
O C T O B E R 2 0 1 5 V O L . 4 0 , N O . 5

Operating Systems and
Sysadmin

History
Peter Salus on Workshops and Publications

Columns
New Unpacking Primitives in Python 3.5
David Beazley

Working with Wordpress Using Perl
David N. Blank-Edelman

Measuring Client Performance with NCPA
Dave Josephsen

The Importance of the Correct Denominator
Dan Geer

&	�Trading Latency for Performance
Using Distributed Shared Memory
Jacob Nelson, Brandon Holt, Brandon Myers,
Preston Briggs, Simon Kahan, Luis Ceze,
and Mark Oskin

&	�Why Do We Need Operating Systems?
Antti Kantee

&	Write-Optimized B-trees
Michael A. Bender, Martin Farach-Colton,
William Jannen, Rob Johnson, Bradley C.
Kuszmaul, Donald E. Porter, Jun Yuan,
and Yang Zhan

&	How Kubernetes Changes Operations
Brendan Burns

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

LISA15
November 8–13, 2015, Washington, D.C., USA
www.usenix.org/lisa15

Co-located with LISA15:

UCMS ’15: 2015 USENIX Container Management
Summit
November 9, 2015
www.usenix.org/ucms15

URES ’15: 2015 USENIX Release Engineering
Summit
November 13, 2015
www.usenix.org/ures15

Enigma
January 25–27, 2016, San Francisco, CA, USA
enigma.usenix.org

FAST ’16: 14th USENIX Conference on File and
Storage Technologies

February 22–25, 2016, Santa Clara, CA, USA
www.usenix.org/fast16

NSDI ’16: 13th USENIX Symposium on
Networked Systems Design and
Implementation

March 16–18, 2016, Santa Clara, CA, USA
www.usenix.org/nsdi16

SREcon16
April 7–8, 2015, Santa Clara, CA, USA

USENIX ATC ’16: 2016 USENIX Annual Technical
Conference

June 22–24, 2016, Denver, CO, USA
Submissions due February 1, 2016
www.usenix.org/atc16

Co-located with USENIX ATC ’16:

HotCloud ’16: 8th USENIX Workshop on Hot
Topics in Cloud Computing
June 20–21, 2016

HotStorage ’16: 8th USENIX Workshop on Hot
Topics in Storage and File Systems
June 20–21, 2016

SOUPS 2016: Twelfth Symposium on Usable
Privacy and Security
June 22–24, 2016
www.usenix.org/soups2016

USENIX Security ’16: 25th USENIX Security
Symposium

August 10–12, 2016, Austin, TX, USA
Co-located with USENIX Security ’16

WOOT ’16: 10th USENIX Workshop on Offensive
Technologies
August 8–9, 2016

CSET ’16: 9th Workshop on Cyber Security
Experimentation and Test
August 8, 2016

HotSec ’16: 2016 USENIX Summit on Hot Topics
in Security
August 9, 2016

OSDI ’16: 12th USENIX Symposium on
Operating Systems Design and Implementation

November 2–4, 2016, Savannah, GA, USA

LISA16
December 4–9, 2016, Boston, MA, USA

Do you know about the
USENIX Open Access Policy?

USENIX is the first computing association to offer free
and open access to all of our conferences proceedings
and videos. We stand by our mission to foster excellence
and innovation while supporting research with a prac­
tical bias. Your membership fees play a major role in
making this endeavor successful.

Please help us support open access. Renew your
USENIX membership and ask your colleagues to join
or renew today!

www.usenix.org/membership

http://www.usenix.org/facebook
http://www.usenix.org/youtube
http://www.usenix.org/linkedin
http://www.usenix.org/blog
http://www.usenix.org/gplus
http://www.usenix.org/lisa15
http://www.usenix.org/ucms15
http://www.usenix.org/ures15
http://www.usenix.org/fast16
http://www.usenix.org/nsdi16
http://www.usenix.org/atc16
http://www.usenix.org/soups2016
http://www.usenix.org/membership
https://enigma.usenix.org/

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2015 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

O C T O B E R 2 0 1 5 V O L . 4 0 , N O . 5

E D I T O R I A L
2	 Musings Rik Farrow

O P I N I O N
6	 The Rise and Fall of the Operating System Antti Kantee

S Y S T E M S
10	� Trading Latency for Performance in Data-Intensive Applications

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs,
Simon Kahan, Luis Ceze, Mark Oskin

15	� Thread and Memory Placement on NUMA Systems:
Asymmetry Matters Baptiste Lepers, Vivien Quéma,
and Alexandra Fedorova

22	� An Introduction to B"-trees and Write-Optimization
Michael A. Bender, Martin Farach-Colton, William Jannen,
Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Yang Zhan

29	� It’s Time to End Monolithic Apps for Connected Devices
Rayman Preet Singh, Chenguang Shen, Amar Phanishayee,
Aman Kansal, and Ratul Mahajan

S Y S A D M I N
36	 How Kubernetes Changes Operations Brendan Burns
43	� Being an On-Call Engineer: A Google SRE Perspective

Andrea Spadaccini and Kavita Guliani
48	 /var/log/manager: How Technical Managers Tell Time Andy Seely

H I S T O R Y
50	 Workshops and Publications Peter H. Salus
52	 Interview with Dr. Dan Geer Richard Thieme
54	 UNIX News: Volume 2, Number 10, May–June 1977

C O L U M N S
57	 Seeing Stars David Beazley
61	 Practical Perl Tools: Blog, Can We Talk? David N. Blank-Edelman
68	� iVoyeur—Using NCPA: Nagios Cross-Platform Agent

Dave Josephsen
71	 For Good Measure: The Denominator Dan Geer
75	 /dev/random Robert G. Ferrell

B O O K S
77	 Book Reviews Mark Lamourine

U S E N I X N O T E S
79	 USENIX Association Financial Statements for 2014

mailto:rik@usenix.org
mailto:michele@usenix.org
mailto:startype@comcast.net
http://www.usenix.org

2    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org During the HotCloud ’15 workshop, I was invited to join a discussion

group. We were supposed to decide which was better, VMs or con-
tainers. An hour later, we really hadn’t answered the question posed

to us, but we did have some answers.

Virtual machine technology has been around since IBM developed VMs as a method for shar-
ing mainframes. That might sound funny, but mainframes in businesses were used to run
batch jobs or long-running transaction processing applications, like managing accounts for
a bank. Sharing the computer, even if that computer wasn’t always busy, was a side issue.

With VMs, customers could run other applications when demand by the main application
was low. You could even run IBM’s version of UNIX, AIX, and later, Linux, providing the
illusion of a time-sharing system that we are most familiar with.

In the early noughts, VM technology really took off. Xen and VMware became popular ways
of sharing underused systems. And like the original IBM VMs, you could run applications
requiring different operating systems all on the same server.

Containers
Container technology was taking off at about the same time, and the biggest users of con-
tainers were companies with clusters all running the same OS. For those uses, running one
operating system inside of another, however stripped down, was a waste of processing power.
Also, why run an operating system per VM when you could just have a single operating sys-
tem supporting all of your containers?

For many years, VMs were the prominent technology, with containers being used at Google
or hosting companies. And there are both advantages and disadvantages to using containers.
While containers were great at improving efficiency and making management easier because
there was just one set of system software to manage, containers were not as good as VMs for
security. That extra level of separation, eventually supported by special CPU instructions,
really did make the combination of a hypervisor and VMs more secure than a system running
containers using a single Linux kernel.

And those were, roughly, the results of our discussion group: that VMs were best for running
legacy applications and for security, while containers were a packaging framework that is
more efficient and easier to manage than VMs. But we did discuss one other technology, one
not included in our original remit: unikernels.

The Middle Path
We had two people from Cambridge in our group, and they suggested that we should also
consider unikernels, like MirageOS. So let’s talk about unikernels.

Where VMs are entire operating systems that happen to be running applications, and
containers are namespaces [1] used to isolate just one application, unikernels are more like
applications that run directly on top of a hypervisor [2]. Unikernels can be even more efficient
than containers because instead of sharing an operating system, like containers, unikernels

http://www.usenix.org
mailto:rik@usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  3

EDITORIAL
Musings

don’t have an operating system. Unikernels by design run a
single-threaded application and rely on the hypervisor for access
to hardware resources.

You might just be thinking that being constrained to a single
thread can be a serious issue, and you’d be right—for some
applications. But for many others, a single, stripped down to
bare essentials, dedicated thread is just right. Unikernels jet-
tison almost all of the support found in traditional operating
systems in exchange for single-minded efficiency.

The unikernel focus on doing one thing has security benefits as
well. While VMs and containers include a whole array of applica-
tions, such as shells, administrative commands, and compilers,
unikernels have nothing except the application and the support
library needed by that application for communication with the
hypervisor. Unikernels are a manifestation of least privilege and
minimal configuration hard to achieve with VMs or containers.

And it turns out that because the security model of containers
is weaker than that of VMs or unikernels, most people who
use containers run containers belonging to the same security
domain within a VM. I was surprised to learn this because
it means that most of the gain in performance over VMs gets
tossed for stronger security. That containers are still used at all
speaks to how much easier it is to manage applications within
containers as compared to entire VMs. Someone who works for
a company that runs giant clusters mentioned that they even run
VMs from within containers, meaning that they start with a VM
that runs containers that run VMs. Sounds silly, but the point is
that containers are easier to manage than VMs, and that is actu-
ally very important to people who run huge clusters.

You might be wondering why we don’t see unikernels everywhere,
and you are right to wonder. Unikernels appear to be the best
choice when it comes to efficiency and security for many appli-
cations. But there are some things that the unikernel people
aren’t going to tell you.

MirageOS, with its Cambridge and Xen connections, is the best
known of unikernels today, but there are others: LING, based on
Erlang, and HaLVM, based on Haskell, to name two. MirageOS
uses OCaml, a functional programming language. Erlang and
Haskell are also functional programming languages. Functional
programming languages have real advantages when it comes to
security, although OCaml does not require the programmer to
write purely functional code. Learning how to write in Haskell,
for example, requires serious effort on the part of the program-
mer: you need to think differently, more like a mathematician, to
become a useful functional programmer.

The requirement of needing to be a programmer, familiar with
functional languages, is currently a huge impediment to the suc-
cess of unikernels. Unlike VMs, which provide an environment

that appears identical to the one that most people normally work
with, and with containers, which focus on packaging, working
with a unikernel today means using an application written for a
particular unikernel technology. You can certainly do that, but
you best be a programmer who can adopt the application of your
choice to run in that environment.

Perhaps the easiest unikernel technology to use are rump kernels
based on NetBSD, as the environment is POSIX and the language
commonly used is C. Antti Kantee, one of the primary creators
of rump kernels, has written an article in this issue arguing for
the use of unikernels. One of his many points is that much of
what operating systems provide us with is support needed by
time-sharing systems. Time-sharing was a method designed for
sharing mainframes among multiple users; today, most servers
run applications that provide services, and their users are other
applications, not people. Times have changed, but operating
systems have remained the same.

Well, I am exaggerating. Operating systems haven’t remained
quite the same. They have grown. Enormously. For example,
Linux has grown from 123 system calls [3] in version 1 to nearly
400 system calls for the 3.2 kernel. Microsoft Windows Server
2012 has 1144 system calls [4]. Operating systems have become
incredibly complex.

While researching how to run legacy code securely within Web
browsers, Douceur et al. [5] discovered that they could run some
desktop applications with minimal modifications while using
just a handful of system calls. Unikernels move us closer to a
similarly minimal environment.

The Lineup
We start out this issue with an opinion piece by Antti Kantee.
While Kantee certainly has his own axe to grind, he also makes
some very good points while being amusing at the same time.

Next we have an article about Grappa (no, not the liquor), a dis-
tributed shared memory framework developed by a group at the
University of Washington, Nelson et al. The Grappa framework
creates an abstraction of a single memory space for program-
mers seeking to develop software that works like Hadoop, Spark,
or GraphLab. Their system also hides the latency of remote
memory accesses by taking advantage of the parallelism inher-
ent in processing big data.

We next take a look at a different issue, also caused by non-uniform
memory access. Lepers et al. studied how the core interconnects
work in server-class AMD processors, and discovered that the
bandwidth between cores in AMD chips varies tremendously.
They developed and tested software that can determine the best
placement for multithreaded applications, and migrate threads
to cores with more bandwidth between them.

http://www.usenix.org

4    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

EDITORIAL
Musings

Both of these articles are based on papers presented at USENIX
ATC ’15. The next article was related to a FAST ’15 paper and
presents a novel algorithm for fast inserts, deletes, and updates
in B-trees, while providing the same level of read performance.
B-epsilon trees trade space used for pivot keys in each node
for space used to buffer writes, and the article by Bender et al.
explains how the algorithm works, as well as proving it to be
faster than B-trees for writes.

Singh et al. present Beam, part of a Microsoft project with a goal
of collecting more useful information about certain events from
the Internet of Things (IoT). While one type of sensor can provide
potentially useful information, having an abstraction for multiple
sensors can better answer a query such as “Is someone home?”

Andrea Spadaccini and Kavita Guliani continue the series of
articles about the practices of System Resource Engineers
(SREs) within Google. They explain how SRE teams handle
on-call, one of the many vexing issues facing anyone who sup-
ports software services, in a way that has proven to work well
and be fair to all participants.

Brendan Burns explains the Kubernetes (pronounced koo-ber-
net-tees) project. While Docker has made containers into an
easy-to-use packaging system, Kubernetes focuses on managing
the services presented by applications running in containers.
Kubernetes presents a single IP address for a group of contain-
ers, handles load balancing, keeps the configured number of
services running, and handles scaling and upgrades.

Andy Seely has more tips for technical managers. In this column,
Andy explains how time management is different for managers
(compared to sysadmins and other technical staff), and provides
advice from his own experience on how to best manage your time.

Dave Beazley’s Python column explains some new syntax in
Python 3.5. * and ** have been available for use in function
arguments, where the function needs to be able to accept a vari-
able number of arguments. Version 3.5 extends how this syntax
works, including for specifying keyword-only arguments and
conversion of arguments.

David Blank-Edelman explains how you can get Perl to work
with WordPress. WordPress currently has a WP-API plugin that
might become a standard part of WordPress, and David demon-
strates how to get that plugin to work gracefully with the CRUST
Web service.

Dave Josephsen wanted to be able to monitor the relative per-
formance of some apps on different laptops. Dave shows how to
install and use the Nagios Cross-Platform Agent for Linux and
Apple systems.

Dan Geer discusses the denominator of risk: when we attempt
to calculate risk, how best to choose the number of systems at
risk. When comparing the number of unpatched exploits to the
number of potential targets (the denominator), knowing the
denominator can make a huge difference.

Robert Ferrell decides to redesign the Internet for better secu-
rity, working as a non-network non-specialist.

Mark Lamourine has two book reviews this time, on The Essen-
tial Turing and Drift into Failure.

Peter Salus has written another in his series of columns on
the history of USENIX, covering the change from having two
Annual Tech conferences each year to having many more
focused workshops and conferences. Salus also discusses the
journal Computer Systems.

We conclude this issue with a portion of an interview conducted
with Dan Geer in 2000, where he talks about why he became
President of the USENIX Board of Directors. We included these
statements because Geer explains both where USENIX was at
this time (much larger) and his own remarkably insightful pro-
jections about the future he imagined 15 years ago.

Speaking of the future, I think we will continue to see both con-
tainers and VMs used on the same system. Whether unikernels
will become as popular is still up in the air. Containers and VMs
provide something familiar, and it is always easier for people
to continue dealing with the familiar than to launch into the
wilderness of the new. If support for unikernel-based applica-
tions continues to grow, these streamlined packages are likely
to become just as popular.

Resources
[1] James Bottomley and Pavel Emelyanov, “Containers,”
;login:, vol. 39, no. 5, October 2014: https://www.usenix.org
/publications/login/october-2014-vol-39-no-5/containers.

[2] Unikernels: http://wiki.xenproject.org/wiki/Unikernels.

[3] Linux system calls: http://man7.org/linux/man-pages
/man2/syscalls.2.html, http://asm.sourceforge.net/syscall
.html.

[4] Microsoft, Supported System Calls: https://technet
.microsoft.com/en-us/library/Cc754234.aspx.

[5] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob
R. Lorch, Microsoft Research, “Leveraging Legacy Code to
Deploy Desktop Applications on the Web”: http://www.usenix
.org/events/osdi08/tech/full_papers/douceur/douceur_html
/index.html.

http://www.usenix.org
https://www.usenix.org/publications/login/october-2014-vol39-no-5/containers
http://wiki.xenproject.org/wiki/Unikernels
http://man7.org/linux/man-pages/man2/syscalls.2.html
http://asm.sourceforge.net/syscall.html
https://technet.microsoft.com/en-us/library/Cc754234.aspx
https://technet.microsoft.com/en-us/library/Cc754234.aspx
http://www.usenix.org/events/osdi08/tech/full_papers/douceur/douceur_html/index.html
http://www.usenix.org/events/osdi08/tech/full_papers/douceur/douceur_html/index.html

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  5

EDITORIAL
Letters to the Editor

Hello,

I received an issue of ;login: magazine, “Sysadmin and Distributed
Computing” (April 2015) while attending SouthEast LinuxFest
(SELF) in June. I was very impressed with your publication and
am now thoroughly disgusted with Wired magazine.

There was a mention of a Student Programs contact program,
and I wanted to ask if you already have a rep on the Virginia Tech
campus. If you have a rep, I would like to talk to them; if not, I
would be glad to set up a Web site for USENIX info and library,
which I can restrict to campus authorization.

I’ll also be glad to forward USENIX info to our student Linux
Users Group, VTLUG, and the Tech Support and/or Sys Admin
campus groups.

Denton Yoder
Computer Systems Engineer
Biological Systems Engineering
Virginia Tech

Rik,

Thank you…USENIX is a great org and ;login: a great mag. When
it arrives, I know there will be an hour coming up shortly where I
can put on the headphones, kick back, and read about people and
ideas that relax and educate my poor tired computational soul.
Good things by good people working for a better Net.

Thanks, and I promise to get on the stick and start submitting.
Cyberville here is going 90 mph and just getting warmed up.
Look forward to seeing folks out in my neck of the woods for
WOOT and then for LISA.

Keep the faith…

Best,
Hal Martin
University of Maryland, Baltimore County

Do you have a USENIX Representative on your university or college campus?
If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is
always looking for academics to participate. The program is designed for faculty who directly interact with students. We
fund one representative from a campus at a time. In return for service as a campus representative, we offer a complimen-
tary membership and other benefits.

A campus rep’s responsibilities include:
■ Maintaining a library (online and in print) of USENIX

publications at your university for student use
■ Distributing calls for papers and upcoming event

 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas
of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Representative),
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty
have access.

To qualify as a campus representative, you must:
■ Be full-time faculty or staff at a four-year accredited university
■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with infor-
mation and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

http://www.usenix.org

OPINION

6    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

The Rise and Fall of the Operating System
A N T T I K A N T E E

A n operating system is an arbitrary black box of overhead that enables
well-behaving application programs to perform tasks that users are
interested in. Why is there so much fuss about black boxes, and could

we get things done with less?

Historical Perspective
Computers were expensive in the ’50s and ’60s. For example, the cost of the UNIVAC I in
1951 was just short of a million dollars [1]. Accounting for inflation, that is approximately
nine million dollars in today’s money. It is no wonder that personal computing had not been
invented back then. Since it was desirable to keep millions of dollars of kit doing something
besides idling, batch scheduling was used to feed new computations and keep idle time to a
minimum.

As most of us intuitively know, reaching the solution of a problem is easier if you are allowed
to stumble around with constant feedback, as compared to a situation where you must have
holistic clairvoyance over the entire scenario before you even start. The lack of near-instant
feedback was a problem with batch systems. You submitted a job, context switched to some-
thing else, came back the next day, context switched back to your computation, and discov-
ered the proverbial missing comma in your program.

To address the feedback problem, time-sharing was invented. Users logged into a machine
via a teletype and got the illusion of having the whole system to themselves. The time-
sharing operating system juggled between users and programs. Thereby, poetic justice was
administered: the computer was now the one context-switching, not the human. Going from
running one program at a time to running multiple at the “same” time required more complex
control infrastructure. The system had to deal with issues such as hauling programs in and
out of memory depending on if they were running or not (swapping), scheduling the tasks
according to some notion of fairness, and providing users with private, permanent storage
(file systems). In other words, 50 years ago they had the key concepts of current operating
systems figured out. What has happened since?

