting
text across the next 10, the text and the picture get punish-
ingly out of sync, with text about illustration 6 showing up on
the same page as illustration 2. Admittedly, this problem is
definitely worse in the electronic editions I prefer to review,
where flipping back and forth 2 or 3 pages is not easy.

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , W I T H P E T E R G U T M A N N , S A M S T O V E R , A N D
M A R K L A M O U R I N E

	 ;login:  AUGUST 2012   Book Reviews    85

edition, the author brings in some interviews to help flesh out
the picture of other kinds of communities, but the bias is still
pretty strong. If you want to build a group of system adminis-
trators, or a coalition of commercial companies (to name the
communities I’m most familiar with), you will be doing some
translating and some skipping, but you will still find useful
information.

I have two mild regrets about the book. First, it does not at
any point talk about how you deal with community members
who are simply incapable of participating in the community
as part of the consensus reality. It strongly implies that all
community members are willing and able, if approached
correctly, to come into harmony; in my experience, almost
every community has members who are not willing and able
to do so, for one reason or another. Managing these people is
its own art. The author does encourage readers to try to bring
people, even difficult people, into the community, which I
think is a good choice. However, I think there are situations
where removing people is also a valid if difficult choice, and
it is useful to community managers to have some idea how to
negotiate these incredibly difficult waters.

Second, the author uses technical terms of the online com-
munity overly broadly. This may be intentional, as a way
to speak to people who come from other backgrounds, but
it clashes on my sensitive ears and in one case obscures an
important distinction. “Trolling” is not any type of disruptive
online behavior; it’s online behavior motivated by a desire to
create controversy and dissent. It’s important to know this
and to discuss it, for a couple of reasons. People who don’t
understand that trolls exist can easily be sucked into dealing
with fictional people, whereas people who do understand it
can leap to deciding that real, if deluded, people are trolls.
Either way, you get bad effects on the community. There is no
point trying to help a troll, and there is no point ignoring real
people. Lumping all of this together does a disservice to peo-
ple who’re trying to deal with online communities. The other
case that bothered me was “bikeshedding” being described as
all forms of discussion rather than getting something done; I
think this is wrong, but probably not importantly so.

Domain-Driven Design
Eric Evans
Addison-Wesley, 2004. 519 pp.
ISBN 0-321-12521-5

This is a book about domain modeling for people who model
domains for a living. It is not a book for people who might
want to bring a bit of domain modeling into their existing
process, although I suppose if you’re already doing architec-
ture for large development teams that are strongly separated

User Stories Applied for Agile Software
Development
Mike Cohn
Addison-Wesley, 2004. 262 pp.
ISBN 0-321-20568-5

User Stories makes an interesting pair to The Scrum Field
Guide. It has a reasonably similar loose, practical tone, and
a noticeably different take on some issues. Which issues?
It’s right up there with league vs. union in rugby, which is to
say, I could tell you, but if you’re not an aficionado, you’re just
going to be baffled. User Stories believes in half-point stories!
What kind of madness is this? Everybody knows you only
assign points from the Fibonacci series. Everybody who does
Scrum, that is. The rest of you are wondering if I am actually
making this up.

User stories are one of the key parts of Agile; they replace
requirements documents. It is entirely possible that Agile is
in fact entirely a plot to keep people from ever having to write
400-page documents with seven levels of nesting. I would
consider restructuring the entire programming culture as
a reasonable response to this experience. However, getting
user stories to actually be more useful than requirements
documents and getting people who are used to requirements
documents to accept them are both tricky.

This is one of those books with a summary and quiz ques-
tions at the end of every chapter, which always annoys me,
but it’s a quick, straightforward guide to how you would
get user stories, including advice on what generally goes
wrong and what to do when, for instance, you don’t get to
speak to actual users to get user stories. I love the advice on
what to do with stories when you’re finished; tear them up
if they’re written on paper, but keep them if they’re elec-
tronic. They’re not very useful—but destroying bits isn’t very
satisfying, either. This kind of advice is also evidence of solid
experience.

The Art of Community, Second Edition
Jono Bacon
O’Reilly, 2012. 526 pp.
ISBN 978-1-449-31206-0

This book’s central audience is people who are trying to build
free software communities, although it has wider applicabil-
ity, particularly to communities at the tricky interface of the
commercial and the volunteer. It does a good job of covering
this tricky territory, with advice that blends the practical
and the theoretical. (I am amused to note that it has the best
burn-down graphs of the lot, better than either of the books
that are actually about programming models.) In this second

	86    ;login:  VOL. 37, NO. 4

email message, sending an SMS, or clicking “Send” on email
that has your name in the “From:” field. In fact, provided that
the identities of the parties to the agreement are fairly obvi-
ous, even a document containing no conventional signature
at all may be enough to meet the legal requirements for a
contract, if the intent of the participants is manifest and the
method of conveying this is appropriate to the particular
transaction. The extreme flexibility of existing contract law
is demonstrated by the fact that a court case over the validity
of email that’s been “signed” by having the sender’s name on
it was supported by a quote from the Statute of Frauds Act
of 1677, predating the existence of email by several centu-
ries. The later parts of the book cover electronic and digital
signature laws in great detail, including the twisty maze
of signature laws, all different, that were passed in various
countries around the time of the dot-com boom. This portion
is probably of interest only to lawyers (or someone having
to deal with the mess of subtly incompatible laws), and it
appears to be an absolute minefield compared to the relative
simplicity of the earlier case-law-based portions. In any case,
much of what’s contained in the laws seems to present little
more than unnecessary complications. As the book points
out when discussing the calisthenics required by electronic
signature laws (p. 101), “contracts conducted by post . . . were
commonplace two hundred years before the Internet, and it
is to be wondered why businesses need such guidance when
they have been dealing with such issues for such a long period
of time.”

One thing to be aware of is that this book will take a bit of get-
ting used to for someone who’s not familiar with the format
of legal documents. The narrative progresses in two paral-
lel channels: the main body text at the top of the page and
extensive references, footnotes, comments, and annotations
at the bottom, and because of the emphasis on case law there
are plenty of those. The first half of the book, which covers
existing case law and precedents for allowing various forms
of non-manuscript signature, will be a real eye-opener for
anyone who has grown up expecting to have to use certifi-
cates and smart cards and assorted other paraphernalia in
order to form an electronic legally binding agreement. The
second half, covering the ins and outs of electronic and digi-
tal signature legislation, will probably be of interest mostly to
lawyers.

One downside to the book is that it’s quite pricey, around
$200 US. On the other hand, if you can find it in a library or
get your employer to buy it for you, it’s definitely worth a read
if you’re in a position where you have to deal with electronic/
digital signatures.

—Peter Gutmann

from the domain they’re building for, it might be a valuable
tool for you. But for the most part, it’s about adding depth and
finesse to your domain modeling.

Because of this, I’m not a great reviewer for it. I’m nearer to
being a domain expert than a domain modeler, and I found it
hard to sympathize with. Plus, the author is fond of patterns,
and carefully puts the name of every pattern in small caps.
This leads to entire sentences in which all the noun phrases
are in small caps, which rapidly became annoying and added
to the sensation that I was reading a careful exegesis of
somebody else’s religion. I’m pretty sure that this is dry going
for all but a small audience, for whom it is probably stuffy but
enlightening.

Electronic Signatures in Law
Stephen Mason
Cambridge University Press, Third Edition, 2007. 728 pp.
ISBN 978-1-84592-425-6

As any IT person knows, in order to create an electronic
signature you need (depending on your particular fashion
tastes) public and private keys, digital signatures, certifi-
cates, smart cards, and all manner of other paraphernalia.
Lawyers—the people who actually work with signatures and
signature law on a daily basis—don’t see it quite that way, and
this book explains why. For example, the function of a signa-
ture isn’t necessarily to form a contract but may be merely to
provide a cautionary function, encouraging the person affix-
ing the signature to a document to take extra care in reading
it, or a channeling function in which the signature records
the time at which a document was accepted by the signer. In
extreme cases it serves purposes quite unrelated to what we’d
normally associate with signatures, such as allowing docu-
ments to be taxed in the form of a stamp tax or stamp duty.