It’s Called Hardware Because It Makes Everything Hard
When discussing operating systems, it is all but mandatory to digress to hardware, another
black box. After all, presenting applications with a useful interface to hardware is one of the
main tasks of an operating system, time-sharing or otherwise. So let’s get that discussion out
of the way first. The question is: why does hardware not inherently present a useful interface
to itself? We have to peer into history.

I/O devices used to be simple, very simple. The intelligent bit of the system was the software
running on the CPU. It is unlikely that manufacturers of yore desired to make I/O devices
simpler than what they should be. The back-then available semiconductor technologies
simply did not feasibly allow building complex I/O devices. An example of just how hopeless
hardware used to be is the rotational delay parameter in old versions of the Berkeley Fast File
System. That parameter controlled how far apart, rotationally speaking, blocks had to be
written so that contiguous I/O could match the spinning of the disk. Over the years, adding

Antti has been an open source
OS committer for over 15 years
and believes that code which
works in the real world is not
born, it is made. He is a fan

of simplest possible solutions. Antti lives in
Munich and can often be seen down by the
Isar River when serious thinking is required.
pooka@rumpkernel.org

http://www.usenix.org
mailto:pooka@rumpkernel.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  7

OPINION
The Rise and Fall of the Operating System

more processing power to storage devices became feasible,
and we saw many changes: fictional disk geometry, I/O buffer-
ing, non-spinning disks, automated bad block tracking, etc. As
a result of the added processing power, approaches where the
systems software pretends it still knows the internal details of
devices, e.g., rotational delay, are obsolete or at least faltering.

As a result of added I/O device processing power, what else is
obsolete in the software/hardware stack? One is tempted to
argue that everything is obsolete. The whole hardware/soft-
ware stack is bifurcated at a seemingly arbitrary position which
made sense 30 years ago, but no longer. Your average modern
I/O device has more computing power than most continents had
30 years ago. Pretending that it is the same dumb device that
needs to be programmed by flipping registers with a sharpened
toothpick results in sad programmers and, if not broken, at
least suboptimal drivers. Does doing 802.11 really require 30k+
lines of driver code (including comments), 80k+ lines of generic
802.11 support, and a 1 MB firmware to be loaded onto the NIC?
For comparison, the entire 4.3BSD kernel from 1986 including
all device drivers, TCP/IP, the file system, system calls, and so
forth is roughly 100k lines of code. How difficult can it be to join
a network and send and receive packets? Could we make do with
1k lines of system-side code and 1.01 MB of firmware?

The solution for hardware device drivers is to push the complex-
ity where it belongs in 2015, not where it belonged in 1965. Some
say they would not trust hardware vendors to get complex soft-
ware right, and therefore the complexity should remain in soft-
ware running on the CPU. As long as systems software authors
cannot get software right either, there is no huge difference in
correctness. It is true that having most of the logic in an operat-
ing system does carry an advantage due to open source systems
software actually being open source. Everyone who wants to
review and adjust the 100k+ lines of code along their open source
OS storage stack can actually do so, at least provided they have
some years of spare time. In contrast, when hardware vendors
claim to support “open source,” the open source drivers com-
municate with an obfuscated representation of the hardware,
sometimes through a standard interface such as SATA AHCI or
HD audio, so in reality the drivers reveal little of what is going on
in the hardware.

The trustworthiness of complex I/O devices would be improved
if hardware vendors truly understood what “open source” means:
publishing the most understandable representation, not just any
scraps that can be run through a compiler. Vendors might prefer
to not understand, especially if we keep buying their hardware
anyway. Would smart but non-open hardware be a disaster?
We can draw some inspiration from the automobile industry.
Over the previous 30 years, we lost the ability to fix our cars and
tinker with them. People like to complain about the loss of that

ability. Nobody remembers to complain about how much better
modern cars perform when they are working as expected.

Technology should encapsulate complexity and be optimized for
the common case, not for the worst case, even if it means we, the
software folk, give up the illusion of being in control of hardware.

If It Is Broken, Don’t Not Fix It
The operating system is an old concept, but is it an outdated one?
The early time-sharing systems isolated users from other users.
The average general purpose operating system still does a decent
job at isolating users from each other. However, that type of
isolation does little good in a world that does not revolve around
people logging into a time-sharing system from a teletype. The
increasing problem is isolating the user from herself or himself.

Ages ago, when those who ran programs also wrote them, or at
least had a physical interaction possibility with the people who
did, you could be reasonably certain that a program you ran did
not try to steal your credit card numbers. Also, back then your
credit card information was not on the machine where you ran
code, which may just as well be the root cause as to why nobody
was able to steal it. These days, when you download a million
lines of so-so trusted application code from the Internet, you
have no idea of what happens when you run it on a traditional
operating system.

The time-sharing system also isolates the system and hard-
ware components from the unprivileged user. In this age when
everyone has their own hardware—virtual if not physical—that
isolation vector is of questionable value. It is no longer a catas-
trophe if an unprivileged process binds to transport layer ports
less than 1024. Everyone should consider reading and writing
the network medium as unlimited due to hardware no longer
costing a million dollars, regardless of what an operating system
does. The case for separate system and user software compo-
nents is therefore no longer universal. Furthermore, the abstract
interfaces that hide underlying power, especially that of modern
I/O hardware, are insufficient for high-performance computing.
If the interfaces were sufficient, projects looking at unleashing
the hidden I/O power [3, 4] would not exist.

In other words, since the operating system does not protect
the user from evil or provide powerful abstractions, it fails its
mission in the modern world. Why do we keep on using such
systems? Let us imagine the world of computing as a shape
sorter. In the beginning, all holes were square: all computa-
tion was done on a million-dollar machine sitting inside of a
mountain. Square pegs were devised to fit the holes. The advent
of time-sharing brought better square pegs, but it did so in the
confines of the old scenario of the mountain-machine. Then the
world of computing diversified. We got personal computing, we
got mobile devices, we got IoT, we got the cloud. Suddenly, we

http://www.usenix.org

8    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

OPINION
The Rise and Fall of the Operating System

had round holes, triangular holes, and the occasional trapezoid
and rhombus. Yet, we are still fascinated by square-shaped pegs,
and desperately try to cram them into every hole, regardless of
whether they fit.

Why are we so fascinated with square-shaped pegs? What hap-
pens if we throw away the entire operating system? The first
problem with that approach is, and it is a literal show-stopper,
that applications will fail to run. Already in the late 1940s com-
putations used subroutine libraries [2]. The use of subroutine
libraries has not diminished in the past 70 years, quite to the
contrary. An incredible amount of application software keeping
the Internet and the world running has been written against the
POSIX-y interfaces offered by a selection of operating systems.
No matter how much you do not need the obsolete features pro-
vided by the square peg operating system, you do want the appli-
cations to work. From-scratch implementations of the services
provided by operating systems are far from trivial undertakings.
Just implementing the 20-or-so flags for the open() call in a
real-world-bug-compatible way is far from trivial.

Assuming you want to run an existing libc/application stack, you
have to keep in mind that you still have roughly 199 system calls
to go after open(). After you are done with the system calls, you
then have to implement the actual components that the system
calls act as an interface to: networking, file systems, device
drivers, etc. After all that, you are finally able to get to the most
time-consuming bit: testing your implementation in the real
world and fixing it to work there. In essence, we are fascinated by
square-shaped pegs because our applications rest on the support
provided by those pegs. That is why we are stuck in a rut and few
remember to look at the map.

There Is No Such Thing as Number One
The guitarist Roy Buchanan was confronted with a yell from
the audience titling him as number one. Buchanan’s response
was: “There is no such thing as number one ... but I love you for
thinking about it, thank you very much.” The response contains
humble wisdom: no matter how good you are at some style(s), you
can never be the arch master of all the arts. Similarly, in the ages
past the mountain-machine, there is no one all-encompassing
operating system because there are so many styles to computing.
We need multiple solutions for multiple styles. The set presented
below is not exhaustive but presents some variations from the
mountain-machine style.

Starting from the simplest case, there is the embedded style case
where you run one trust-domain on one piece of hardware. There,
you simply need a set of subroutines (drivers) to enable your
application to run. You do not need any code that allows the single-
user, single-application system to act like a time-sharing system
with multiple users. Notably, the single-application system is even

simpler and more flexible than the single-user system [5], which,
in turn, is simpler and more flexible than the multi-user system.

Second, we have the cloud. Running entire time-sharing systems
as the provisioning unit on the cloud was not the ticket. As a
bootstrap mechanism it was brilliant: everything worked like
it worked without virtualization, so the learning curve could
be approximated as having a zero-incline. In other aspects, the
phrase “every problem in operating systems can be solved by
removing layers of indirection” was appropriate. The backlash
to the resource wastage of running full operating systems was
containers, i.e., namespace virtualization provided by a single
time-sharing kernel.

While containers are cheaper, the downside is the difficulty in
making guarantees about security and isolation between guests.
The current cloud trend is gearing towards unikernels, a term
coined and popularized by the MirageOS project [6], where the
idea is that you look at cloud guests just like you would look
at single-application hardware. The hypervisor provides the
necessary isolation and controls guest resource use. Since the
hypervisor exposes only a simple hardware-like interface to the
guest, it is much easier to reason about what can and should hap-
pen than it is to do so with containers. Also, the unikernel can
be optimized for each application separately, so the model does
not impose limiting abstractions either. Furthermore, if you can
reasonably partition your computations so that one application
instance requires at most one full-time core, most of the multi-
core programming performance problems simply disappear.

We also need to address the complex general purpose desktop/
mobile case, which essentially means striking a balance between
usability and limiting what untrusted applications can do. Virtu-
alization would provide us with isolation between applications,
but would it provide too much isolation?

Notably, when you virtualize, it is more difficult to optimize
resource usage, since applications do not know how to play
along in the grand ecosystem. For the cloud, that level of general
ignorance is not a huge problem, since you can just add another
datacenter to your cloud.

You cannot add another datacenter into your pocket in case your
phone uses the local hardware resources in an exceedingly slack
manner. Time will tell if virtualization adapted for the desktop
[7] is a good enough solution, or if more fine-grained and precise
methods [8] are required, or if they both are the correct answer
given more specific preconditions. Even on the desktop, the
square peg is not the correct shape: we know that the system
will be used by a single person and that the system does not need
to protect the user from non-existent other users. Instead, the
system should protect the user from malware, spyware, trojans,
and anything else that can crawl up the network pipe.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  9

OPINION
The Rise and Fall of the Operating System

What We Are Doing to Improve Things
We can call them drivers, we can call them components, we can
call them subroutines, we can call them libraries, but we need
the pegs at the bottom of the computing stack for our applica-
tions to work. In fact, everything apart from the topmost layer of
the software stack is a library. These days, with virtually unlim-
ited hardware, it is mostly a matter of taste whether something
is a “system driver” or “application library.”

Rolling your own drivers is a hopeless battle. To address that
market, we are providing componentized, reusable drivers at
http://rumpkernel.org/. Those drivers come unmodified from
a reputable kernel. Any approach requiring modification (aka
porting) and maintenance induces an unbearable load for any-
thing short of the largest projects with vast amounts of developer
resources.

Treating the software stack as a ground-up construction of
driver components gives the freedom to address each problem
separately, instead of trying to invent ways to make the problem
isomorphic to a mountain-machine. Drivers lifted from a time-
sharing system will, of course, still exhibit time-sharing char-
acteristics—there is no such thing as number one with drivers
either. For example, the TCP/IP driver will still prevent non-root
from binding to ports less than 1024. For example, in a uniker-
nel, you are free to define what root or non-root means or simply
compile the port check out of the driver. You can perform those
modifications individually to suit the needs of each application.
As a benefit, applications written for time-sharing-y, POSIX-y
systems will not know what hit them. They will simply work
because the drivers provide most everything that the applica-
tions expect.

We ended up building a unikernel based on the drivers offered
by rump kernels via rumpkernel.org: Rumprun. We were not
trying to build an OS-like layer but one day simply realized that
we could build one which would just work, with minimal effort.
The noteworthiness of the Rumprun unikernel does not come
from the fact that existing software such as Nginx, PHP, and
mpg123 can be cross-compiled in the normal fashion and then
run directly on the cloud or on bare metal. The noteworthiness
comes from the fact that the implementation is a few thousand
lines of code ... plus drivers. The ratio of drivers to “operating
system” is on the order of 100:1, so there is very little operat-
ing system in there. The Rumprun implementation is that of an
orchestrating system, which conducts the drivers.

Conclusion
Time-sharing systems were born over 50 years ago, a period
from which we draw our concept of the operating system. Back
then, hardware was simple, scarce, and sacred, and those attri-
butes drove the development of the concepts of the system and
the users. In the modern world, computing is done in a multitude
of ways, and the case for the all-encompassing operating system
has been watered down. Advances in semiconductor technology
have enabled hardware to be smart, but hardware still exposes
dumb interfaces, partially because we are afraid of smart
hardware.

The most revered feature of the modern operating system is sup-
port for running existing applications. Minimally implemented
application support is a few thousand lines of code plus the driv-
ers, as we demonstrated with the Rumprun unikernel. Therefore,
there is no reason to port and cram an operating system into
every problem space. Instead, we can split the operating system
into the “orchestrating system” (which also has the catchy OS
acronym going for it) and the drivers. Both have separate roles.
The drivers define what is possible. The orchestrating system
defines how the drivers should work and, especially, how they
are not allowed to work. The two paths should be investigated
relatively independently as opposed to classic systems develop-
ment where they are deeply intertwined.

References
[1] http://www.computerhistory.org/timeline/?category=cmptr.

[2] M. Campbell-Kelly, “Programming the EDSAC: Early
Programming Activity at the University of Cambridge,” IEEE
Annals of the History of Computing, vol. 2, no. 1 (January–
March 1980), pp. 7–36.

[3] S. Peter, J. Li, Irene Zhang, D. R. K. Ports, D. Woos, A. Krish-
namurthy, T. Anderson, T. Roscoe, “Arrakis: The Operating
System Is the Control Plane,” Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation,
(2014), pp. 1–16.

[4] L. Rizzo, “netmap: A Novel Framework for Fast Packet
I/O,” Proceedings of the USENIX Annual Technical Conference
(2012), pp. 101–112.

[5] B. Lampson and R. Sproull, “An Open Operating System for
a Single-User Machine,” ACM Operating Systems Rev., vol. 11,
no. 5 (Dec. 1979), pp. 98–105.

[6] MirageOS: https://mirage.io/.

[7] Qubes OS: https://www.qubes-os.org/.

[8] Genode Operating System Framework: http://genode.org/.

http://www.usenix.org
http://rumpkernel.org/
http://www.computerhistory.org/timeline/?category=cmptr
https://mirage.io/
https://www.qubes-os.org/
https://www.qubes-os.org/

10    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMSTrading Latency for Performance in
Data-Intensive Applications

J A C O B N E L S O N , B R A N D O N H O L T , B R A N D O N M Y E R S , P R E S T O N B R I G G S ,
S I M O N K A H A N , L U I S C E Z E , M A R K O S K I N

Jacob Nelson received a PhD in
computer science from the
University of Washington in
2014. His research interests
include computer architecture

and runtime systems for big data and
high-performance computing.
nelson@cs.washington.edu

Brandon Holt is a PhD student
in Computer Science and
Engineering at the University of
Washington, advised by Luis
Ceze and Mark Oskin. He is

interested in programming models, compilers,
and systems for clusters, especially
abstractions to mitigate real-world challenges
like high contention. bholt@cs.washington.edu

Brandon Myers is a PhD
candidate and Lecturer in
Computer Science and
Engineering at the University of
Washington, advised by Bill

Howe and Mark Oskin. He is interested in
building systems to enable fast and flexible
parallel programming, at the intersection of
high performance computing, data
management, and architecture.
bdmyers@cs.washington.edu

Preston Briggs is a Senior
Engineer at Reservoir Labs
and an Affiliate Professor in
Computer Science and
Engineering at the University of

Washington. He received a PhD in computer
science from Rice University in 1992.
preston@cs.washington.edu

The rising importance of data-intensive applications has fueled the
growth of a plethora of distributed computing frameworks, including
Hadoop, Spark, and GraphLab. We have developed a system called

Grappa [1, 2] to aid programmers in developing new frameworks. Grappa pro-
vides a distributed shared memory abstraction to hide complexity from the
programmer, and takes advantage of parallelism in the data to hide remote
access latency and to trade latency for more performance. These techniques
allow it to outperform existing frameworks by up to an order of magnitude.

Data-Intensive Applications on Distributed Shared Memory
Software distributed shared memory (DSM) systems provide shared memory abstractions
for clusters. Historically, these systems performed poorly, largely due to limited inter-node
bandwidth, high inter-node latency, and the design decision of piggybacking on the virtual
memory system for seamless global memory accesses. Past software DSM systems were
largely inspired by symmetric multiprocessors, attempting to scale that programming
mindset to a cluster. However, applications were only suitable for them if they exhibited sig-
nificant locality, limited sharing, and coarse-grained synchronization—a poor fit for many
modern data-intensive applications.

DSM offers the promise of simpler implementations of data-intensive application frame-
works. Figure 1 shows a minimal example of a “word count”-like application in actual Grappa
DSM code. The input array, chars, and output hash table, cells, are distributed over multiple
nodes. A parallel loop runs on all nodes to process shards of the input array, hashing each key
to its cell and incrementing the corresponding count atomically. The code looks similar to
plain shared-memory code, yet it spans multiple nodes and scales efficiently.

Applying the DSM concept to common data-intensive computing frameworks is similarly
straightforward:

MapReduce. Data parallel operations like Map and Reduce are simple to think of in terms
of shared memory. Map is simply a parallel loop over the input (an array or other distributed
data structure). It produces intermediate results into a hash table similar to that in Figure 1.
Reduce is a parallel loop over all the keys in the hash table.

Vertex-centric. GraphLab/PowerGraph is an example of a vertex-centric execution model,
designed for implementing machine-learning and graph-based applications. Its three-phase
gather-apply-scatter (GAS) API for vertex programs enables several optimizations pertinent
to natural graphs. Such graphs are difficult to partition well, so algorithms traversing them
exhibit poor locality. Each phase can be implemented as a parallel loop over vertices, but
fetching each vertex’s neighbors results in many fine-grained data requests.

Relational query execution. Decision support, often in the form of relational queries, is
an important domain of data-intensive workloads. All data is kept in hash tables stored in a
DSM. Communication comes from inserting into and looking up in hash tables. One parallel
loop builds a hash table, followed by a second parallel loop that filters and probes the hash

http://www.usenix.org
mailto:nelson@cs.washington.eduBrandon
mailto:bholt@cs.washington.eduBrandon
mailto:bdmyers@cs.washington.eduPreston
mailto:preston@cs.washington.edu

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  11

table, producing the results. These steps rely heavily on consistent, fine-grained updates to
hash tables.

While these frameworks are easy to express conceptually in a DSM system, obtaining good
performance can be challenging for a number of reasons:

Small messages. Programs written to a shared memory model tend to access small pieces
of data. On a DSM system this requires communication. What were simple load or store
operations become implicit, complex transactions involving the network. When these mes-
sages are small (~32 bytes), the network (optimized for multi-kilobyte packets) struggles to
achieve a fraction of its peak throughput.

Poor locality. Data-intensive applications often exhibit poor locality. For example, the vol-
ume of communication in GraphLab’s gather and scatter operations is a function of the graph
partition. Complex graphs frustrate even the most advanced partitioning schemes. This
leads to poor spatial locality. Moreover, which vertices are accessed varies from iteration to
iteration. This leads to poor temporal locality.

Need for fine-grained synchronization. Typical data-parallel applications offer coarse-
grained concurrency with infrequent synchronization—e.g., between phases of processing
a large chunk of data. Conversely, graph-parallel applications exhibit fine-grained concur-
rency with frequent synchronization—e.g., when done processing work associated with a
single vertex. Therefore, for a DSM solution to be general, it needs to support fine-grained
synchronization efficiently.

Fortunately, data-intensive applications have properties that can be exploited to make DSMs
efficient: their abundant data parallelism enables high degrees of concurrency; and their
performance depends not on the latency of execution of any specific parallel task, as it
would in, for example, a Web server, but rather on the aggregate execution time (i.e., through-
put) of all tasks.

Grappa Design
Figure 2 shows an overview of Grappa’s DSM system. We will first describe the multithread-
ing and communication layers and then explore the distributed shared memory layer, which
is built on top of these lower-level components. Our recent USENIX ATC paper [2] describes
these in more detail.

Expressing and Exploiting Parallelism
Work is most commonly expressed in Grappa using parallel for loops. Tasks may also be
spawned individually, with optional data locality constraints. Under the hood, both methods

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

Luis Ceze is an Associate
Professor of Computer Science
and Engineering at the
University of Washington. His
research focuses on improving

programmability, reliability, and energy
efficiency of multiprocessor and multicore
systems. luisceze@cs.washington.edu

Simon Kahan is an Affiliate
Professor of Computer Science
and Engineering at the
University of Washington. His
current research focuses on

accelerating large-scale biological simulation
and numerical linear algebra.
skahan@cs.washington.edu

Mark Oskin is an Associate
Professor of Computer Science
and Engineering at the
University of Washington.
oskin@cs.washington.edu

Global Heap

Local heap

"a" 7

"g" 2

Cell[2] Cell[5]Cell[3] Cell[4]Cell[1]Cell[0]

Node 0 Node 1 Node 2 ...

...
"h""g""d""c""x""c""o" "b""q" "p""i""a"

"b" 1

"o" 1

"i" 5

"c" 3

"e" 1 "f" 2

"l" 1

// distributed input array

GlobalAddress<char> chars = load_input();

// distributed hash table:

using Cell = std::map<char,int>;

GlobalAddress<Cell> cells = global_alloc<Cell>(ncells);

forall(chars, nchars, [=](char& c) {

 // hash the char to determine destination

 size_t idx = hash(c) % ncells;

 delegate(&cells[idx], [=](Cell& cell)

 { // runs atomically

 if (cell.count(c) == 0) cell[c] = 1;

 else cell[c] += 1;

 });

});

hash("i")

Figure 1: “Character count” with a simple hash table implemented using Grappa’s distributed shared memory

http://www.usenix.org
mailto:luisceze@cs.washington.edu
mailto:skahan@cs.washington.edu
mailto:oskin@cs.washington.edu

12    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

work by pushing closures into a global task pool. These closures
are generally expressed using C++11 lambda constructs to pro-
vide both code to execute and initial state. Tasks are executed
by idle threads on cores across the system, which pull from the
global task queue subject to the tasks’ locality constraints. When
a task executes a long-latency operation, it is suspended until the
operation is complete; the core it is running on is kept busy with
other, independent, work.

Grappa is built around a user level, cooperative multithreading
system. Due to the large inter-node latencies that must be toler-
ated in a distributed system like Grappa, the scheduler is built to
support on the order of 1000 concurrent threads per core. We do
this by storing and switching minimal context for threads, and
by prefetching thread contexts into cache before switching to
them, thereby enabling context switches to happen at a rate lim-
ited only by DRAM bandwidth, rather than cache miss latency.

Communication Support
Grappa’s communication layer has two components. The upper
(user-level) layer is designed to support sending very small mes-
sages—tens of bytes—at a high rate, with low memory overhead.
We use an asynchronous active message approach: the sender
creates a message holding a C++11 lambda or other closure, and
the receiver executes the closure. We take advantage of the fact
that our homogeneous cluster hardware runs the same binary
in every process: each message consists of a template-generated
deserializer pointer, a byte-for-byte copy of the closure, and an
optional dynamically sized data payload.

At the lower (network) level, Grappa moves these small messages
over the network efficiently by transparently aggregating inde-
pendent messages destined for common network destinations.
This process, shown in Figure 3, works as follows. When a com-
pute task sends a message, the data is not immediately placed on
the network but instead is stored in a per-core buffer. A com-

munication task runs periodically; when it finds a large group
of messages headed for the same node, or messages that have
been waiting for a long time, it serializes them into a single, large
network packet, which it sends to the destination node. When
the remote node receives the packet, it distributes the messages
to their destination cores, where messages are deserialized and
their handlers are executed.

Grappa uses RDMA to move messages, but only indirectly.
User-level messages are created using non-temporal memory
operations and prefetches to avoid cache pollution. Aggregated
messages are moved between nodes using MPI for portability,
tuned to use RDMA when available. By amortizing network
invocation costs across many messages, we are able to obtain
significantly better performance than using native RDMA
operations: on a simple random-access benchmark, Grappa’s
DSM operations performed atomic increments 25 times faster
than native RDMA increments on our 128-node AMD Interlagos
cluster connected with 40 Gb Mellanox ConnectX-2 InfiniBand
cards.

Addressing in Grappa’s Distributed Shared Memory
In Grappa, memory is partitioned across cores; each byte is
considered local to a single core within a node in the system.
Accesses to local memory occur through conventional pointers.
Local pointers cannot refer to memory on other cores; they are
valid only on their home core. Local accesses are used to refer-
ence many things in Grappa, including the stack associated with
a task, scheduling and debugging data structures, and the slice of
global memory local to a core.

Accesses to non-local memory occur through global pointers.
Grappa allows any local data on a core’s stacks or heap to be
exported to the global address space and made accessible to
other cores across the system. This uses a partitioned global
address space (PGAS) model, where each address is a tuple of a
core ID and an address local to that core.

Memory

Cores

Infiniband network, user level access

...

Memory

Cores

Memory

Cores

Memory

Cores

Message aggregation layer

Distributed
Shared
Memory

Lightweight
Multihreading w/
Global Task Pool

Communication
Layer

MapReduce GraphLab
Relational

Query
Engine

Irregular
apps, native
code, etc...

Core 0

Messages lists
aggregated

locally per core

Sending core
serializes
into buffer

Buffer moved
over network

via MPI/RDMA

Receiving core
distributes
messages

to dest. cores

Messages
deserialized;
handlers run

on home cores

Core 1

Core 0

Core 1

Node 0 Node n

Figure 2: Grappa’s distributed shared memory abstraction is designed
to make it easy to implement data-intensive application frameworks. It
uses lightweight threads to tolerate remote access latencies by exploiting
fine-grained parallelism in the data, and it transparently aggregates small
messages into larger ones to improve communication performance.

Figure 3: Grappa achieves high throughput for small messages by auto
matically batching messages with a common destination in order to move
larger packets over the network, amortizing network invocation and
delivery costs over multiple messages.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  13

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

Grappa also supports symmetric allocations, which reserves
space for a copy of an object on every core in the system. The
behavior is identical to performing a local allocation on all cores,
but the local addresses of all the allocations are guaranteed to
be identical. Symmetric objects are often treated as a proxy for
a global object, holding local copies of constant data, or allowing
operations to be transparently buffered. A separate publication
[3] describes how this was used to implement Grappa’s synchro-
nized global data structures, including vector and hash map.

Figure 4 shows an example of how global, local, and symmetric
memory can all be used together for a simple graph data struc-
ture. In this example, vertices are allocated from the global heap,
automatically distributing them across nodes. Symmetric point-
ers are used to access local objects which hold information about
the graph, such as the base pointer to the vertices, from any core
without communication. Finally, each vertex holds a vector of
edges allocated from their core’s local heap, which other cores
can access by going through the vertex.

Accessing Memory with Delegate Operations
Access to Grappa’s distributed shared memory is provided
through delegate operations, which are short operations per-
formed at a memory location’s home core. When the data access
pattern has low locality, it is more efficient to modify the data on
its home core rather than bringing a copy to the requesting core
and returning a modified version. While delegates can trivially
implement read/write operations to global memory, they can also
implement more complex read-modify-write and synchroniza-
tion operations (e.g., fetch-and-add, mutex acquire, queue insert).

We have explored two approaches for expressing delegate opera-
tions. In the first, the programmer calls functions in Grappa’s
API—a change from the traditional DSM model. Generally, these
delegates are expressed as C++11 lambdas or other closures; Fig-
ure 5 shows an example. The second approach uses a compiler
pass implemented with LLVM to automatically identify and
extract productive delegate operations from ordinary code; this
approach is explored in another publication [4]. In practice, we
usually use the library-based approach, since exploiting avail-

able locality is important for getting maximum performance in a
distributed system, and writing explicit delegate operations is an
easy way to express that locality.

Delegates and Memory Consistency
Memory consistency and efficient synchronization are a result
of delegation in Grappa.

All sharing, whether between cores within a node or between
two nodes, as well as synchronization, is done via delegate opera-
tions. A delegate operation can execute arbitrary code subject to
two restrictions: first, the code can reference only data local to
the core on which the delegate is executing; and second, the code
may not execute operations that lead to a context switch.

Since delegate operations execute on a particular core in some
serial order and only touch data owned by that core, they are
guaranteed to be globally linearizable, with their updates visible
to all cores across the system in the same order. In addition,
only one synchronous delegate will be in flight at a time from a
particular task, so synchronization operations from a particular
task are not subject to reordering. Moreover, once one core is able
to see an update from a synchronous delegate, all other cores
are too. Consequently, all synchronization operations execute in
program order and are made visible in the same order to all cores
in the system. These properties are sufficient to guarantee a
memory model that offers sequential consistency for data-race-
free programs, which is what underpins C/C++.

The synchronous property of delegates provides a clean model
but can be overly restrictive for operations that are protected by
collective synchronization like a global barrier. For such cases,
we also support asynchronous delegates, which, like delegate
operations, execute non-blocking regions of code atomically on
a single core’s memory. Asynchronous delegates are treated as
task spawns in the memory model and are generally linked with
a collective synchronization operation to detect completion.

Symmetric Heap

Global Heap

Local heaps

Graph

5

1

4

0

7

7

5

0

4

Vertex 2 Vertex 5Vertex 3 Vertex 4Vertex 1Vertex 0

1

2

0

3

6

7

2

Graph Graph
SymmetricAddress<Graph> g

GlobalAddress<Vertex> verts

vector<Edge> out_edges

data data data data data data

Node 0 Node 1 Node 2 ...

...

Figure 4: Using global addressing for graph layout

Global Heap

0 0 00 0 00 000 10

GlobalAddress<int> A = global_alloc<int>(N);

forall(0, N, [A](int i) {

 int j = random(i) % N;

 delegate(A + j, [](int& A_j){

 A_j += 1;

 });

});

[](int& A_j){

 A_j += 1;

}

move execution

notify completion

Node 0 Node 2Node 1

Figure 5: Grappa delegate example

http://www.usenix.org

14    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

Measuring Performance with Prototype Applica-
tion Frameworks
We implemented three prototype application frameworks in
Grappa. The first is an in-memory MapReduce implementation,
which we compared with Spark [5] with fault tolerance disabled.
The second is a distributed backend for the Raco relational alge-
bra compiler and optimization framework [6], which we com-
pared with Shark [7]. The third is a vertex-centric programming
framework in the spirit of GraphLab [8], which we compare with
native GraphLab.

The full performance results are reported in our USENIX ATC
paper [2]; here we provide a brief summary. On the cluster men-
tioned previously, we found the Grappa MapReduce implemen-
tation to be 10 times faster than Spark on a k-means clustering
benchmark. The Grappa query processing engine was 12.5
times faster than Shark on the SP2Bench benchmark suite [9].
The Grappa vertex-centric framework was 1.33 times faster than
GraphLab on graph analytics benchmarks from the GraphBench
suite [10].

Conclusion
Our work builds on the premise that writing data-intensive
applications and frameworks in a shared memory environment
is simpler than developing custom infrastructure from scratch.
Based on this premise, we show that a DSM system can be effi-
cient for this application space by judiciously exploiting the key
application characteristics of concurrency and latency tolerance.
Our work demonstrates that frameworks such as MapReduce,
vertex-centric computation, and query execution can be easy to
build and are efficient in a DSM system.

Acknowledgments
This work was supported by NSF Grant CCF-1335466, Pacific
Northwest National Laboratory and gifts from NetApp and
Oracle.

References
[1] Grappa Web site and source code: http://grappa.io/.

[2] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin, “Latency-
Tolerant Software Distributed Shared Memory,” in Pro-
ceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC ’15), Santa Clara, CA.

[3] Brandon Holt, Jacob Nelson, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin, “Flat
Combining Synchronized Global Data Structures,” Interna-
tional Conference on PGAS Programming Models (PGAS),
October 2013.

[4] Brandon Holt, Preston Briggs, Luis Ceze, and Mark Oskin,
“Alembic: Automatic Locality Extraction via Migration,” in
Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages and Appli-
cations (OOPSLA ’14), 2014.

[5] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,
Scott Shenker, and Ion Stoica, “Spark: Cluster Computing
with Working Sets,” in Proceedings of the 2nd USENIX Confer-
ence on Hot Topics in Cloud Computing (HotCloud ’10), 2010.

[6] Raco: The relational algebra compiler: https://github.com
/uwescience/datalogcompiler, April 2014.

[7] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J.
Franklin, Scott Shenker, and Ion Stoica, “Shark: SQL and
Rich Analytics at Scale,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’13), 2013.

[8] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin, “PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs,” in Proceed-
ings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’12), 2012.

[9] Michael Schmidt, Thomas Hornung, Georg Lausen, and
Christoph Pinkel, “SP2Bench: A SPARQL Performance
Benchmark,” Computing Research Repository, abs/0806.4627,
2008.

[10] GraphBench: http://graphbench.org/, 2014.

http://www.usenix.org
http://grappa.io/
https://github.com/uwescience/datalogcompiler
http://graphbench.org/
https://github.com/uwescience/datalogcompiler

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  15

SYSTEMS

Thread and Memory Placement on NUMA Systems
Asymmetry Matters

B A P T I S T E L E P E R S , V I V I E N Q U É M A , A N D A L E X A N D R A F E D O R O V A

Industry uses NUMA multicore machines for its servers. On NUMA
machines, the conventional wisdom is to place threads close to the
memory they access, and to collocate the threads that share data on the

same CPU nodes. However, this is often not optimal. Indeed, modern NUMA
machines have asymmetric interconnect links between CPU nodes, which
can strongly affect performance, with best placement outperforming worst
placement on nodes by a factor of almost two. We present the AsymSched
algorithm, which uses CPU performance counters to measure performance
and dynamically migrate threads and memory to achieve the best placement.

Modern Computers Are Asymmetric
Modern multicore machines are structured as several CPU/memory nodes connected via an
interconnect. These architectures are usually characterized by non-uniform memory access
times (NUMA), meaning that the latency of data access depends on where (which CPU-
cache or memory node) the data is located. For this reason, the placement of threads and
memory plays a crucial role in performance. To that end, both researchers and practitioners
designed a variety of NUMA-aware thread and memory placement algorithms [8, 7, 5, 13, 14,
4]. Their insight is to place threads close to their memory, to spread the memory pages across
the system to avoid the overload on memory controllers and interconnect links, to collocate
data-sharing threads on the same node while avoiding memory controller contention, and
to segregate threads competing for cache and memory bandwidth on different nodes. These
algorithms assume that the interconnect between nodes is symmetric: given any pair of
nodes connected via a direct link, the links have the same bandwidth and the same latency.
On modern NUMA systems this is not the case.

Figure 1 depicts an AMD Bulldozer NUMA machine with eight nodes, each hosting eight
cores. Interconnect links exhibit many disparities:

1.	 Links have different bandwidths: some have 16-bit width, some have 8-bit width.

2.	 Some links can send data faster in one direction than in the other (i.e., one side sends data at
3/4 the speed of a 16-bit link, while the other side can only send data at the speed of an 8-bit
link). We call these links 16/8-bit links.

3.	 Links are shared differently. For instance, the link between nodes 4 and 3 is only used by
these two nodes, while the link between nodes 2 and 3 is shared by nodes 0, 1, 2, 3, 6, and 7.

4.	 Some links are unidirectional. For instance, node 7 sends requests directly to node 3, but
node 3 routes its answers via node 2. This creates an asymmetry in read/write bandwidth:
node 7 can write at 4 GB/s to node 3, but can only read at 2 GB/s.

Baptiste Lepers is a postdoc at
Simon Fraser University. His
research topics include
performance profiling,
optimizations for NUMA

systems, and multicore programming. He likes
to spend his weekends in the mountains, hiking
and biking. baptiste.lepers@gmail.com

Vivien Quéma is a Professor
at Grenoble INP (ENSIMAG).
His research is about under
standing, designing, and
building (distributed) systems.

He works on Byzantine fault tolerance,
multicore systems, and P2P systems.
vivien.quema@grenoble-inp.fr

Alexandra Fedorova is an
Associate Professor at the
University of British Columbia.
Her research focuses on
building systems software that

facilitates synergy between applications and
hardware. In her spare time, she consults for
MongoDB. sasha@ece.ubc.ca

http://www.usenix.org
mailto:baptiste.lepers@gmail.com
mailto:vivien.quema@grenoble-inp.fr
mailto:sasha@ece.ubc.ca

16    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

Impact of Asymmetry on Performance
The asymmetry of interconnect links has dramatic and at times
surprising effects on performance. Figure 2 shows the per-
formance of 20 different applications on the 64-core machine
shown in Figure 1. Each application runs with 24 threads, so
it needs three nodes to run on. We vary which three nodes are
assigned to the application and hence the connectivity between
the nodes. The relative placement of threads and memory on
those nodes is identical in all configurations. The only differ-
ence is how the chosen nodes are connected. The figure shows the
performance on the best-performing and the worst-performing
subset of nodes for that application compared to the average
(obtained by measuring the performance on all 336 unique
subsets of nodes and computing the mean). We make several

observations. First, the performance on the best subset is up to
88% faster than the average, and the performance on the worst
subset is up to 44% slower. Second, the maximum performance
difference between the best and the worst subsets is 237% (for
FaceRec). Finally, the mean difference between the best and
worst subsets is 40% and the median 14%.

We measured that the memory accesses performed by FaceRec
are approximately 600 cycles faster when running on the best
subset of nodes relative to the average, and 1400 cycles faster
relative to the worst. The latency differences are tightly corre-
lated with the performance difference between configurations.

To further understand the cause of very high latencies on “bad”
configurations, we analyzed streamcluster, an application from

Figure 1: Modern NUMA systems, with eight nodes. The width of links varies; some paths are unidirectional (e.g., between 7 and 3), and links may be
shared by multiple nodes. Machine A has 64 cores (8 cores per node—not represented in the picture), and machine B has 48 cores (6 cores per node). Not
shown in the picture: the links between nodes 4 and 1 and between nodes 2 and 7 are bidirectional on machine B. This changes the routing of requests from
node 7 to 2 and node 1 to 4.

Figure 2: Performance difference between the best, and worst thread placement with respect to the average thread placement on Machine A. Applica-
tions run with 24 threads on three nodes. Graph500, SPECjbb, streamcluster, PCA, and FaceRec are highly affected by the choice of nodes and are shown
separately with a different y-axis range.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  17

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

the PARSEC [11] benchmark suite, which is among the most
affected by the placement of its threads and memory. We ran
streamcluster with 16 threads on two nodes. Table 1 presents
the salient metrics for each possible two-node subset. Depend-
ing on which two nodes we chose, we observe large (up to 133%)
disparities in performance. The data in Table 1 leads to several
crucial observations:

◆◆ Performance is correlated with the latency of memory ac-
cesses.

◆◆ Surprisingly, the latency of memory accesses is not correlated
with the number of hops between the nodes: some two-hop
configurations (shown in bold) are faster than one-hop
configurations.

◆◆ The latency of memory accesses is actually correlated with
the bandwidth between the nodes. Note that this makes sense:
the difference between one-hop vs. two-hop latency is only 80
cycles when the interconnect is nearly idle. So a higher number
of hops alone cannot explain the latency differences of thou-
sands of cycles.

As a summary, we can say that bandwidth between the nodes
matters more than the distance between them.

Computers Are Increasingly Asymmetric
Asymmetric interconnect is not a new phenomenon. Neverthe-
less, its effects on performance are increasing as machines are
built with more nodes and cores. We measured the performance
of streamcluster on four different asymmetric machines: two
recent machines with 64 and 48 cores, respectively, and eight
nodes (Machines A and B, Figure 1), and two older machines
with 24 and 16 cores, respectively, and four nodes (Machines C
and D, not depicted). All of these machines use AMD Opteron

processors. Machines A and B have highly asymmetric inter-
connect. Machines C and D have a less pronounced asymmetry.
Machine C has full connectivity, but two of the links are slower
than the rest. Machine D has links with equal bandwidth, but
two nodes do not have a link between them.