The book starts with precedents going back to the Magna
Carta, at which time “signatures” consisted of drawing
a cross as a sign of Christian truth because writing your
name on a piece of paper would have meant nothing, so that
only non-Christian could sign their names on a contract.
The book traces the history of what in legal terminology is
called a manuscript signature, traditionally a pen-and-paper
process, through to more modern forms such as telegrams
and telexes. In none of these cases was special legislation
necessary, since courts interpreted existing signature law
and practice to cover newer technology that was introduced
after the laws were written. This part of the book is a fas-
cinating look at just how flexible the interpretation of what
constitutes a signature actually is, with courts finding that
“signatures” can include things like signing as “Mum” or
saying “yes” (verbally), and more recently typing a name in an

	 ;login:  AUGUST 2012   Book Reviews    87

Metasploit Framework. Each example comes with a little
story, and I think this is a great way to teach/demonstrate the
capability, because we can all imagine day-to-day scenarios
like these. Lots of great stuff in this chapter, from creating
your own malicious PDF to cloning a target’s Web site and
harvesting credentials. Fantastic.

Chapter 11 introduces Fast-Track, which is another stand-
alone tool that uses the MSF. Unlike the SET, this is an
advanced pen-testing tool which offers exploitation methods
that complement the MSF. This tool provides some MS-
SQL attacks, different exploits from those bundled with
Metasploit, and some browser attack vectors. While Fast-
Track is quite advanced, its interface is pretty intuitive, and
this chapter walks you through it.

Chapter 12 is dedicated to Karmetasploit, which is
“Metasploit’s implementation of the KARMA attack.” This
involves setting up a fake access point and enticing users to
connect to it instead of to the “real” access point. Success-
fully executing this attack allows access to all network traf-
fic (e.g., passwords) as well as the ability to launch client-side
attacks on unsuspecting users. Karmetasploit is fairly simple
to set up and execute, and this chapter provides all the neces-
sary bits.

Chapters 13–16 are for the hard-core Metasploit user. If you
want to write your own module, create your own exploits,
port your exploits into the Framework, or write your own
Meterpreter API scripts, these are the chapters for you. Each
chapter deals with one of the topics and presents them in a
very accessible manner. If you want to write or import your
own exploits, you’ll need a firm grasp of assembler, so this is
not for the faint of heart. If you’re up for a challenge, though,
look no further.

The final chapter walks you through a simulated pen-test
from soup to nuts. Complete and succinct, the chapter encap-
sulates everything you’ve learned in this book. Two appendi-
ces give some help on configuring your target systems and a
“cheat sheet” of MSF commands. No stone is left unturned in
this book, I’ll tell ya.

This is a book about how to become a (better) pen-tester,
written by people who know what they are talking about and
focusing on one of the best tools available, open source or
otherwise. You simply cannot go wrong with this book if you
want to learn more about Metasploit, or even if you want to
learn more about penetration testing. Hands down, my new
favorite Metasploit book.

—Sam Stover

Metasploit
David Kennedy, Jim O’Gorman, Devon Kearns, and
Mati Aharoni
No Starch Press, 2011. 299 pp.
ISBN 978-1-59327-288-3

This book was designed as a “useful tutorial for the begin-
ner and a reference for practitioners” for the Metasploit
penetration testing framework. I think the authors definitely
achieved this goal: the book is well written, contains tons of
useful information, and is extremely thorough. If you haven’t
already picked up a book on Metasploit, this is the one to buy,
and even if you already have a decent book on Metasploit, you
probably should give this one a hard look. The first couple
of chapters deal with the basics of penetration testing and
where Metasploit fits into the process. Metasploit certainly
handles the exploitation aspect of a pen-test, but there are
lots of other things, such as gathering intel on your targets,
that require time and other tools. While the book definitely
focuses on Metasploit, a fair bit of time and effort was
put into making you a better overall pen-tester, not just a
Metasploit expert.

Chapter 5, “The Joy of Exploitation,” is where you really
start digging into the awesomeness of Metasploit. By this
point, you should be comfortable with the various Metasploit
Framework (MSF) interfaces, as well as several other stan-
dard tools/utilities such as nmap, whois, Nessus, and NeX-
pose. The ability to take Nessus/NeXpose/nmap output and
import it into Metasploit makes it a lot easier to keep track of
your targets and their likely vulnerabilities. This book doesn’t
just walk you through using Metasploit, it walks you through
how to use other tools that make the Metasploit experience
even more rewarding. Good stuff. Chapter 6 focuses on using
the Meterpreter, which is a mini-shell delivered as a payload
to an exploit. Once you’ve owned a box, you can use Meter-
preter to interact with the system instead of being limited to
the victim command prompt. In other words, just owning the
box is only half the battle—once you’re there, you want to per-
form local attacks on the system (e.g., grab password hashes),
and Meterpreter makes your job that much easier.