Table 2 shows the performance of streamcluster with 16 threads
on the best-performing and the worst-performing set of nodes
on each machine. The performance difference between the best
and worst configurations increases with the number of cores in
the machine: from 3% for the 16-core machine to 133% for the
64-core machine. We explain this as follows:

1.	 On the 16-core Machine D, the only difference between con-
figurations is the longer wire delay between the nodes that
are not connected via a direct link. This delay is not signifi-
cant compared to the extra latency induced by bandwidth
contention on the interconnect.

2.	 The CPUs on 24-core Machine C have a low frequency com-
pared to the other machines. As a result, the impact of longer
memory latency is not as pronounced. More importantly, the
network on this machine is still a fully connected mesh, so
there is less asymmetry than on Machines A and B.

3.	 The 48- and 64-core Machines B and A offer a wider range
of bandwidth configurations, which increases the difference
between the best and the worst placements. The 64-core
machine is more affected than the 48-core machine because
it has more cores per node, which increases the effects of
bandwidth contention.

Intel machines are currently built using symmetric intercon-
nect links, but we believe that, as the number of nodes in systems
increases, this will no longer remain true in the future.

Table 1: Performance of streamcluster executing with 16 threads on two nodes on machine A. The performance depends on the connectivity between the
nodes on which streamcluster is executing and on the node on which the master thread is executing. Numbers in bold indicate two-hop configurations that
are as fast or faster than some one-hop configurations.

http://www.usenix.org

18    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

Machine Best Time Worst Time Difference

A (64 cores) 148s 340s 133%

B (48 cores) 149s 277s  85%

C (24 cores) 171s 229s  33%

D (16 cores) 255s 262s  3%

Table 2: Performance of streamcluster executing on two nodes on ma-
chine A, B, C, and D. The performance of streamcluster depends on the
placement of its threads. The impact of thread placement is more impor-
tant on recent machines (A and B) than on older ones (C and D).

Handling Asymmetry: The Challenges
To take into account interconnect asymmetry, the operating
system should choose a “good” subset of nodes for each applica-
tion. More precisely, the operating system should try, for each
application, to place threads and memory pages on a well-
connected subset of nodes. When an application executes on
only two nodes on a machine similar to the one used in Table 1,
the placement on the nodes connected with the widest (16-bit)
link is always the best because it maximizes the bandwidth and
minimizes the latency between the nodes. However, when an
application needs more than two nodes to run, no configura-
tion exists with 16-bit links between every pair of nodes, so the
operating system must decide which nodes to pick. Besides,
when there is more than one application running, the operating
system needs to decide how to allocate the nodes among multiple
applications. Designing such a thread and memory placement
algorithm raises several challenges that we list below.

Nodes % Perf. Relative to Best Subset

Streamcluster SPECjbb

0, 1, 3, 4, and 7 -64% 0% (best)

2, 3, 4, 5, and 6 0% (best) -9.4%

Table 3: Performance of streamcluster and SPECjbb on two different set
of nodes on machine A, relative to the best set of nodes for the respective
application

Efficient online measurement of communication patterns
is challenging: The algorithm must measure the volume of
CPU-to-CPU and CPU-to-memory communication for different
threads in order to determine the best placement. This measure-
ment process must be very efficient, because it must be done
continuously in order to adapt to phase changes.

Changing the placement of threads and memory may incur
high overhead: Frequent migration of threads may be costly,
because of the associated CPU overhead, but most importantly
because cache affinity is not preserved. Moreover, when threads
are migrated to “better” nodes, it might be necessary to migrate
their memory in order to avoid the overhead of remote accesses

and overloaded memory controllers. Migrating large amounts of
memory can be extremely costly. Thus, thread migration must be
done in a way that minimizes memory migration.

Accommodating multiple applications simultaneously
is challenging: Applications have different communication
patterns and are thus differently impacted by the connectivity
between the nodes they run on. As an illustration, Table 3 pres-
ents the performance of streamcluster and SPECjbb executing
on two different sets of five nodes (the best set of nodes for the
two applications, respectively). The two applications behave dif-
ferently on these two sets of nodes: streamcluster is 64% slower
on the best set of nodes for SPECjbb than on its own best set.
The algorithm must, therefore, determine the best set of nodes
for every application. Furthermore, it cannot always place each
application on its best set of nodes, because applications may
have conflicting preferences.

Selecting the best placement is combinatorially difficult:
The number of possible application placements on an eight-node
machine is very large (e.g., 5040 possible configurations for four
applications executing on two nodes). So, (1) it is not possible
to try all configurations online by migrating threads and then
choosing the best configurations, and (2) doing even the simplest
computation involving “all possible placements” can still add a
significant overhead to a placement algorithm.

The AsymSched Algorithm
We designed AsymSched [9], a thread and memory placement
algorithm that takes into account the bandwidth asymmetry of
asymmetric NUMA systems. AsymSched’s goal is to maximize the
bandwidth for CPU-to-CPU communication, which occurs between
threads that exchange data, and CPU-to-memory communication,
which occurs between a CPU and a memory node upon a cache
miss. To that end, AsymSched places threads that perform exten-
sive communication on relatively well-connected nodes, and places
the frequently accessed memory pages such that the data requests
are either local or travel across high-bandwidth paths.

AsymSched is implemented as a user-level process and interacts
with the kernel and the hardware using system calls and /proc
file system, but could also be easily integrated with the kernel
scheduler if needed.

AsymSched relies on three main techniques to manage threads
and memory:

1.	 Thread migration: changing the node where a thread is
running

2.	 Full memory migration: migrating all pages of an applica-
tion from one node to another

3.	 Dynamic memory migration: migrating only the pages that
an application actively accesses as done in [7]

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  19

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

The operating principle of AsymSched is the following: Asym-
Sched continuously gathers hardware counter values on the
number of memory requests. Every second, AsymSched takes a
thread placement decision. Roughly speaking, it groups threads
of the same application that share data in virtual weighted clus-
ters. The weight of a cluster represents the intensity of memory
accesses performed between threads belonging to the cluster.
Then AsymSched computes possible placements for all the
clusters. A placement is an array mapping clusters to nodes. For
each placement, AsymSched computes the maximum bandwidth
that each cluster would receive if it were put in this placement.
AsymSched selects the placement, ensuring that clusters with
the highest weights will be scheduled on the nodes with the best
connectivity. Finally, AsymSched estimates the overhead of
memory migration induced by the new placement. If the over-
head is deemed too high, the new placement will not be applied.
Otherwise, AsymSched performs thread and memory migration
to apply the new placement.

AsymSched implements two main optimizations. The first opti-
mization allows fast memory migrations. When AsymSched
performs full memory migration, all the pages located on one
node are migrated to another node. The applications we tested
have large working sets (up to 15 GB per node), and migrat-
ing pages is costly. Migrating 10 GB of data using the standard
migrate_pages system call takes 51 seconds on average, making
the migration of large applications impractical.

We therefore designed a new system call for memory migration.
This system call performs memory migration without locks in
most cases, and exploits the parallelism available on multicore
machines. Using our system call, migrating memory between
two nodes is on average 17x faster than using the default Linux
system call and is only limited by the bandwidth available on
interconnect links. Unlike the Linux system call, our system call
can migrate memory from multiple nodes simultaneously. So if
we are migrating the memory simultaneously between two pairs
of nodes that do not use the same interconnect path, our system
call will run about 34x faster.

The second optimization avoids evaluating all possible place-
ments. It is based on two observations:

1. 	 A lot of thread placement configurations are “obviously” bad.
For instance, when a communication-intensive application
uses two nodes, we only consider configurations with nodes
connected with a 16-bit link.

2.	 Several configurations are equivalent (e.g., in the machine
depicted in Figure 1, the bandwidth between nodes 0 and 1
and between nodes 2 and 3 is the same). To avoid estimating
the bandwidth of all placements, we create a hash for each
placement. The hash is computed so that equivalent configu-
rations have the same hash.

Using simple dynamic programming techniques, we only
perform computations on non-equivalent configurations. Our
optimization allows skipping between 67% and 99% of computa-
tions in all tested configurations with clusters of two, three, or
five nodes (e.g., with four clusters of two nodes, we only evaluate
20 configurations out of 5040).

AsymSched Assessment
We evaluated the performance achieved when using AsymSched
on Machine A. The latter is equipped with four AMD Opteron
6272 processors, each with two NUMA nodes and eight cores
per node (64 cores in total). The machine has 256 GB of RAM,
uses HyperTransport 3.0, and runs Linux 3.9. We used several
benchmark suites: the NAS Parallel Benchmarks suite [3], which
is composed of numeric kernels; MapReduce benchmarks from
Metis [10]; parallel applications from PARSEC [11]; Graph500
[1], a graph processing application with a problem size of 21;
FaceRec from the ALPBench benchmark suite [6]; and SPECjbb
[2] running on OpenJDK7.

Our goal was to evaluate the impact of asymmetry-aware
thread placement in isolation from other effects, such as those
stemming purely from collocating threads that share data on
the same node. Performance benefits of sharing-aware thread
clustering are well known [13]. AsymSched clusters threads
that share data; the Linux thread scheduler, however, does not.
We experimentally observed that Linux performed worse than
clustered configurations. For instance, when Graph500 and
SPECjbb are scheduled simultaneously, both run 23% slower on
Linux than on an average clustered placement.

Since comparing Linux to AsymSched would not be meaning-
ful because of that, we instead compare AsymSched to the best
and the worst static placements of data-sharing thread clusters.
When running AsymSched, thread clusters are initially placed
on a randomly chosen set of nodes. We also compare the aver-
age performance achieved under all static placements that are
unique in terms of connectivity. We obtain all unique static place-
ments with respect to connectivity by examining the topology
of the machine. There are 336 placements for single-application
scenarios and 560 placements for multi-application scenarios.

Further, we want to isolate the effects of thread placement with
AsymSched from the effects of dynamic memory migration. To
that end, we compare AsymSched to the subset of our algorithm
that performs the dynamic placement of memory only, turning
off the parts performing thread placement.

The results are presented in Figure 3. AsymSched always per-
forms close to the best static thread placement. In a few cases
where it does not, the difference is not statistically significant.
For applications that produce the highest degree of contention
on the interconnect links (streamcluster, PCA, and FaceRec),

http://www.usenix.org

20    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

AsymSched achieves much better performance than the best
thread placement, because the dynamic memory migration com-
ponent balances memory accesses across nodes, thus reducing
contention on interconnect links and memory controllers.

We also observe that dynamic memory migration without the
migration of threads is not sufficient to achieve the best perfor-
mance. More precisely, dynamic memory migration alone often
achieves performance close to average. Moreover, it produces a
high standard deviation for many benchmarks: the minimum
and maximum performance often being the same as that of
the best and worst static thread placement. For instance, on
SPECjbb, the difference between the minimum and maximum
performance with dynamic memory migration alone is 91%.

In contrast, AsymSched produces a very low standard deviation
for most benchmarks. Two exceptions are is.D and SPECjbb.
This is because in both cases, AsymSched migrates a large
amount of memory. Both applications become memory intensive
after an initialization phase, and AsymSched starts migrating
memory only after the entire working set has been allocated. For
instance, in the case of is.D, AsymSched migrates between 0 GB
and 20 GB, depending on the initial placement of threads.

Conclusion
Asymmetry of the interconnect in modern NUMA systems dras-
tically impacts performance. We found that the performance
is more affected by the bandwidth between nodes than by the
distance between them. We developed AsymSched, a new thread
and memory placement algorithm that maximizes the band-
width for communicating threads.

As the number of nodes in NUMA machines increases, the
interconnect is less likely to remain symmetric. We believe that
the clustering and placement techniques used in AsymSched
will scale and be well adapted to these machines. Indeed, with
very simple heuristics we were able to avoid computing up to
99% of the possible thread placements. Such optimizations will
still likely be possible on future machines, as machines are usu-
ally made of multiple identical cores/sockets (e.g., our 64-core
machine has four identical sockets). On machines that offer a
wider diversity of thread placements, a possibility will be to use
statistical approaches, such as that of Radojković et al. [12] to
find good thread placements with a bounded overhead.

Figure 3: Performance difference between the best and worst static thread placement, dynamic memory placement, and AsymSched relative to the average
thread placement on Machine A. Applications run with 24 threads on three nodes.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  21

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

References
[1] Graph500 reference implementation: http://www.graph500
.org/referencecode.

[2] SPECjbb2005 industry-standard server-side Java bench-
mark (j2se 5.0): http://www.spec.org/jbb2005/.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R.
L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and
S. K. Weeratunga, “The NAS Parallel Benchmarks Summary
and Preliminary Results,” in Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, pp. 158–165.

[4] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A
Case for NUMA-Aware Contention Management on Multicore
Systems,” in Proceedings of the 2011 USENIX Annual Technical
Conference (ATC ’11), 2011.

[5] Timothy Brecht, “On the Importance of Parallel Application
Placement in NUMA Multiprocessors,” in Proceedings of the
USENIX Fourth Symposium on Experiences with Distributed
and Multiprocessor Systems (SEDMS IV), 1993.

[6] CSU Face Identification Evaluation System: http://www.
cs.colostate.edu/evalfacerec/index10.php.

[7] Mohammad Dashti, Alexandra Fedorova, Justin Funston,
Fabien Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quéma,
and Mark Roth, “Traffic Management: A Holistic Approach to
Memory Placement on NUMA Systems,” in Proceedings of the
Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ACM,
2013, pp. 381–394.

[8] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma,
“MemProf: A Memory Profiler for NUMA Multicore Systems,”
in Proceedings of the 2012 USENIX Annual Technical Confer-
ence (ATC ’12), 2012.

[9] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova,
“Thread and Memory Placement on NUMA Systems:
Asymmetry Matters,” in Proceedings of the 2015 USENIX
Annual Technical Conference (ATC ’15), Santa Clara, CA, July
2015, pp. 277–289.

[10] Metis MapReduce Library: http://pdos.csail.mit.edu
/metis/.

[11] PARSEC Benchmark Suite: http://parsec.cs.princeton.edu/.

[12] Petar Radojković, Vladimir Cakarević, Miquel Moretó,
Javier Verdú, Alex Pajuelo, Francisco J. Cazorla, Mario
Nemirovsky, and Mateo Valero, “Optimal Task Assignment in
Multithreaded Processors: A Statistical Approach,” SIGARCH
Comput. Archit. News, vol. 40, no. 1, March 2012, pp. 235–248.

[13] David Tam, Reza Azimi, and Michael Stumm, “Thread
Clustering: Sharing-Aware Scheduling on SMP-CMP-SMT
Multiprocessors,” in Proceedings of the 2nd ACM SIGOPS/
EuroSys European Conference on Computer Systems (EuroSys,
2007), pp. 47–58.

[14] Lingjia Tang, J. Mars, Xiao Zhang, R. Hagmann, R. Hundt,
and E. Tune, “Optimizing Google’s Warehouse Scale Comput-
ers: The NUMA Experience,” in Proceedings of the IEEE 19th
International Symposium on High Performance Computer
Architecture (HPCA ’13), Feb. 2013, pp. 188–197.

http://www.usenix.org
http://www.graph500.org/
http://www.spec.org/jbb2005/
http://pdos.csail.mit.edu
http://parsec.cs.princeton.edu/
http://www.cs.colostate.edu/evalfacerec/index10.php
http://www.cs.colostate.edu/evalfacerec/index10.php
http://www.graph500.org/

22    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS

An Introduction to B-trees and Write-
Optimization
M I C H A E L A . B E N D E R , M A R T I N F A R A C H - C O L T O N , W I L L I A M J A N N E N , R O B J O H N S O N ,
B R A D L E Y C . K U S Z M A U L , D O N A L D E . P O R T E R , J U N Y U A N , A N D Y A N G Z H A N

A B"-tree is an example of a write-optimized data structure and can be used to organize
on-disk storage for an application, such as a database or file system. A B"-tree provides a key-
value API, similar to a B-tree, but with better performance, particularly for inserts, range
queries, and key-value updates. This article describes the B"-tree, compares its asymptotic
performance to B-trees and Log-Structured Merge trees (LSM-trees), and presents real-
world performance measurements. After finishing this article, a reader should have a basic
understanding of how a B"-tree works, its performance characteristics, how it compares to
other key-value stores, and how to design applications to gain the most performance from a
B"-tree.

B"-trees
B"-trees were proposed by Brodal and Fagerberg [1] as a way to demonstrate an asymptotic
performance tradeoff curve between B-trees [2] and buffered repository trees [3]. Both data
structures support the same operations, but a B-tree favors queries, whereas a buffered
repository tree favors inserts.

Researchers, including the authors of this article, have recognized the practical utility of a
B"-tree when configured to occupy the “middle ground” of this curve—realizing query per-
formance comparable to a B-tree but insert performance orders of magnitude faster than a
B-tree. The B"-tree has since been used by both the high-performance, commercial TokuDB
database [4] and the BetrFS research file system [5]. For the interested reader, we have cre-
ated a simple, reference implementation of a B"-tree, available at https://github.com/oscarlab
/Be-Tree.

We first explain how the basic operations on a B"-tree work. We then give the motivation
behind these design choices and illustrate how these choices affect the asymptotic analysis.

API and basic structure. A B"-tree is a B-tree-like search tree for organizing on-disk data,
as illustrated in Figure 1. Both B-trees and B"-trees export a key-value store API:

◆◆ insert(k, v)

◆◆ delete(k)

◆◆ v = query(k)

◆◆ [v1, v2,…] = range-query(k1, k2)

Like a B-tree, the node size in a B"-tree is chosen to be a multiple of the underlying storage
device’s block size. Typical B"-tree node sizes range from a few hundred kilobytes to a few
megabytes. In both B-trees and B"-trees, internal nodes store pivot keys and child pointers,
and leaves store key-value pairs, sorted by key. For simplicity, one can think of each key-value
or pivot-pointer pair as being unit size; both B-trees and B"-trees can store keys and values
of different sizes in practice. Thus, a leaf of size B holds B key-value pairs, which we call
items below.

The distinguishing feature of a B"-tree is that internal nodes also allocate some space
for a buffer, as shown in Figure 1. The buffer in each internal node is used to store messages,
which encode updates that will eventually be applied to items in leaves under this node. This

Michael A. Bender is a
Professor of Computer Science
at Stony Brook University in
Stony Brook, New York. His
research focuses on algorithms,

particularly on out-of-core algorithms. Bender
co-founded the database company Tokutek,
which was recently acquired by Percona. He
has won several awards, including an R&D 100
award, a Test of Time award, a Best Paper
award, a Best Newcomer award, and five
teaching awards. bender@cs.stonybrook.edu

Martin Farach-Colton is a
Professor of Computer Science
at Rutgers University, New
Brunswick, New Jersey. His
research focuses on both the

theory and practice of external memory and
storage systems. He was a pioneer in the
theory of cache oblivious analysis. His current
research focuses on the use of write opti
mization to improve performance in both
read- and write-intensive big data systems.
He has also worked on the algorithmics of
strings and metric spaces, with applications to
bioinformatics. In addition to his academic
work, Professor Farach-Colton has extensive
industrial experience. He is CTO and co-
founder of Tokutek, a database company that
was founded to commercialize his research.
During 2000–2002, he was a Senior Research
Scientist at Google. farach@cs.rutgers.edu

William Jannen is a PhD
student at Stony Brook
University, where he attempts
to design systems that
accommodate the physical

characteristics of their underlying media.
He is also an artist and a player of games.
wjannen@cs.stonybrook.edu

http://www.usenix.org
https://github.com/oscarlab/Be-Tree
mailto:bender@cs.stonybrook.edu
mailto:farach@cs.rutgers.edu
mailto:wjannen@cs.stonybrook.edu
https://github.com/oscarlab/Be-Tree

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  23

SYSTEMS
An Introduction to B-trees and Write-Optimization

buffer is not an in-memory data structure; it is part of the node and is written to disk, evicted
from memory, etc., whenever the node is. The value of ", which must be between 0 and 1, is a
tuning parameter that selects how much space internal nodes use for pivots (≈ B") and how
much space is used as a buffer (≈ B − B").

Inserts and deletes. Insertions are encoded as “insert messages,” addressed to a particular
key and added to the buffer of the root node of the tree. When enough messages have been
added to a node to fill the node’s buffer, a batch of messages are flushed to one of the node’s
children. Generally, the child with the most pending messages is selected. Over the course of
flushing, each message is ultimately delivered to the appropriate leaf node, and the new key
and value are added to the leaf. When a leaf node becomes too full, it splits, just as in a B-tree.
Similar to a B-tree, when an interior node gets too many children, it splits and the messages
in its buffer are distributed between the two new nodes.