Chapters 7–9 go a little deeper into the more advanced
features of the MSF. Detection avoidance using MSFencode
to create custom binaries, client-side attacks, and auxiliary
modules, such as SSH brute-forcing and protocol (FTP,
HTTP, SMTP, SSH) fuzzers, are all tools that advanced pen-
testers can rely on. You may not need them the way you need
the exploits, but when you do, Metasploit has them.

Another vector that can’t be ignored is social engineering.
One of the authors of this book developed the Social-Engi-
neer Toolkit (SET), which is a separate tool that relies on the

	88    ;login:  VOL. 37, NO. 4

The real point of the book is to teach the underlying con-
cepts of software development. The examples in the book
are all written in Python, but Python is only the framework
on which the real lessons are hung. The book was originally
written and taught using Java.

There is very little exposition of Python syntax. The exam-
ples are clear and brief, and the text explains the intent and
meaning, but almost no time is spent on particular language
elements. A true beginner without the benefit of a classroom
and teacher will probably want to have a traditional language
manual as well while working through this book. A profes-
sional developer who is not familiar with Python will want
access to the Net or at least a pocket reference.

Think Stats: Probability and Statistics for
Programmers
Allen B. Downey
O’Reilly Media, 2011. 120 pp.
ISBN 978-1-449-30711-0

Again, the subtitle of Think Stats gets to the heart of why
Downey’s second book is different from most ordinary text-
books on probability and statistics. While most programmers
do not need to be statisticians, the wide variety of fields that
are using mathematical methods makes it unlikely that most
will be able to escape without some exposure.

Think Stats introduces statistics as a means to answer a
certain class of questions involving populations and data
sets. In the first chapter, Downey asks if there is a way to con-
firm the common belief that first children are born later in a
pregnancy than subsequent ones. He addresses that question
in new ways as the book progresses, adding nuance to the
answers each time.

Throughout this book Downey uses references to online
resources for additional reading and for data sets to use for
exploring. He introduces topics with appropriate mathemati-
cal notation, but, rather than taking up space with formal
derivations or proofs, he refers to online articles, usually
from Wikipedia, for students to explore on their own (or as
directed by the instructor). Downey focuses, instead, on illus-
trating each of the concepts in the context of some problem or
question in need of a solution.

Downey covers the traditional topics for an introductory
stats course: cumulative distribution functions, population
distribution curves and characteristics, and probability. And,
unusually for an introductory text, he also discusses Bayes-
ian statistics. The last half of the book covers hypothesis
testing, estimation, and correlation, again standard topics,
but again including Bayesian Estimation.

Python for Software Design: How to Think Like a
Computer Scientist
Allen B. Downey
Cambridge University Press, 2009. 270 pp.
ISBN 978-0-521-72596-5

Think Python: How to Think Like a Computer
Scientist
Allen Downey
Green Tea Press, 2012. 212 pp.
http://www.greenteapress.com/thinkpython/thinkpython.html

It has always seemed to me that there were three types of
technical books: tutorials, user guides, and references. Allan
Downey’s “Think” series has reminded me that there is a
fourth type: teaching texts.

A typical tutorial tries to guide the reader down a specific
path, controlling and limiting the reader’s experience. It
assumes that the user has little or no prior experience with
the subject. A user guide is similar but might be more com-
prehensive and more useful once the user has some experi-
ence. A reference provides the most detail, but generally no
learning narrative. All of these are focused on the single topic
at hand and try to minimize diversions.

A good teaching text can be special in several ways
(Downey’s books being special in all of them):

u	 Promotes classroom discussion
u	 Provides a learn-by-experience framework
u	 Encourages exploration

At first glance, “Think Python” is just another beginner’s
guide to a popular scripting language. The subtitle, while
less catchy, describes what’s really going on. The first two
paragraphs of the first chapter make it explicit: “The goal of
this book is to teach you to think like a computer scientist”
and “The single most important skill for a computer scientist
is problem solving.”