Moving messages down the tree in batches is the key to the B"-tree’s insert performance.
By storing newly inserted messages in a buffer near the root, a B"-tree can avoid seeking all
over the disk to put elements in their target locations. The B"-tree only moves messages to a
subtree when enough messages have accumulated for that subtree to amortize the I/O cost.
Although this involves rewriting the same data multiple times, this can improve performance
for smaller, random inserts, as our analysis in the next section shows.

B"-trees delete items by inserting “tombstone messages” into the tree. These tombstone
messages are flushed down the tree until they reach a leaf. When a tombstone message is
f lushed to a leaf, the B"-tree discards both the deleted item and the tombstone message.
Thus, a deleted item, or even entire leaf node, can continue to exist until a tombstone mes-
sage reaches the leaf. Because deletes are encoded as messages, deletions are algorithmically
very similar to insertions.

A high-performance B"-tree should detect and optimize the case where a large series of mes-
sages all go to one leaf. Suppose a series of keys are inserted that will completely fill one leaf.
Rather than write these messages to an internal node only to immediately rewrite them to
each node on the path from root to leaf, these messages should flush directly to the leaf, along
with any other pending messages for that leaf. The B"-tree implementation in TokuDB and
BetrFS includes some heuristics to avoid writing to intermediate nodes when a batch of mes-
sages are all going to a single child.

Point and range queries. Messages addressed to a key k are guaranteed to be applied to k’s
leaf or in some buffer along the root-to-leaf path towards key k. This invariant ensures that

Rob Johnson is a Research
Professor at Stony Brook
University and conducts
research on security, big data
algorithms, and cryptography.

He does theoretical work with an impact on
the real world. rob@cs.stonybrook.edu

Bradley C. Kuszmaul is a
Research Scientist in the
Computer Science and Artificial
Intelligence Laboratory at the
Massachusetts Institute of

Technology (MIT CSAIL). His research focuses
on performance engineering of multicore
software as well as on data structures and
algorithms that optimize cache and disk I/O.
bradley@mit.edu

Donald E. Porter is an Assistant
Professor of Computer Science
at Stony Brook University in
Stony Brook, New York. His
research aims to improve

computer system efficiency and security. In
addition to recent work on write optimization
in file systems, recent projects have developed
lightweight guest operating systems for virtual
environments, system security abstractions,
and efficient data structures for caching.
porter@cs.stonybrook.edu

Jun Yuan is a PhD student
in computer science at Stony
Brook University in Stony
Brook, New York. Her research
interest primarily lies in

compiler and system security. In addition to
write-optimized file systems, she has recently
studied access control on the Android OS.
junyuan@cs.stonybrook.edu

Yang Zhan is a PhD student
in the Department of Computer
Science at Stony Brook
University. His research
interests include file system

and system performance.
yazhan@cs.stonybrook.edu

Figure 1: A B"-tree. Each node is roughly of size B, and  controls how much of an internal node’s space
is used for pivots (B") and how much is used for buffering pending updates (B − B"). As in a B-tree, items
are stored in leaves, and the height of the tree is logarithmic in the total number of items (N), based on the
branching factor (here B").

http://www.usenix.org
mailto:rob@cs.stonybrook.edu
mailto:bradley@mit.edu
mailto:porter@cs.stonybrook.edu
mailto:junyuan@cs.stonybrook.edu
mailto:yazhan@cs.stonybrook.edu

24    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
An Introduction to B-trees and Write-Optimization

point and range queries in a B"-tree have a similar I/O cost to a
B-tree.

In both a B-tree and a B"-tree, a point query visits each node
from the root to the correct leaf. However, in a B"-tree, answer-
ing a query also means checking the buffers in nodes on this path
for messages, and applying relevant messages before returning
the results of the query. For example, if a query for key k finds an
entry (k,v) in a leaf and a tombstone message for k in the buffer
of an internal node, then the query will return “NOT FOUND”,
since the entry for key k has been logically deleted from the tree.
Note that the query need not update the leaf in this case—it will
eventually be updated when the tombstone message is flushed
to the leaf. A range query is similar to a point query, except
that messages for the entire range of keys must be checked and
applied as the appropriate subtree is traversed.

In order to make searching and inserting into buffers efficient,
the message buffers within each node are typically organized
into a balanced binary search tree, such as a red-black tree.
Messages in the buffer are sorted by their target key, followed by
timestamp. The timestamp ensures that messages are applied
in the correct order. Thus, inserting a message into a buffer,
searching within a buffer, and f lushing from one buffer to
another are all fast.

Performance Analysis
We analyze the behavior of B-trees, B"-trees, and LSM-trees in
this article in terms of I/Os. Our primary interest is in data sets
too large to fit into RAM. Thus, the first-order performance
impact is how many I/O requests must be issued to complete
each operation. In the algorithms literature, this is known as
the disk-access-machine (DAM) model, the external-memory
model, or the I/O model [6].

Performance model. In order to compare B-trees and B"-trees in
a single framework, we make a few simplifying assumptions. We
assume that all key-value pairs are the same size and that each
node in the tree can hold B key-value pairs. The entire tree
stores N key-value pairs. We also assume that each node
can be accessed with a single I/O transaction—i.e., on a rotat-
ing disk, the node is stored contiguously and requires only one
random seek.

This model focuses on the principal performance characteris-
tics of a block storage device, such as a hard drive or SSD. For
instance, on a hard drive, this model captures the latency of a
random seek to read a node. In the case of an SSD, the model
captures the I/O bandwidth costs, i.e., the number of blocks that
must be read or written from the device per operation. Regard-
less of whether the device is bandwidth or latency bound, for a
given node size B, minimizing the number of nodes accessed
minimizes both bandwidth and latency costs.

B"-tree I/O performance. Table 1 lists the asymptotic
complexities of each operation in a B-tree and B"-tree. We will
explain upserts and epsilon ("), as well as how they affect per-
formance, later in the article. For this discussion, note that " is
a tuning parameter between 0 and 1; " is generally set at design
time and becomes a constant in the analysis.

The point-query complexities of a B-tree and a B"-tree are both
logarithmic in the number of items (O(logB N)); a B"-tree adds
a constant overhead of 1/". Compared to a B-tree with the same
node size, a B"-tree reduces the fanout from B to B", making the
tree taller by a factor of 1/". Thus, for example, querying a B"-tree
where " = 1/2 will require, at most, twice as many I/Os.

Range queries incur a logarithmic search cost for the first key, as
well as a cost that is proportional to the size of the range and how
many disk blocks the range is distributed across. The scan cost is
roughly the number of keys read (k) divided by the block size (B).
The total cost of a range query is O(k/B + logB N) I/Os.

Compared to a B-tree, batching messages divides the insertion
cost by the batch size (B1−"). For example, if B = 1024 and " = 1/2, a
B"-tree can perform inserts = 16 times faster
than a B-tree.

Write optimization. Batching small, random inserts is an
essential feature of write-optimized data structures (WODS),
such as a B"-tree or LSM-tree. Although a WODS may issue a
small write multiple times as a message moves down the tree,
once the I/O cost is divided among a large batch, the cost per
insert or delete is much smaller than one I/O per operation. In
contrast, a workload of random inserts to a B-tree requires a
minimum of one I/O per insert—to write the new element to its
target leaf.

The B"-tree flushing strategy is designed to ensure that it can
always move elements in large batches. Messages are only
flushed to a child when the buffer of a node is full, containing
B − B" ≈ B messages. When a buffer is flushed, not all messages
are necessarily flushed—messages are only flushed to children
with enough pending messages to offset the cost of rewriting the
parent and child nodes. Specifically, at least (B − B")/B" ≈ B1−"
messages are moved from the parent’s buffer to the child’s on
each flush. Consequently, any node in a B"-tree is only rewritten
if a sufficiently large portion of the node will change.

Caching. Most systems cache a subset of the tree in RAM. With
an LRU replacement policy, accesses to the top of the tree are
likely to hit in the cache, whereas accesses to leaves and “lower
nodes” will more commonly miss. Thus, when the cache is warm,
the actual cost of a search may be much less than O(logB N) I/Os.
For both B-trees and B"-trees, if only the leaves are out-of-cache,
point queries and updates require a single I/O, whereas a range
query has an I/O cost that is linear in the number of leaves read.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  25

SYSTEMS
An Introduction to B-trees and Write-Optimization

The Impact of Node Size (B) on Performance
B-trees have small nodes to balance the cost of insertions
and range queries. B-tree implementations face a tradeoff
between update and range-query performance. A larger node size
B favors range queries, and a smaller node size favors inserts and
deletes. Larger nodes help range-query performance because
the I/O costs, such as seeks, can be amortized over more data.
However, larger nodes make updates more expensive because a
leaf node and possibly internal nodes must be completely rewrit-
ten each time a new item is added to the index, and larger nodes
mean more to rewrite.

Thus, many B-tree implementations use small nodes (tens to
hundreds of KB), resulting in sub-optimal range-query perfor-
mance. As free space on disk becomes fragmented, B-tree nodes
may also become scattered on disk; this is sometimes called
aging. Now a range query must seek for each leaf in the scan,
resulting in poor bandwidth utilization.

For example, with 4 KB nodes stored on a disk with a 5 ms seek
time and 100 MB/s bandwidth, updating a single key only
rewrites 4 KB. Range queries, however, must perform a seek for
each 4 KB leaf node, resulting in a net bandwidth of 800 KB/s,
less than 1% of the disk’s potential bandwidth.

B"-trees have efficient updates and range queries even
when nodes are large. In contrast, batching in a B"-tree allows
B to be much larger in a B"-tree than in a B-tree. In a B"-tree the
bandwidth cost per insert is , which grows much more
slowly as B increases. As a result, B"-trees use node sizes of a few
hundred kilobytes to a few megabytes.

By using large B, B"-trees can perform range queries at near
disk bandwidth. For example, a B"-tree using 4 MB nodes need
perform only one seek for every 4 MB of data it returns, yielding
a net bandwidth of over 88 MB/s on the same disk as above.

In the comparison of insert complexities above, we stated that a
B"-tree with " = 1/2 would be twice as deep as a B-tree, as some

fanout is sacrificed for buffer space. This is only true when the
node size is the same. Because a B"-tree can use larger nodes in
practice, a B"-tree can still have close to the same fanout and
height as a B-tree.

The Role of "
The parameter " in a B"-tree was originally designed to show
that there is an optimal tradeoff curve between insert and point
query performance. Parameter " ranges between 0 and 1. As
we explain in the rest of this section, making " an exponent
simplifies the asymptotic analysis and creates an interesting
tradeoff curve.

Intuitively, the tradeoff with parameter " is how much space
in the node is used for storing pivots and child pointers (≈ B")
and how much space is used for message buffers (≈ B − B"). As "
increases, so does the branching factor (B"), causing the depth of
the tree to decrease and searches to run faster. As " decreases,
the buffers get larger, batching more inserts for every flush and
improving overall insert performance.

At one extreme, when " = 1, a B"-tree is just a B-tree, since interior
nodes contain only pivot keys and child pointers. At the other
extreme, when " = 0, a B"-tree is a binary search tree with a large
buffer at each node, called a buffered repository tree [3].

The most interesting configurations place " strictly between
0 and 1, such as " = 1/2. For such configurations, a B"-tree has
the same asymptotic point query performance as a B-tree, but
asymptotically better insert performance.

For inserts, setting " = 1/2 divides the cost by the square root of
node size. Formally, the cost then becomes:
Since the insert cost is divided by selecting larger nodes
(increasing B) can dramatically improve insert performance.

Assuming all other parameters are the same, decreasing " slows
down point queries by a constant 1/". To see the query per-
formance for " = 1/2, evaluate the point query cost in Table 1:

 doubling the
number of I/Os. Changing " from 1/2 to 1/4 would
make this a factor of 4. This cost can be offset by
increasing B, which, as pointed out above, also
improves insert performance.

The above analysis assumes all keys have unit size
and that nodes can hold B keys; real systems must
deal with variable-sized keys, so B, and hence ",
are not fixed or known a priori. Nonetheless, the
main insight of B"-trees—that we can speed up
insertions by buffering items in internal nodes
and flushing them down the tree in batches—still
applies in this setting.

Table 1: Asymptotic I/O costs of important operations. B"-trees simultaneously support
efficient inserts, point queries (even in the presence of upserts), and range queries. These
complexities apply for 0  "  1. Note that " is a design-time constant. We show the com-
plexity for general " and evaluate the complexity when " is set to a typical value of 1/2. The
1/" factor evaluates to a constant that disappears in the asymptotic analysis.

http://www.usenix.org

26    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
An Introduction to B-trees and Write-Optimization

In practice, B"-tree implementations select a fixed physical node
size and fanout (B"). For the implementation in TokuDB and
BetrFS, nodes are approximately 4 MB, and the branching factor
ranges from 4 to 16. As a result, the B"-tree can always flush data
in batches of at least 256 KB.

How to Speed up Applications by Using a B"-tree
A practical consequence of the analysis above is that a B"-tree
can perform updates orders of magnitude faster than point
queries. This search-insert asymmetry has two implications for
designing applications on B"-trees.

Performance rule. Avoid query-before-update whenever
possible.

Because of the search-insert asymmetry, the common read-mod-
ify-write (or query-modify-insert) pattern will be bound to the
speed of a query, which is no faster in a B"-tree than in a B-tree.

Upserts. B"-trees support a new upsert operation, to help
applications bridge this performance asymmetry. An upsert is a
type of message that encodes an update with a callback function
which does not require first knowing the value of the key.

Upserts can encode any modification that is asynchronous and
depends only on the key, the old value, and some auxiliary data
that can be stored with the upsert message. Tombstones are a
special case of upserts. Upserts can also be used to increment a
counter, update the access time on a file, update a user’s account
balance after a withdrawal, and many other operations.

With upserts, an application can update the value associated
with key k in the B"-tree by inserting an “upsert message”
(k, (f, ∆)) into the tree, where f is a call-back function and ∆
is auxiliary data specifying the update to be performed. This
upsert message is semantically equivalent to performing a
query followed by an insert:

v ! query(k); insert(k, f (v, ∆)).

However, the upsert does not perform these operations. Rather,
the message (k, (f, ∆)) is inserted into the tree like an insert or
tombstone message.

When an upsert message (k, (f, ∆)) is flushed to a leaf, the value v
associated with k in the leaf is replaced by f (v, ∆) and the upsert
message is discarded. If the application queries k before the
upsert message reaches a leaf, then the upsert message is applied
to v before the query returns.

As with any insert or delete message, multiple upserts can be
buffered for the same key between the root and leaf. If a key is
queried with multiple upserts pending, each upsert must be col-
lected on the path from root to leaf and applied to the key in the
order they were inserted into the tree.

The upsert mechanism does not interfere with I/O performance
of searches, because the upsert messages for a key k always lie on
the search path from the root of the B"-tree to the leaf containing
k. Thus, the upsert mechanism can accelerate updates by one to
two orders of magnitude without slowing down queries.

Performance rule. Use insert performance to improve query
performance by maintaining appropriate indices.

Secondary indices. In a database, secondary indices can
greatly speed up queries. For example, consider a database
table with three columns, k1, k2, and k3, and an application that
sometimes performs queries using k1 and sometimes using k2.
If the table is implemented as a B-tree sorted on k1, then queries
using k1 are fast, but queries using k2 are extremely slow—they
may have to scan essentially the entire database. To solve this
problem, the table can be configured to maintain two indices—
one sorted by k1 and one sorted by k2. Queries can then use the
appropriate index based on the type of the query.

When multiple indices are maintained with B-trees, each index
update requires an additional insert. Because inserts are as
expensive as a point query, maintaining an index on each column
is often impractical. Thus, the table designer must carefully ana-
lyze factors such as the expected type of queries and distribution
of keys in deciding which columns to index, in order to ensure
good overall performance.

B"-trees turn these issues upside down. Indices are cheap to
maintain. Point queries are fundamentally expensive—B"-tree
point queries are no faster than in a B-tree. Thus, B"-tree appli-
cations should maintain whatever indices are needed to perform
queries efficiently.

There are three rules for designing good B"-tree indices.

First, maintain indices sorted by the keys used to query the data-
base. For example, in the above example, the database should
maintain two B"-trees—one sorted by k1 and one sorted by k2.

Second, ensure that each index has all the information required
to answer the intended queries. For example, if the application
looks up the k3 value using key k2, then the index sorted by k2
should store the corresponding k3 value for each entry. In many
databases, the secondary index contains only keys into the
primary index. Thus, for example, a query on k2 would return
the primary key value, k1. To obtain k3, the application has to
perform another query in the primary index using the k1 value
obtained from the secondary index. An index that contains all
the information relevant to a query is called a covering index for
that query.

Finally, design indices to enable applications to perform range
queries whenever possible. For example, if the application wants
to look up all entries (k1, k2, k3) for which a  k1  b, and k2 satisfies

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  27

SYSTEMS
An Introduction to B-trees and Write-Optimization

some predicate, then the application should maintain a second-
ary index sorted by k1 that only contains entries for which k2
matches the predicate.

Log-Structured Merge-Trees
Log-structured merge trees (LSM-trees) [7] are a WODS with
many variants [8, 9]. An LSM-tree typically consists of a loga-
rithmic number of B-trees of exponentially increasing size. Once
an index at one level fills up, it is emptied by merging it into the
index at the next level. The factor by which each level grows is a
tunable parameter comparable to the branching factor (B") in a
B"-tree. For ease of comparison, Table 1 gives the I/O complexi-
ties of operations in an LSM-tree with growth factor B".

LSM-trees can be tuned to have the same insertion complexity
as a B"-tree, but queries in a naïvely implemented LSM-tree can
require I/Os because the query must be repeated in
O(logB N) B-trees. Most LSM-tree implementations use Bloom
filters to avoid queries in all but one of the B-trees, improving
point query performance to I/Os.

One problem for LSM-trees is that the benefits of Bloom filters
do not extend to range queries. Bloom filters are only designed to
improve point queries and do not support range queries. Thus, a
range query must be done on every level of the LSM-tree—squar-
ing the search overhead in Table 1 and yielding strictly worse
asymptotic performance than a B"-tree or a B-tree.

A second advantage of a B"-tree over an LSM-tree is that B"-
trees can effectively use upserts, whereas upserts in an LSM-
tree will ruin the performance advantage of adding Bloom
filters. As discussed above, upserts address a search-insert
asymmetry common to any WODS, including LSM-trees. When
an application uses upserts, it is possible for a message for that
key to be present in every level of the tree containing a pending
message for the key. Thus, a subsequent point query will still
have to query every level of the tree, defeating the purpose of
adding Bloom filters. Note that querying every level of an LSM-
tree also squares the overhead compared to a B"-tree or B-tree,
and is more expensive than walking the path from root-to-leaf
in a B"-tree.

In summary, Bloom-filter-enhanced LSM-trees can match the
performance of B"-trees for some but not all workloads. B"-trees
asymptotically dominate LSM-tree performance. In particular,
B"-trees are asymptotically faster than LSM-trees for small
range queries and point queries in upsert-intensive workloads.

Performance Comparison
To give a sense of how B"-trees perform in practice, we present
some data from BetrFS, an in-kernel, research file system based
on B"-trees. We compare BetrFS to other file systems, including

Btrfs, which is built with B-trees. A more thorough evaluation
appears in our recent FAST paper [5].

All experimental results were collected on a Dell Optiplex 790
with a four-core 3.40 GHz Intel Core i7 CPU, 4 GB RAM, and a
250 GB, 7200 RPM ATA disk. Each file system used a 4096-byte
block size. The system ran Ubuntu 13.10, 64-bit, with Linux ker-
nel version 3.11.10. Each experiment compared several general-
purpose file systems, including Btrfs, ext4, XFS, and ZFS. Error
bars and ± ranges denote 95% confidence intervals. Unless
otherwise noted, benchmarks are cold-cache tests.

Small writes. We used the TokuBench benchmark [10] to
create 3 million 200-byte files in a balanced directory tree
with fanout of 128, using four threads (one per CPU). In BetrFS,
file creations are implemented as B"-tree inserts, and small
file writes are implemented using upserts, so this benchmark
demonstrates the B"-tree’s performance on these two operations.
Figure 2 shows the sustained rate of file creation in each file sys-
tem (note the log scale). In the case of ZFS, the file system crashed
before completing the benchmark, so we reran the experiment
five times and used data from the longest-running iteration.
BetrFS is initially among the fastest file systems, and continues
to perform well for the duration of the experiment. The steady-
state performance of BetrFS is an order of magnitude faster than
the other file systems.

This performance distinction is attributable to both fewer total
writes and fewer seeks per byte written—i.e., better aggregation
of small writes. Based on profiling from blktrace, one major
distinction is total bytes written: BetrFS writes 4–10x fewer
total MB to disk, with an order of magnitude fewer total write
requests. Among the other file systems, ext4, XFS, and ZFS
wrote roughly the same amount of data, but realized widely
varying underlying write throughput.

Figure 2: Sustained rate of file creation for 3 million 200-byte files, using
four threads. Higher is better.

http://www.usenix.org

28    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
An Introduction to B-trees and Write-Optimization

Locality and directory operations. In BetrFS, fast range
queries translate to fast large directory scans. Table 2 reports
the time taken to run “find” and “grep -r” on the Linux 3.11.10
source tree, starting from a cold cache. The grep test recursively
searches the file contents for the string “cpu_to_be64”, and the
find test searches for files named “wait.c”.

Both the find and grep benchmarks do well because file system
data and metadata are stored in large nodes and sorted lexi-
cographically by full path. Thus, related files are stored near
each other on disk. BetrFS also maintains a second index that
contains only metadata, so that metadata scans can be imple-
mented as range queries. As a result, BetrFS can search direc-
tory metadata and file data one or two orders of magnitude
faster than the other file systems.

Limitations. It is important to note that BetrFS is a still a
research prototype and currently has three primary cases where it
performs considerably worse than other file systems: large direc-
tory renames, large deletes, and large sequential writes (more

details in [5]). Renames and deletes are slow because BetrFS
does not map them directly onto B"-tree operations. Sequential
writes are slow largely because the underlying B"-tree appends
all data to a log before inserting it into the tree, so everything
is written to disk at least twice. We believe these issues can be
addressed in ongoing research and development efforts; our goal,
supported by the asymptotic analysis, is for BetrFS to match or
exceed the performance of other file systems on all workloads.

Conclusion
B"-tree implementations can match the search performance of
B-trees, perform inserts and delete orders of magnitude faster,
and execute range queries at near disk bandwidth. The design
and implementation of B"-trees converts a tradeoff between
update and range query costs into a mutually beneficial synergy
between batching small updates and large nodes. Our results
with BetrFS demonstrate that the asymptotic improvements
of B"-trees can yield practical performance improvements
for applications that are designed for B"-tree’s performance
characteristics.

Acknowledgments
This work was supported in part by NSF grants CNS-1409238,
CNS-1408782, CNS-1408695, CNS-1405641, CNS-1149229,
CNS-1161541, CNS-1228839, CNS-1408782, IIS-1247750, CCF-
1314547, Sandia National Laboratories, and the Office of the
Vice President for Research at Stony Brook University.

References
[1] G. S. Brodal and R. Fagerberg, “Lower Bounds for External
Memory Dictionaries,” in Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (ACM), 2003, pp.
546–554.

[2] D. Comer, “The Ubiquitous B-tree,” ACM Computing
Surveys, vol. 11, June 1979, pp. 121–137.

[3] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. R. Westbrook, “On External Memory Graph Traversal,”
in Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2000, pp. 859–860.

[4] Tokutek, Inc., TokuDB: MySQL Performance, MariaDB
Performance, 2013: http://www.tokutek.com/products/
tokudb-for-mysql/.

[5] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao,
A. Mittal, P. Pandey, P. Reddy, L. Walsh, M. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter, “BetrFS:
A Right-Optimized Write-Optimized File System,” in Proceed-
ings of the USENIX Conference on File and Storage Technologies
(FAST), 2015, pp. 301–315.

[6] A. Aggarwal and J. S. Vitter, “The Input/Output Complexity
of Sorting and Related Problems,” Communications of the ACM,
vol. 31, Sept. 1988, pp. 1116–1127.

[7] P. O’Neil, E. Cheng, D. Gawlic, and E. O’Neil, “The Log-
Structured Merge-Tree (LSM-tree),” Acta Informatica, vol. 33,
no. 4, 1996, pp. 351–385.

[8] R. Sears and R. Ramakrishnan, “bLSM: A General Purpose
Log Structured Merge Tree,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data,
ACM, 2012, pp. 217–228.

[9] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J. Seyster,
and E. Zadok, “Building Workload-Independent Storage with
VT-trees,” in Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), 2013, pp. 17–30.

[10] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C.
Kuszmaul, “The TokuFS Streaming File System,” in Proceed-
ings of the 4th USENIX Workshop on Hot Topics in Storage
(HotStorage), June 2012.

FS find grep
BetrFS 0.36 ± 0.06 3.95 ± 0.28
Btrfs 3.87 ± 0.94 14.91 ± 1.18
ext4 2.47 ± 0.07 46.73 ± 3.86
XFS 19.07 ± 3.38 66.20 ± 15.99
ZFS 11.60 ± 0.81 41.74 ± 0.64

Table 2: Directory operation benchmarks, measured in seconds. Lower is
better.

http://www.usenix.org
http://www.tokutek.com/products/tokudb-for-mysql/
http://www.tokutek.com/products/tokudb-for-mysql/

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  29

SYSTEMS

It’s Time to End Monolithic Apps for
Connected Devices
R A Y M A N P R E E T S I N G H , C H E N G U A N G S H E N , A M A R P H A N I S H A Y E E ,
A M A N K A N S A L , A N D R A T U L M A H A J A N

The proliferation of connected sensing devices (or Internet of Things)
can in theory enable a range of “smart” applications that make
rich inferences about users and their environment. But in practice,

developing such applications today is arduous because they are constructed
as monolithic silos, tightly coupled to sensing devices, and must implement
all data sensing and inference logic, even as devices move or are temporarily
disconnected. We present Beam, a framework and runtime for distributed
inference-driven applications that breaks down application silos by decou-
pling their inference logic from other functionality. It simplifies applications
by letting them specify “what should be sensed or inferred,” without worry-
ing about “how it is sensed or inferred.” We discuss the challenges and oppor-
tunities in building such an inference framework.

Connected sensing devices such as cameras, thermostats, and in-home motion, door-window,
energy, and water sensors, collectively dubbed the Internet of Things (IoT), are rapidly per-
meating our living environments, with an estimated 50 billion such devices projected for use
by 2020 [2]. They enable a wide variety of applications spanning security, efficiency, health-
care, and others. Typically, these applications collect data using sensing devices to draw
inferences about the environment or the user, and use these inferences to perform certain
actions. For example, Nest uses motion sensor data to infer and predict home occupancy and
adjusts the thermostat accordingly.

Most IoT applications today are being built in a monolithic way. That is, applications are
tightly coupled to the hardware. For instance, Nest’s occupancy prediction can only be used
with the Nest device. Applications need to implement all the data collection, inferencing, and
user functionality-related logic. For application developers, this increases the complexity of
development, and hinders broad distribution of their applications because the cost of deploy-
ing their specific hardware limits user adoption. For end users, each sensing device they
install is limited to a small set of applications, even though the hardware capabilities may be
useful for a broader set of applications. How do we break free from this monolithic and restric-
tive setting? Can we enable applications to be programmed to work seamlessly in heteroge-
neous environments with different types of connected sensors and devices, while leveraging
devices that may only be available opportunistically, such as smartphones and tablets?

To address this problem, we start from the insight that many inferences required by applica-
tions can be drawn using multiple types of connected devices. For instance, home occupancy
can be inferred using motion sensors (e.g., those in security systems or in Nest), cameras
(e.g., Dropcam), microphone, smartphone GPS, or using a combination of these, since each
may have different sources of errors. Therefore, we posit that inference logic, traditionally
left up to applications, ought to be abstracted out as a system service. Such a service will
relieve application developers of the burden of implementing and training commonly used

Rayman Preet Singh is a PhD
candidate in computer science
at the University of Waterloo,
Canada. He is co-advised by S.
Keshav and Tim Brecht, and has

broad research interests in distributed systems
and ubiquitous computing.
rmmathar@uwaterloo.ca

Chenguang Shen is a PhD
candidate in computer science
at the University of California,
Los Angeles (UCLA), working
with Professor Mani Srivastava.

He obtained his MS in computer science from
UCLA in 2014, and a BEng in software
engineering from Fudan University, Shanghai,
China in 2012. Chenguang’s research focuses
on developing a mobile sensing framework for
context awareness. cgshen@cs.ucla.edu

Amar Phanishayee is a
Researcher at Microsoft
Research. His research efforts
center around rethinking the
design of datacenter-based

systems, from infrastructure for compute,
storage, and networking to distributed systems
that are scalable, robust to failures, and
resource-efficient. He is also interested in
storage and programming abstractions for
connected devices. Amar received his PhD
from Carnegie Mellon University in 2012.
amar@microsoft.com

http://www.usenix.org
mailto:rmmathar@uwaterloo.ca
mailto:cgshen@cs.ucla.edu
mailto:amar@microsoft.com

30    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
It’s Time to End Monolithic Apps for Connected Devices

inferences. More importantly, it will enable applications to work using any of the sensing
devices that the shared inference logic supports.

We surveyed and analyzed two popular application classes in detail, one that infers environ-
mental attributes and another that senses an individual user.

◆◆ Rules: A large class of applications is based on the If This Then That (IFTTT) pattern [1, 8].
IFTTT enables users to create their own rules that map sensed attributes to desired actions.
We consider a particular rules application that alerts a user if a high-power appliance, e.g.,
electric oven, is left on when the home is unoccupied. This application uses the appliance-
state and home occupancy inferences.

◆◆ Quantified Self (QS) captures a popular class of applications that disaggregate a user’s daily
routine by tracking her physical activity (walking, running, etc.), social interactions (loneli-
ness), mood (bored, focused), computer use, and more.

In analyzing these two popular classes of applications, we identify the following three key
challenges for the proposed inference service:

1. Decouple applications, inference algorithms, and devices: Data-driven inferences
can often be derived using data from multiple devices. Combining inputs from multiple
devices, when available, generally leads to improved inference accuracy (often overlooked by
developers). Figure 1 illustrates the improvement in inference accuracy for the occupancy
and physical activity inferences, used in the Rules and Quantified Self applications, respec-
tively; 100% accuracy maps to manually logged ground truth over 28 hours.

Hence, applications should not be restricted to using a single sensor or a single inference
algorithm. At the same time, applications should not be required to incorporate device
discovery, handle the challenges of potentially using devices over the wide area (e.g., remote
I/O and tolerating disconnections), use disparate device APIs, and instantiate and combine
multiple inferences depending on available devices. Therefore, an inference framework must
decouple (1) “what is sensed” from “how it is sensed” and (2) “what is inferred” from “how it is
inferred.” It should require an application to only specify the desired inference, e.g., occu-
pancy (in addition to inference parameters like sampling rate and coverage), while handling
the complexity of configuring the right devices and inference algorithms.

2. Handle environmental dynamics: Applications are often interested in tracking user
and device mobility, and adapting their processing accordingly. For instance, the QS appli-
cation needs to track which locations a user frequents (e.g., home, office, car, gym, meeting
room, etc.), handle intermittent connectivity, and more. Application development stands
to be greatly simplified if the framework were to seamlessly handle such environmental
dynamics, e.g., automatically update the selection of devices used for drawing inferences
based on user location. Hence the QS application, potentially running on a cloud server,
could simply subscribe to the activity inference, which would be dynamically composed of
sub-inferences from various devices tracking a user.

3. Optimize resource usage: Applications often involve continuous sensing and inferring,
and hence consume varying amounts of system resources across multiple devices over time.
Such an application must structure its sensing and inference processing across multiple
devices, in keeping with the devices’ resource constraints. This adds undue burden on devel-
opers. For instance, in the QS application, wide area bandwidth constraints may prevent
backhauling of high rate sensor data. Moreover, whenever possible, inferences should be
shared across multiple applications to prevent redundant resource consumption. Therefore,
an inference framework must not only facilitate sharing of inferences, but in doing so must
optimize for efficient resource use (e.g., network, battery, CPU, memory, etc.) while meeting
resource constraints.

Aman Kansal received his PhD
in electrical engineering from
the University of California Los
Angeles, where he was honored
with the department’s

Outstanding PhD Award. His current research
interests include all aspects of sensing
systems, with a special emphasis on
embedded sensing, context inference, and
energy efficiency. He has published over 65
papers, and his work has also been recognized
with the Microsoft Gold Star award.
kansal@microsoft.com

Ratul Mahajan is a Principal
Researcher at Microsoft
Research and an Affiliate
Professor at the University of
Washington. His research

interests include all aspects of networked
systems. His current work focuses on
software-defined networks and network
verification, and his past work spans Internet
routing and measurements, incentive-
compatible protocol design, practical models
for wireless networks, vehicular networks, and
connected homes. ratul@microsoft.com

http://www.usenix.org
mailto:kansal@microsoft.com
mailto:ratul@microsoft.com

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  31

SYSTEMS
It’s Time to End Monolithic Apps for Connected Devices

Beam Inference Framework
To explore the above challenges concretely, we propose Beam, an
application framework and associated runtime for data-driven
inference-based applications. Beam provides applications with
inference-based programming abstractions. Applications sub-
scribe to high-level inferences, and Beam dynamically identifies
the required sensors in the given deployment and constructs an
appropriate inference graph. The inference graph is made up of
modules, which are processing units that encapsulate infer-
ence algorithms; modules can use the output of other modules
for their processing logic. The Beam runtime instantiates the
inference graph to initiate data processing on suitable devices.
Beam’s user-tracking service and optimizer mutate this graph
at runtime for handling environment dynamics and for efficient
resource usage, respectively.

Beam introduces three simple abstractions that are key to
constructing and maintaining the inference graph. First,
typed inference data units (IDUs) guide module composability.

Modules can be linked to accept IDUs from other modules and
generate IDUs. Second, channels abstract all inter-module inter-
action, allowing Beam to seamlessly migrate modules and mask
transient disconnections when interacting modules are not col-
located. Third, coverage tags provide a flexible and low-overhead
way to connect sensors with the right coverage characteristics
(e.g., location, users) to applications. We describe these key
abstractions in detail next.

Inference graphs: Inference graphs are directed acyclic
graphs that connect sensors to applications. The nodes in this
graph correspond to inference modules and edges correspond
to channels that facilitate the transmission of IDUs between
modules. Figure 2 shows an example inference graph for the
Quantified Self application that uses eight different devices
spread across the user’s home and office and includes mobile
and wearable devices.

Composing an inference as a directed graph enables sharing of
data-processing modules across applications and across modules
that require the same input. In Beam, each compute device asso-
ciated with a user, such as a tablet, phone, PC, or home hub, has
a part of the runtime, called the engine. Engines host inference
graphs and interface with other engines. Figure 3 shows two
engines, one on the user’s home hub and another on his phone;
the inference graph for QS shown earlier is split across these
engines, with the QS application itself running on a cloud server.
For simplicity, we do not show other engines such as one running
on the user’s work PC.

IDU: An inference data unit (IDU) is a typed inference, and in its
general form is a tuple <t,s,e>, which denotes any inference with
state information s, generated by an inference algorithm at time
t and error e. The types of the inference state s and error e, are
specific to the inference at hand. An example IDU is (09/23/2015
10:10:00, occupied, 90%). Inference state s may be of a numerical

Figure 1: Improvement in occupancy and activity inference accuracy
by combining multiple devices. For occupancy, sensor set 1 = {camera,
microphone} in one room and set 2 = {PC interactivity detection} in a
second room. For physical activity, set 1 = {phone accelerometer} and set
2 = {wrist worn FitBit}.

Figure 2: Inference graph for Quantified Self app

http://www.usenix.org

32    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
It’s Time to End Monolithic Apps for Connected Devices

type such as a double (e.g., inferred energy consumption); an
enumerated type such as high, medium, low; or numerical types.
Similarly, error e may specify a confidence measure (e.g., stan-
dard deviation), probability distribution, or error margin (e.g.,
radius). IDUs abstract away “what is inferred” from “how it is
inferred.” The latter is handled by inference modules, described
next.

Inference modules: Beam encapsulates inference algorithms
into typed modules. Inference modules consume IDUs from
one or more modules, perform certain computations using IDU
data and pertinent in-memory state, and output IDUs. Special
modules called adapters interface with underlying sensors and
output sensor data as IDUs. Adapters decouple “what is sensed”
from “how it is sensed.” Module developers specify the IDU
types a module consumes, the IDU type it generates, and the
module’s input dependency (e.g., {PIR} OR {camera AND mic}).
Modules have complete autonomy over how and when to output
an IDU and can maintain arbitrary internal state. For instance,
an occupancy inference module may (1) specify input IDUs from
microphone, camera, and motion sensor adapters, (2) allow
multiple microphones as input, and (3) maintain internal state to
model ambient noise.

Channels: To ease inference composition, channels link mod-
ules to each other and to applications. They encapsulate the
complexities of connecting modules across different devices,
including dealing with device disconnections and allowing for
optimizations such as batching IDU transfers for efficiency.
Every channel has a single writer and a single reader module.
Modules can have multiple input and output channels. Channels
connecting modules on the same engine are local. Channels con-
necting modules on two different engines, across a local or wide
area network, are remote channels. They enable applications and

inference modules to seamlessly use remote devices or remote
inference modules.

Coverage tags: Coverage tags help manage sensor coverage.
Each adapter is associated with a set of coverage tags that
describe what the sensor is sensing. For example, a location
string tag can indicate a coverage area such as “home,” and a
remote monitoring application can use this tag to request an
occupancy inference for this coverage area. Coverage tags are
strongly typed. Beam uses tag types only to differentiate tags
and does not dictate tag semantics. This allows applications
complete flexibility in defining new tag types. Tags are assigned
to adapters at setup time using inputs from the user, and are
updated at runtime to handle dynamics.

Beam’s runtime also consists of a coordinator, which interfaces
with all engines in a deployment and runs on a server that is
reachable from all engines. The coordinator maintains remote
channel buffers to support reader or writer disconnections (typi-
cal for mobile devices). It also provides a place to reliably store
state of inference graphs at runtime while being resistant to
engine crashes and disconnections. The coordinator is also used
to maintain reference time across all engines. Engines interface
with the coordinator using a persistent Web-socket connection,
and instantiate and manage local parts of an inference graph(s).

Beam Runtime
Beam creates or updates inference graphs when applications
request inferences, mutates the inference graphs appropriately
to handle environmental dynamics, and optimizes resource
usage.

Inference graph creation: An application may run on any user
device, and the sensors required for a requested inference may
be spread across devices. Applications request their local Beam

Figure 3: An overview of different components in an example Beam deployment with two engines

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  33

SYSTEMS
It’s Time to End Monolithic Apps for Connected Devices

engine for all inferences they require. All application requests
are forwarded to the coordinator, which uses the requested
inference to look up the required module. It recursively resolves
all required inputs of that module (as per its specification) and
reuses matching modules that are already running. The coordi-
nator maintains a set of such inference graphs as an incarnation.
The coordinator determines where each module in the inference
graph should run and formulates the new incarnation. The coor-
dinator initializes buffers for remote channels, and partitions
the inference graphs into engine-specific subgraphs, which are
sent to the engines.

Engines receive their respective subgraphs, compare each
received subgraph to existing ones, and update them by termi-
nating deleted channels and modules, initializing new ones, and
changing channel delivery modes and module sampling rates
as needed. Engines ensure that exactly one inference module of
each type with a given coverage tag is created.

Inference delivery and guarantees: For each inference
request, Beam returns a channel to the application. The infer-
ence request consists of (1) required inference type or module,
(2) delivery mode, (3) coverage tags, and (4) sampling require-
ments (optional).

Delivery mode is a channel property that captures data trans-
port optimizations. For instance, in the fresh push mode, an IDU
is delivered as soon as the writer-module generates it, while
in the lazy push mode, the reader chooses to receive IDUs in

batches, thus amortizing network transfer costs from battery-
limited devices. Remote channels provide IDU delivery in the
face of device disconnections by using buffers at the coordina-
tor and the writer engine. Channel readers are guaranteed (1)
no duplicate IDU delivery and (2) FIFO delivery based on IDU
timestamps. Currently, remote channels use the drop-tail policy
to minimize wide-area data transfers in the event of a discon-
nected/lazy reader. This means that when a reader reconnects
after a long disconnection, it first receives old inference values
followed by more recent ones. A drop-head policy may be adopted
to circumvent this, at the cost of increased data transfers.