Most chapters introduce a single programming language
concept. Sprinkled in among these are case study chapters
that expose and discuss concepts such as interface and data
structure design. Each chapter concludes with a glossary,
a set of exercises, and a section on debugging specifically
addressing the new material.

While the book begins with such basic concepts as variables,
expressions, and statements, by the end the student will be
working with techniques of classic object-oriented program-
ming. Along the way the reader is introduced to the concepts
and practice of lists (including map and reduce) and hashes
(dictionaries in Python).

	 ;login:  AUGUST 2012   Book Reviews    89

Each of the sections contains some code, but more is provided
as downloadable modules, which are then used as a base for
the student’s work. The samples are implemented in Python
and use the NumPy and SciPy modules, but almost no text
is devoted to them. It is assumed either that the teacher will
provide what is needed or that the reader has the ability to
find what they need online.

These first two sections of the book are liberally laced with
references to classic papers and studies which have informed
the development of computational modeling as a discipline.
These often include links to Wikipedia articles and, occa-
sionally, to the original source papers. Downey invites the
reader to question and understand the limits of classical
scientific methods and the utility of computational methods
for understanding systems that resist traditional analysis.

The last few chapters of the book contain a set of case studies
presented by his students and evaluated by members of the
faculty. Each uses some form of non-deterministic model-
ing to explore the characteristics of some dynamic system.
Downey invites instructors and readers to submit additional
case studies for inclusion in the evolving text for the course.

In this latest book, Downey makes explicit something that
has been integral to the first two as well, but without recog-
nition. The preface includes a short section of guidance for
teachers who intend to use the book as the basis for a course,
and then a section dedicated to self-learners. He addresses
the fact that many popular books on these kinds of topics
are aimed at a casual audience and tend to avoid details and
depth that would scare off the lay reader (or a publisher’s
concept of a lay reader). These books are addressed to the
dedicated learner who is interested in the details and is moti-
vated to follow leads to the source materials.

As teaching texts these books are special. At about $30 US
they are each much less expensive than comparable text-
books. They are smaller, with many external references;
rather than including redundant and static expositions of
concepts, they take advantage of existing online resources.

All three of these books have one other characteristic that
sets them apart: they are all freely available under the Cre-
ative Commons Attribution-Noncommercial-ShareAlike
3.0 license. All three are available as HTML and PDF online
from Downey’s own Web site at http://www.greenteapress.com.

—Mark Lamourine

The book illustrates examples and provides exercises in
Python. It uses pyplot for graphing and provides other statis-
tical demonstration code as downloads from the book’s Web
site. It follows Think Python’s pattern of ending each chapter
with a glossary and exercises.

This book is aimed at a guided introductory college-level
classroom, but the frequent external references make it suit-
able for a motivated self-learner with working knowledge of
Python and enough calculus to be able to interpret the few
formal mathematical expressions: simple summation and
integration. The presentation is also ideal for a knowledge-
able programmer to explore and understand the basis of
statistical methods.

Think Complexity: Exploring Complexity Science
with Python
Allen B. Downey
O’Reilly Media, 2012. 142 pp.
ISBN 978-1-449-31463-7

Think Complexity is Downey’s most recent book and the least
conventional. As before, the subtitle gives a better feel for
the content, but this time it still needs some clarification.
The book really explores the techniques and applications of
computational modeling. “Complexity Science” is the name
given to the study of the set of problems where traditional
analysis is ineffective and to which computational modeling
is a better approach.

Downey devotes the first chapter to explaining what he
means by “Complexity Science,” although in the end you’ve
only really learned what it is not. He defines it largely in
contrast to traditional deterministic reductionist science
and engineering. A deep understanding of what that means
has to wait until the reader has gotten some experience with
modeling complex systems. Downey also promises to address
questions of the philosophy of science that are raised by the
development and use of computational modeling.

Chapters 2 through 5 are used to build up the base of tools
and concepts that will be needed for application to real prob-
lems. These include graphs and some analysis of algorithms
and statistics (there is some overlap from Think Stats here).

Chapters 6 through 10 are the meat of the book. Downey pro-
ceeds to introduce and explore the characteristics and uses
of cellular automata, self-organizing critical systems, and,
finally, agent-based models.