When requesting inferences, applications use tags to specify
coverage requirements. Furthermore, an application may specify
sampling requirements as a latency value that it can tolerate in
detecting the change of state for an inference (e.g., walking peri-
ods of more than one minute). This allows adapters and modules
to temporarily halt sensing and data processing to reduce bat-
tery, network, CPU, or other resources.

Channels and modules do not persist data. Applications and
modules may use a temporal datastore, such as Bolt [5], to make
inferences durable.

Optimizing resource use: The Beam coordinator uses infer-
ence graphs as the basis for optimizing resource usage. The coor-
dinator reconfigures inference graphs by remapping the engine
on which each inference module runs. Optimizations are either
performed reactively (i.e., when an application issues/cancels an

Function Application Description

APIs:
Request(InferenceModule, List<Tag>, Mode, [SamplingRate])
Request(InferenceType, List<Tag>, Mode, [SamplingRate])
CancelRequest(InferenceModule)

Returns a channel to specified module or to a module that outputs
specified inference (and instantiates the inference graph)
Delete channel to specified module, and terminate its inference
graph

Channel APIs:
DeliverCallback(Channel, List<IDU>)
Start(), Stop()

Receive a list of IDUs (invoked on channel reader)
Start or stop a channel (invoked by channel reader)

Inference Module APIs:
Initialize(ModuleSpec, [SamplingRate])
PushToOutputChannels(IDU)
AllOutputChannelsStopped()
OutputChannelRestarted(Channel)

Initialize the module with given specification and reporting rate
Push inference data unit (IDU) to all output channels
Stop sensing/processing because all output channels stopped
Restart sensing/processing because an output channel is
restarted

Optimizer APIs:
UpdateGraphs(List<Graph>, List<Engine>, App, Req/Cancel,
Module, [Mode])
ReevaluateGraphs(List<Graph>, List<Engine>)

Incorporates module request and returns updated list of infer-
ence graphs
Returns updated list of inference graphs (new incarnation) after
reevaluation

Table 1: Key Beam APIs: Beam offers APIs for application, inference module, and optimizer developers. Applications and inference modules use channels for
communication. [] denotes an optional parameter.

http://www.usenix.org

34    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
It’s Time to End Monolithic Apps for Connected Devices

inference request) or proactively at periodic intervals. Beam’s
default reactive optimization minimizes the number of remote
channels, and proactive optimization minimizes the amount of
data transferred over remote channels. Other potential optimi-
zations can minimize battery, CPU, and/or memory consump-
tion at engines.

When handling an inference request, the coordinator first
incorporates the requested inference graph into the incarnation,
reusing already running modules, and merging inference graphs
if needed. For new modules, the coordinator decides on which
engines they should run (by minimizing the number of remote
channels).

Engines profile their subgraphs and report profiling data (e.g., per-
channel data rate) to the coordinator periodically. The coordinator
annotates the incarnation using this data and periodically reeval-
uates the mapping of inference modules to engines. Beam’s default
proactive optimization minimizes wide area data transfers.

Handling dynamics: Movement of users and devices can
change the set of sensors that satisfy application requirements.
For instance, consider an application that requires camera input
from the device currently facing the user at any time, such as
the camera on her home PC, office PC, smartphone, etc. In such
scenarios, the inference graph needs to be updated dynami-
cally. Beam updates the coverage tags to handle such dynamics.
Certain tags such as those of location type (e.g., “home”) can be
assumed to be static (edited only by the user), while for certain
other types, e.g., user, the sensed subject is mobile and hence the
sensors that cover it may change.

The coordinator’s tracking service manages the coverage tags
associated with adapters on various engines. The engine’s track-
ing service updates the user coverage tags as the user moves. For
example, when the user leaves her office and arrives home, the
tracking service removes the user tag from device adapters in
the office, and adds them to adapters of devices deployed in the
home. The tracking service relies on device interactions to track
users. When a user interacts with a device, the tracking service
appends the user’s tag to the tags of all adapters on the device.

When coverage tags change (e.g., due to user movement and
change in sensor coverage), the coordinator recomputes the infer-
ence graphs and sends updated subgraphs to the affected engines.

Current Prototype
Our Beam prototype is implemented as a cross-platform por-
table service that supports .NET v4.5, Windows Store 8.1, and
Windows Phone 8.1 applications. Module binaries are currently
wrapped within the service, but may also be downloaded from
the coordinator on demand.

APIs: Table 1 shows the APIs that Beam exposes to applica-
tion, inference module, and optimizer developers. Applica-
tions use the inference API to issue and cancel requests. Both
inference modules and applications use the channel APIs to
receive IDUs, and may Stop a channel to cease receiving IDUs.
Each inference module is first initialized and provided with its
specification and a sampling rate. It then begins its process-
ing and pushes IDUs to all its output channels. If every output
channel of a module is stopped, Beam informs the module (via
AllOutputChannelsStopped), allowing it to stop its sensing/
processing, thus saving resources until an output channel is
restarted. Moreover, Beam abstracts optimization logic out of
the coordinator, which allows modular replacement of proac-
tive and reactive optimizers. Table 1 shows the inference graph
management APIs that optimizers should implement to inter-
face with Beam.

Inferences: We have implemented eight inference modules
(mic-occupancy, camera-occupancy, appliance-use [3], occu-
pancy, PC activity [6], fitness activity [7], semantic location, and
social-interaction) and nine adapters (tablet and PC mic, power-
meter, FitBit, GPS, accelerometer, PC interaction, PC event, and
a HomeOS [4] adapter) to access all its device drivers.

Sample applications: We have implemented the two sample
applications, Rules and QS, discussed earlier. Applications run
on a cloud VM; Beam hosts the respective inference modules
across the user’s home PC, work PC, and phone.

Figure 4 compares the source lines of application code (SLoC)
used in building these applications when using Beam and other
development approaches. A monolithic approach where all sen-
sor data is backhauled to a cloud-hosted application is denoted
by M-AC. M-CD denotes an approach where a developer divides
inference processing into fixed components that run on a cloud
VM and end devices. M-Lib is similar to M-CD, except that an
inference algorithm library is used. M-Hub denotes application
development using device abstractions provided by the OS, e.g.,

Figure 4: SLoC for different application components in the various devel-
opment approaches

http://www.usenix.org

www.usenix.org	 O C TO B ER 20 1 5  VO L . 4 0, N O. 5  35

SYSTEMS
It’s Time to End Monolithic Apps for Connected Devices

HomeOS [4]. Moreover, we categorize the measured SLoC into
the following different categories: (1) sensor drivers (one per
sensor type); (2) inference algorithms, feature extraction, and
learning models; (3) any required cloud-hosted services (as per
the development approach) such as a storage, authentication, or
access-control service; (4) mechanisms to handle device discon-
nections; and (5) user interface components, e.g., for display-
ing results or configuring devices. Using Beam results in up to
12x lower SLoC. Moreover, Beam’s handling of environmental
dynamics results in up to 3x higher inference accuracy, and
its dynamic optimizations match hand-optimized versions for
network resource usage.

Future Directions
Our experience in building the current Beam prototype has
raised interesting questions and helped us identify various
directions for future work.

Beam’s current tracking service only supports tracking of users
(through device interactions) and mobile devices. We aim to
extend tracking support to generic objects using passive tags
such as RFID or QR codes.

Similarly, we aim to enrich Beam’s optimizers to include optimi-
zations for battery, CPU, and memory. The key challenge in doing
so lies in dynamically identifying the appropriate optimization
objective (e.g., network, battery), issuing reconfigurations of
inference graphs, while preventing hysteresis in the system.

Many in-home devices possess actuation capabilities, such as
locks, switches, cameras, and thermostats. Applications and
inference modules in Beam may want to use such devices. If the
inference graph for these applications is geo-distributed, timely
propagation and delivery of such actuation commands to the
devices becomes important and raises interesting questions of
what is the safe thing to do if an actuation arrives “late.”

Lastly, by virtue of its inference-driven interface, Beam enables
better information control. A user can, in theory, directly control
the inferences a given application can access. In contrast, exist-
ing device abstractions only allow the user to control the flow
of device data to applications, with little understanding of what
information is being handed over to applications. We hope to
investigate the implications of this new capability in future work.

Conclusion
Applications today are developed as monolithic silos, tightly
coupled to sensing devices, and need to implement extensive
data sensing and inference logic, even as devices move or have
intermittent connectivity. Beam presents applications with
inference-based abstractions and (1) decouples applications,
inference algorithms, and devices; (2) handles environmental
dynamics; and (3) optimizes resource use for data processing
across devices. This approach simplifies application develop-
ment, and also maximizes the utility of user-owned devices,
thus surpassing current monolithic siloed approaches to build-
ing apps that use connected devices.

References
[1] IFTTT: Put the Internet to work for you: https: //ifttt.com/.

[2] The Internet of Things: http://share.cisco.com/internet
-of-things.html/.

[3] N. Batra, J. Kelly, O. Parson, H. Dutta, W. J. Knottenbelt,
A. Rogers, A. Singh, and M. Srivastava, “NILMTK: An Open
Source Toolkit for Non-Intrusive Load Monitoring,” in Pro-
ceedings of the 5th International Conference on Future Energy
Systems, 2014.

[4] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S.
Saroiu, and P. Bahl, “An Operating System for the Home,” in
Proceedings of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI ’12), 2012.

[5] T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R.
Mahajan, “Bolt: Data Management for Connected Homes,”
in Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’14), April 2014.

[6] G. Mark, S. T. Iqbal, M. Czerwinski, and P. Johns, “Bored
Mondays and Focused Afternoons: The Rhythm of Attention
and Online Activity in the Workplace,” in Proceedings of the
ACM CHI, 2014.

[7] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M.
Srivastava, “Using Mobile Phones to Determine Transporta-
tion Modes,” ACM Transactions on Sensor Networks, vol. 6,
no. 2, February 2010.

[8] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman,
“Practical Trigger-Action Programming in the Smart Home,”
in Proceedings of the ACM CHI, 2014.

http://www.usenix.org
http://share.cisco.com/internet-of-things.html/
http://share.cisco.com/internet-of-things.html/

36    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMINHow Kubernetes Changes Operations
B R E N D A N B U R N S

Brendan Burns is a Senior
Staff Software Engineer at
Google, Inc. and a founder of
the Kubernetes project, leading
engineering efforts to make

the Google Cloud Platform the best place to
run containers. He also has managed several
other cloud teams, including Deployment
Manager, Managed VMs, and Cloud DNS. Prior
to Cloud, he was a lead engineer in Google’s
Web search infrastructure, building backends
that powered social and personal search. Prior
to working at Google, he was a professor at
Union College in Schenectady, NY. He received
a PhD in computer science from the University
of Massachusetts Amherst, and a BA in
computer science and studio art from Williams
College. bburns@google.com

Container cluster managers are used by many Web-scale Internet
companies, including Google’s Borg and Omega, Facebook’s Tupper-
ware, Twitter’s Aurora, and many others. At their core, these

container orchestration systems schedule and manage (“orchestrate”)
collections of Linux application containers. In this article, I will explain the
Kubernetes project.

Recently, interest in the Docker open source project has caused a significant growth in inter-
est in Linux application containers in the general developer and operations community. Due
to this growth in interest, Google launched the Kubernetes project, which makes Google’s
years of experience in running container clusters available to the larger world in a commu-
nity-driven, open source project. The development of these internal container cluster manag-
ers was driven by real operational needs of operating software at “Google scale,” but we have
seen recently that their benefits apply even at a more modest scope and scale.

I illustrate how container orchestration systems change the operations tasks associated
with running, maintaining, and upgrading highly scalable and reliable applications. At the
heart of this change are two fundamental shifts. First, container orchestration systems
provide and enforce significant decoupling between the layers of the serving stack: machine,
operating system, application manager, and application code. This decoupling enables the
development of specialized teams with agility and freedom to operate on their parts of the
stack, thanks to separation of concerns. Second, container cluster APIs are inherently more
application-oriented than traditional IaaS machine-centric APIs. This shift towards appli-
cation-oriented primitives makes it easy to perform operation and maintenance tasks that
were previously complicated, brittle, or both. In this article, I show how the formal boundar-
ies introduced by containers and container cluster management enable the segmentation of
traditional operations into multiple discrete roles.

In addition to a general discussion of container orchestration and operations, I also describe
the Google Kubernetes container orchestrator, including the core resources in the Kuber-
netes system, and how they produce an inherently more stable, agile, and reliable foundation
for application deployment.

Decoupling Operations Roles
Anyone who has tried to back up a trailer on a car knows that coupled, multi-component
systems are hard to predict and control. Actions taken in one part of the system often cause
unpredictable, user-visible problems in some other component of the system. A classic
example might be upgrading a Web server, which includes updating the libc library, caus-
ing a database on the same machine to fail because the libc change introduces a bug that the
database triggers.

Coupling increases the knowledge and skill set required to be a high-performing applica-
tion administrator and requires operators to fully understand their entire application stack,
including all dependencies, in comprehensive detail. In turn, this reduces the ability of
operations teams to specialize, prevents the acquisition of true expertise, and reduces oppor-
tunities to introduce economies of scale.

http://www.usenix.org
mailto:bburns@google.com

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  37

SYSADMIN
How Kubernetes Changes Operations

As an example of this, in companies where every development
team is responsible for their choice of operating system distribu-
tion (e.g., Debian or Red Hat), the operating systems in the fleet
will inevitably be heterogeneous. Another example involves
choosing to use SysV init vs. the systemd daemon. The result-
ing heterogeneity makes it difficult (if not impossible) to have a
single team of administrators manage all of the machines in the
fleet. It is also difficult to build a common set of tools and/or pro-
cesses for performing maintenance and monitoring across all of
the operating systems in the fleet. Being unable to share tooling
and expertise means that fleet maintenance is more expensive
and less reliable than if a single team and set of tools could man-
age the entire fleet of machines.

Container cluster management software makes it easier to avoid
tight coupling, and the corresponding problems of heterogeneous
environments, by introducing crisp boundaries and manage-
ment APIs that decouple operations into discrete roles: hard-
ware operations, kernel/OS operations, cluster operations, and
application operations. The decoupling of these roles means that
it is possible for each of the first three roles (hardware, kernel/
OS, and cluster) to have a single team handle operations and
administration, which enables lower costs and higher reliability.
For application operations, it also enables the building of special-
ized, application-specific operations teams that can be deeply
involved in the specifics of their application. The net result is a
complete system that makes highly reliable applications cheaper
to build and maintain.

Hardware Operations
The hardware operations role is responsible for racking and
stacking machines, connecting network cables between racks
and switches, and repairing or retiring machines. In modern
public cloud providers, these roles have been wholly outsourced
to the cloud provider, who can provide significantly greater
expertise and economies of scale than the average user.

Kernel/OS Operations
The interface between a Docker container image and the under-
lying operating system is the Linux kernel syscall interface.
Because each Docker container carries with it all of its depen-
dencies (application binary, libraries, configuration files, etc.),
it is wholly decoupled from the files that make up the machine
image. An application developer can rely on two things from the
kernel and operating system:

◆◆ Stability in the syscall API and operational characteristics

◆◆ A working Docker daemon

These requirements form an explicit contract between the
kernel/OS and the applications that run on top of it. This means
that the operations team responsible for the machine image
(kernel, operating system able to boot the Docker daemon) can

focus on qualifying those two generic requirements without
understanding the details of any particular application. This
decoupling enables release qualification, rollout, and manage-
ment of a single, homogeneous kernel/OS across an entire
fleet of machines. In managed container services like Google
Container Engine, this kernel/operating system qualification
and upgrading is outsourced to the cloud provider, enabling the
application operations team (described below) to focus entirely
on their application. The cluster management boundary imposes
a discipline about the APIs available to application developers, as
well as a single, shared implementation of this API. Because the
implementation is shared between multiple, different applica-
tions, the discipline enforced by this API also acts as a counter-
weight to the natural tendency towards entropy and differences
between the software stack supporting different applications.

Cluster Operations
If cluster users are allowed to deploy their container applica-
tions onto specific machines, then the resulting systems will
be too tightly coupled because the applications will inevitably
begin to rely on the specific characteristics of the machines
on which they run. For example, if an application is coupled to
the machine’s network identity (hostname and IP address), the
decoupling between application, hardware, and kernel has been
broken. That machine cannot just be sent to repairs when the
hardware operator determines it is failing. Nor can it be rebooted
for an OS installation any time the OS operator decides one is
needed. It is the container cluster manager’s goal to decouple
containerized applications from the specifics of any particular
machine. For example, in Kubernetes, we give each pod an IP
address that is independent of the IP address of the machine that
it is running on. The pod does not have access to the machine’s
network identity. Furthermore, Kubernetes can restrict the set
of file systems that can be mounted into a pod from the host file
system, restricting access to things like raw block devices and
other machine-specific hardware.

Additionally, container cluster managers, like Kubernetes, pro-
vide a declarative, programmable API that is the primary one by
which developers schedule and deploy users’ applications onto a
fleet of machines. Consequently, developers are decoupled from
the details of physical machines, because their mode of interac-
tion is container and application-centric. The particular details
of the machine that ends up running the application developer’s
containers become an implementation detail of the underlying
cluster manager.

Indeed, many users forget that their applications are running on
physical (or virtual) machines at all and, instead, deal solely with
the logical compute substrate provided by the container cluster
API. They ask that API for a certain set of application resource
requirements (say, two cores and 100 GB of RAM), and it is the

http://www.usenix.org

38    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN
How Kubernetes Changes Operations

container cluster manager’s responsibility to find sufficient
resources somewhere in the cluster and deploy the application
onto those resources. The job of a container cluster administra-
tor is to ensure that the services that provide the container clus-
ter management API stay available and operationally healthy at
all times.

Application Operations
Closest to the end user in these decoupled operations roles are
application operators. These administrators are focused on man-
aging and deploying applications: for example, the Google search
backend or Gmail frontend. These administrators develop deep
specialized knowledge of their applications, and rely on cluster,
kernel, and hardware operations teams to provide them the
infrastructure they need to do their job. Transferring work that
is unrelated to their application (e.g., kernel and OS upgrades)
onto specialized kernel operation teams allows the application
operation teams to develop application-specific tooling for more
reliable management of their application. The specialization
of application administrators on a particular application also
means that they can develop deep technical understanding of
the specific application software, and form significant partner-
ships with the development teams to improve the reliability and
performance of that software.

The Kubernetes Cluster Manager
Having described how containers and cluster management
APIs enable the decoupling of operations roles, I will now dis-
cuss some specifics of the Kubernetes API to provide a deeper
understanding of the functionality that Kubernetes provides.
Beginning with a description of pods, the atomic unit of schedul-
ing in the Kubernetes system and the basic building block for
running containers in a Kubernetes cluster, I will go on to cover
generic software patterns for building applications with pods.
I’ll show how Kubernetes resources are organized into dynamic
sets with labels and how those labels are used to automatically
manage replicated microservices using Replication Controllers
and Services.

Pods
Pods are the most fundamental API object in Kubernetes. A
pod is a group of containers that is scheduled together onto one
machine. All of the containers within a pod share the same
network namespace, so the containers within a pod can easily
find each other on “localhost.” This eliminates the need for a
complicated discovery service (more on that later). The contain-
ers in a pod also share the same IPC namespace, which means
that they can use traditional UNIX IPC, such as pipes. As Kuber-
netes matures, we expect that pods will come to share all of the
available kernel namespaces, including group ID namespaces,
process ID namespaces, and more.

Pods also encapsulate node-level health checking and reliability
for their constituent containers. In Kubernetes, there are two
different types of checks:

First, each container has a liveness check. By default, this is a
simple process-based one (“is the process running”), but it can
be extended to include several other application-specific health
checks: HTTP (healthy if the container endpoint returns an
HTTP 200), TCP (healthy if a TCP socket can be opened), or exec
(healthy if a user-supplied binary executed in the context of the
container returns an exit code of zero). If any liveness test fails,
the container is automatically restarted by Kubernetes.

The second check is a readiness check, which is applied to an
entire pod. Readiness checks indicate whether the pod is ready
to serve end-user traffic. In many situations, a pod may take
some time to start up, due to network downloads, migrations, or
other long, computational initialization steps. During this time,
the pod is alive: it should not be restarted by Kubernetes. How-
ever, it is not ready: it should not serve traffic. Readiness checks
are used to implement service load balancers, described below.

Pod Patterns
When you start using pods, some general patterns naturally
start to recur. The three common ones are sidecar containers,
ambassador containers, and adapter containers.

SIDECAR CONTAINERS
Sidecar containers extend and enhance the “main” container;
they take existing containers and make them better.

As an example, consider a container that runs the Nginx Web
server. Add a different container that syncs a directory with a Git
repository, share the file system between the containers, and you
have built a non-atomic, push-to-deploy Git. But you’ve done it
in a modular manner where the Git synchronizer can be built by
a different team and reused across many different Web servers
(Apache, Python, Tomcat, etc.). Because of this modularity, you
only have to write and test your Git synchronizer once to reuse it
across numerous apps. If someone else writes it, you don’t even
need to do that.

Figure 1: Example of a sidecar container: a pod where an Nginx Web
server is being augmented by a Git synchronizing container

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  39

SYSADMIN
How Kubernetes Changes Operations

AMBASSADOR CONTAINERS
Ambassador containers proxy the outside world via a local con-
nection in the same pod.

As an example, consider a Redis cluster with read replicas and a
single write master. You can create a pod that groups your Redis
client with a Redis ambassador container. The ambassador is a
proxy; it is responsible for splitting reads and writes to Redis and
sending them on to the appropriate Redis servers. Because these
two containers share a network namespace, they share an IP
address, and your application can open a connection on “local-
host” and find the proxy without any service discovery. Note that
this is “localhost” for the network of the pod, not “localhost” on
the host machine.

ADAPTER CONTAINERS
Adapter containers standardize and normalize output.

In any real-world application, the application’s software comes
from a heterogeneous set of sources (open source, off-the-shelf
software, home brew), and monitoring system developers cannot
be expected to understand, build, maintain, and deploy for all
of them. Consequently, you often need to wrap applications to
enable communication with auditing or monitoring services.

Using a modular adapter container co-located in the same pod
as your application gives you a simple unit of deployment that
combines both application and adapter. Using adapters enables
each application developer to supply a common interface. The
modularity of using two different containers (the application
and the adapter) means that despite making the adapter the
application owner’s responsibility, adapters can be reused (e.g., a
Java JMX adapter).

The adapter pattern creates pods that group the application
containers with adapters that know how to do the transforma-
tion. Again, because these pods share namespaces and file
systems, the coordination of these two containers is simple and
straightforward.

Labels
Experience operating large, complicated systems has taught us
that requiring applications and their parts to be grouped into
fixed, disjoint sets is overly restrictive.

As an example of this, consider the canonical search stack.
There is a set of replicas that are responsible for serving end-
user requests {frontend, middleware, backend servers}, and
then there are the jobs that are responsible for building, push-
ing, and loading a new search index {crawler, index-builder,
backend servers}. The presence of “backend servers” in both of
these organizations reflects the problem with fixed sets. We
need an organizational mechanism that can flexibly represent
both of these organizational sets (and any other useful sets).
If the cluster management infrastructure can’t represent the
overlapping sets of organizations that are present in the cluster,
then additional tooling, which is opaque to the cluster manager,
will get built to represent these organizations. The additional
complexity required to make these systems interact well with
the cluster management software makes the system harder to
maintain and extend.

Additionally, we need a representation that is dynamic. For
example, at different times, pods may be added or removed from
sets; during a rolling update of a service to a new version of its
software, pods are dynamically added and removed from the set
of backends of a load balancer. We need a representation that can
easily capture this dynamism without requiring constant action
from the user to maintain these sets.

In Kubernetes, labels and label queries provide flexible, dynamic
sets of resources. Rather than encode any specific group-
ing primitive into the Kubernetes API, every resource in the
Kubernetes API can have labels attached to that resource. These
labels are arbitrary, key-value pairs that help define the object.
For example, a production Web server might have the labels
{role=frontend, stage=production, version=v1, machine=m1,

rack=r2}, and a production backend might have the labels
{role=backend, stage=production, version=v1, machine=m2,

rack=r1}.

Figure 2: Example ambassador container: a pod where a Redis proxy
ambassador is used to proxy connections from a PHP application to a set
of Redis shards

Figure 3: Example of an adapter container: a pod where the Redis
key-value store is adapted to provide a consistent monitoring interface
(e.g., https://github.com/oliver006/redis_exporter)

http://www.usenix.org
https://github.com/oliver006/redis_exporter

40    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN
How Kubernetes Changes Operations

A label query dynamically organizes objects into a group by con-
structing a set of objects that match its conditions. For example,
we might query “stage=production” to see all production pods,
“rack=r2” to see all containers on a particular rack, or even
conjugate queries like “stage=production, machine=m1” for all
production jobs on a particular machine. Label queries are used
to list particular RESTful resources in the Kubernetes API. A
label query for a resource of a particular type (e.g., pods) will only
return the pods whose labels match the query.

Reconciliation
The third key concept in Kubernetes, after pods and labels, is
reconciliation loops.

The basic premise is that there are three states of the world: an
idealized desired state, which is a declarative statement of what
the world should be like; a current state, which approximates
the actual state, and might be noisy, incomplete, or out of date;
and an actual state. Unfortunately, the actual state isn’t directly
observable, thanks to the vagaries of distributed systems, delays,
and failures, so we must make do with the observed state.

The role of the reconciliation loop is to repeatedly compare the
current state against the desired state, and take action to drive
the actual state to match the desired state. This is just a control
loop, like the one in your thermostat. It is what transforms Kuber-
netes into a self-healing, dynamic system, by automatically caus-
ing it to restore the system to the desired state without needing
operator intervention. Only if this fails does the system need to
invoke help from an administrator, e.g., by triggering an alert.

Replication Controllers
In any real production system, replicating the components in the
system is the only way to achieve reliable operation. Each replica
is an independent unit of failure, and thus, multiple replicas
reduce the probability of a total failure. They also allow a service
to be scaled up as traffic grows. However, the complexity of
managing a replicated system must not be linear in the number
of replicas, or else the system is not truly scalable.

In Kubernetes, replication controllers provide an API for manag-
ing replicated sets of pods. Replication controllers use a pod
template, a label query, and a desired number of replicas to create
a replicated set of pods. The operation is as follows:

Repeat forever

 1. Select pods matching Label Query.

 2. Subtract number of pods found from the desired number of

replicas.

 3. If this difference is negative, destroy a pod.

 4. If this difference is positive, create a pod using the pod

Template.

Note that this is a reconciliation loop. No matter why a pod
disappears—whether due to node failure, accidental deletion, or
network partition—the replication controller attempts to ensure
that the correct number of replicas exists. Likewise, if a user or
automated process resizes the number of replicas up or down,
these adjustments to the number of replicas are also material-
ized by this simple reconciliation loop.

Services
A recent, popular trend in distributed systems is microservice
architectures, which decouple different pieces of a distributed
system into independently managed and scaled microservices.
This decoupling helps microservice architectures to be reliable
and scalable.

In Kubernetes, the Service API object represents a load balancer
for a microservice. Like replication controllers, services are
based on a dynamic label query that identifies the set of back-
ends that the service connects to.

To enable service discovery, a service is assigned a static virtual
IP address (VIP). This address is constant, and has the same
lifespan as the service. Consequently, the VIP can be popu-
lated into DNS for service discovery. Because the VIP is not the
address of any particular pod, the VIP can be kept constant, even
as pods are scaled up or down behind the service.

Kubernetes itself ships with a simple, default load-balancer
implementation, but the Kubernetes API also makes Endpoint
objects available. These endpoints are the current members of
the service’s load balancing group—i.e., the pod IP addresses
across which it spreads incoming requests. Advanced users can
use these endpoints to populate a third-party load balancer (e.g.,
Nginx, HAProxy) or even to implement thick clients that do
balancing without a proxy.

The maintenance of the service’s endpoints is another example
of a reconciliation loop. In this case, the loop looks like:

Repeat forever

 1. Select pods matching Service Selector Label Query

 2. For each matching pod

 a. If the pod is Ready (see ‘Readiness Checks’ above)

 i. Add the pod to the Endpoint set for this Service

Figure 4. A replicated set of pods with a misbehaving replica (pod within
rectangle). Solid boxes are pods; circles indicate labels attached to them.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  41

SYSADMIN
How Kubernetes Changes Operations

Operations in Kubernetes
It is easier to operate systems that are deployed into a Kuber-
netes cluster than systems deployed into traditional virtual
machines. This section describes two operations scenarios that
demonstrate this.

Quarantining a Replica
One of the common tasks that occur in operations is quarantin-
ing a misbehaving replica of an application. Oftentimes, sadly,
this means simply killing the misbehaving replica, collecting
logs for retrospective analysis, and restarting the process. While
this restores the service to health quickly, it is much harder to
debug a problem from (possibly incomplete) logs than it is with a
running server. It would be better to remove a misbehaving rep-
lica from the service but maintain it as a running server so that it
can be debugged. This is precisely what Kubernetes services and
labels allow. This is illustrated in the following example.

We start with an existing Kubernetes replicated service that
shares load across three pods. The pod in the middle is deter-
mined to be misbehaving.

The operator removes the “production” label from the misbe-
having pod. Because Kubernetes dynamically queries label
selectors, the pod is now removed from the corresponding Repli-
cationController and the service.

The reconciliation loop in ReplicationController detects that a
pod is missing from the replica set and creates a new pod, restor-
ing the service to full health. The misbehaving pod is retained
for future debugging.

Rolling Update
Another common operation is rolling out new software. Kuber-
netes achieves this through manipulating replication controllers
and labels.

At the start of the update, there is a single replication controller.
It has three replicas, and is using version 1 (v1) of the application.
There is also a Kubernetes Service that is defined to serve traffic
to pods with the “frontend” and “production” labels. To perform
a rolling update, a second replication controller is created. This
replication controller is identical to the first replication control-
ler in all ways, except the image in its template has been updated
to version 2 (v2). Initially, the desired replica count for this
controller is set to zero (Figure 7).

Figure 5. After the “production” label is removed from the misbehaving
replica, the replica is now quarantined.

Figure 6. The replication controller replaces the misbehaving pod with a
new replica.

Figure 7. The initial state of the rolling update. A second replica controller
has been created but has no replicas yet.

Figure 8. The first “canarying” step of a rolling update: replica count for
the original controller is set to two, and to one for the second controller.

http://www.usenix.org

42    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN
How Kubernetes Changes Operations

To perform the rolling update, the desired number of replicas on
the v1 replication controller is dialed down by one (in this case,
to two replicas), and the desired replicas for the v2 replication
controller is increased by one (to one replica, Figure 8).

This process of one up, one down proceeds until the desired
number of replicas for v1 is zero and the desired number of rep-
licas for v2 is three. Because the Kubernetes Service is defined
by the label query {role=frontend, stage=production}, which
ignores the version, the load balancer seamlessly spreads traffic
across version 1 and version 2 as the rollout proceeds. If failures
occur during the rollout, and a rollback is necessary, it is simple
to reverse the roles of the replication controllers and restore the
number of replicas for v1 to be three.

Conclusion
Containers have grown in popularity because they decouple user
applications from the underlying operating system/kernel, and
allow the development of kernel/OS-specific operations teams.
Container cluster orchestration systems, like Kubernetes,
further allow the decoupling of operations into hardware opera-
tions, kernel operations, cluster operations, and application oper-
ations. This decoupling enables specialization and focus, which
increases the reliability and scalability of those operations
teams. Furthermore, Kubernetes provides a set of objects that
makes it easier for application developers to design and develop
services that are easier to operate and scale. Container cluster
management systems are the backbone of most large-scale Web
service companies, and with the advent of open source solutions
like Docker and Kubernetes, we believe there is an industry-wide
shift underway to this new style of decoupled infrastructure.

Acknowledgments
I would like to thank John Wilkes, Jessie Yang, Robert van
Gent, and Seth Hettich for providing significant feedback and
revisions to this article.

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our conferences
 proceedings and videos. We stand by our mission to foster excellence and innovation while
supporting research with a practical bias. Your financial support plays a major role in making
this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX Annual Fund,
renew your membership, and ask your colleagues to join or renew today.

Do you know about the
USENIX Open Access Policy?

http://www.usenix.org
http://www.usenix.org/annual-fund

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  43

SYSADMIN

Being an On-Call Engineer
A Google SRE Perspective

A N D R E A S P A D A C C I N I A N D K A V I T A G U L I A N I

Being on-call is a critical duty that many operations and engineering
teams must undertake in order to keep their services reliable and
available. However, there are several pitfalls in the organization of on-

call rotations and responsibilities that can lead to serious consequences for
the services and for the teams if not avoided. We provide the primary tenets
of the approach to on-call that Google’s Site Reliability Engineers have devel-
oped over years, and explain how that approach has led to reliable services
and sustainable workload over time.

Several professions require employees to perform some sort of on-call duty, which entails
being available for calls during both working and non-working hours. In the IT context, on-
call activities have historically been performed by dedicated Ops teams tasked with the pri-
mary responsibility of keeping the service(s) for which they are responsible in good health.

Many important services in Google, e.g., Search, Ads, and Gmail, have dedicated teams of
Site Reliability Engineers (SREs) [1] responsible for the performance and reliability of these
services. As such, SREs are on-call for the services they support. The SRE teams are quite
different from purely operational teams in that they place heavy emphasis on the use of
engineering to approach problems. These problems, which typically fall in the operational
domain, exist at a scale that would be intractable without software engineering solutions.

To enforce this type of problem-solving, Google hires people with a diverse background in
systems and software engineering into SRE teams. We cap the amount of time SREs spend
on purely operational work at 50%; at minimum, 50% of an SRE’s time should be allocated to
engineering projects that further scale the impact of the team through automation, in addi-
tion to improving the service.

We present an informed view of how Google SRE teams organize the on-call aspect of their jobs,
and how Google’s strong focus on engineering determines numerous aspects of this organization.

We do not describe all the possible ways of organizing on-call rotations in detail. For detailed
analysis, refer to the “Oncall” chapter of The Practice of Cloud System Administration [2].

Life of an On-Call Engineer
As the guardian of production systems, the on-call engineer takes care of his or her assigned
operations by managing outages that affect the team and performing and/or vetting produc-
tion changes.

When on-call, an engineer is available to perform operations on production systems within
minutes, according to the paging response Service Level Objectives (SLOs) agreed to by the
team and the business system owners. Typical SLO values are five minutes for user-facing or
otherwise highly time-critical services, and 30 minutes for less time-sensitive systems. The
company provides the page-receiving device, which is typically a phone. Google has flexible

Andrea Spadaccini works in
Dublin as a Site Reliability
Manager for Google, which he
joined in 2012 as an SRE
working on the systems that

distill, store, and serve all the metrics about
Google’s Ads platforms. Prior to that, he
worked on Linux-based PBX products, hacked
on open source CPU simulators, and co-
founded a nonprofit for students to get work
experience while pursuing their studies. He
earned a PhD in computer engineering from
the University of Catania, Italy, where he
focused mostly on biometric recognition.
spadaccio@google.com.

Kavita Guliani is a Technical
Writer for Technical
Infrastructure and Site
Reliability Engineering in
Google Mountain View. Before

working at Google, Kavita worked for
companies like Symantec, Cisco, and Lam
Research Corporation. She holds a degree in
English from Delhi University and studied
technical writing at San Jose State University.
kguliani@google.com

http://www.usenix.org
mailto:spadaccio@google.com
mailto:kguliani@google.com

44    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

alert delivery systems that dispatch pages via multiple mecha-
nisms (email, SMS, robot call, app) across multiple devices.

This page-to-work-towards-resolution SLO is distinct from the
service SLOs themselves (e.g., user-facing latency, processing
delay, and so on). There is a relationship between the two types
of SLOs: the service SLOs imply upper bounds for the page-to-
work-towards-resolution SLO. For example, if a user-facing
system must obtain 4 nines of availability in a given quarter
(99.99%), the allowed quarterly downtime is around 13 min-
utes. This constraint implies that the reaction time of on-call
engineers has to be on the order of minutes. For systems with
more relaxed SLOs, the reaction time can be on the order of tens
of minutes.

As soon as a page is received and acknowledged, the on-call
engineer is expected to triage the problem and work towards its
resolution, possibly involving other team members and escalat-
ing as needed.

Non-paging production events, such as lower priority alerts
or software releases, can also be handled and/or vetted by the
on-call engineer during business hours. These activities are less
urgent than paging events, which take priority over almost every
other task, including project work.

Many teams have both a primary and a secondary on-call rota-
tion. The distribution of duties between the primary and the
secondary varies from team to team and ranges from the second-
ary acting as a fall-through for the pages missed by the primary
on-call to an arrangement in which the primary on-call handles
only pages and the secondary handles all other non-urgent pro-
duction activities.

In teams for which a secondary rotation is not strictly required
for duty distribution, it is common for two related teams to serve
as secondary on-call for each other, with fall-through handling
duties. This setup eliminates the need for an exclusive secondary
on-call rotation.

Balanced On-Call
SRE teams have specific constraints on the quantity and quality
of on-call shifts. The quantity of on-call can be calculated by
the percentage of time spent by engineers on on-call duties. The
quality of on-call can be calculated by the number of incidents
that occur during an on-call shift.

SRE managers are responsible for keeping the on-call workload
balanced and sustainable across these two axes.

Balance in Quantity
SREs can spend no more than 25% of their time on-call, and
another 25% of their time on other types of operational, non-
project work. We strongly believe that the “E” in “SRE” is a
defining characteristic of our organization, so we strive to invest
at least 50% of SRE time in engineering.

Using the 25% rule, we can derive the minimum number of SREs
required to sustain a 24/7 on-call rotation. Assuming that there
are always two people on-call (primary and secondary, with
different duties), the minimum number of engineers needed for
on-call duty from a single-site team is eight: assuming week-long
shifts, each engineer is on-call (primary or secondary) for one
week every month. For dual-site teams, a reasonable minimum
size of each team is six, both to honor the 25% rule and to ensure
a substantial and critical mass of engineers for the team.

If a service implies enough work to justify growing a single-site
team, we can create a multi-site team. A multi-site team can be
advantageous for two reasons:

◆◆ Night shifts have detrimental effects on people’s health [3], and
multi-site rotation allows teams to avoid night shifts altogether.

◆◆ Limiting the number of engineers in the on-call rotation ensures
that engineers do not lose touch with the production systems
(see “A Treacherous Enemy: Operation Underload,” below).

However, multi-site teams incur communication and coor-
dination overhead. Therefore, the decision to go multi-site or
single-site should be based on the tradeoffs each option entails,
the importance of the system, and the workload each system
generates.

Balance in Quality
For each on-call shift, an engineer should have sufficient time
to deal with incidents and follow-up activities such as writing
postmortems [4]. Assuming that on-call incidents, on average,
require six hours of work between investigation, root cause
analysis, remediation, and follow-up activities such as writing a
postmortem, it follows that the maximum number of incidents
per day is two. In order to stay within this upper bound, the
distribution of paging events should be very flat over time, with
a likely median value of 0: if a given component or issue causes
pages every day (median incidents/day 1), it is likely that some-
thing else will break at some point, thus causing more incidents
than should be permitted.

If this limit is temporarily exceeded, e.g., for a quarter, corrective
measures should be put in place to make sure that the opera-
tional load returns to a sustainable state (see “Avoiding Opera-
tional Overload,” below).

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  45

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

Compensation
Adequate compensation needs to be considered for out-of-hours
support. Different organizations handle on-call compensation
in different ways; Google offers time-off-in-lieu or straight cash
compensation, capped at some proportion of overall salary. The
compensation cap represents, in practice, a limit on the amount
of on-call work that will be taken on by any individual. This
compensation structure ensures incentivization to be involved
in on-call duties as required by the team, but also promotes a bal-
anced on-call work distribution and limits potential drawbacks
of excessive on-call work, such as burnout or inadequate time for
project work.

Feeling Safe
As mentioned earlier, SRE teams support Google’s most criti-
cal systems. Being an SRE on-call typically means assuming
responsibility for user-facing, revenue-critical systems, or for
the infrastructure required to keep these systems up and run-
ning. SRE methodology for thinking about and tackling prob-
lems is vital for the appropriate operation of services.

Modern research identifies two distinct ways of thinking that
an individual may choose, consciously or subconsciously, when
faced with challenges:

◆◆ Intuitive, automatic, and rapid action

◆◆ Rational, focused, and deliberate cognitive functions [5]

When dealing with the outages related to complex systems, the
second of these options is more likely to produce better results
and lead to well-planned incident handling.

To make sure that the engineers are in the appropriate frame of
mind to leverage the latter mindset, it’s important to reduce the
stress related to being on-call. The importance and the impact of
the services and the consequences of potential outages can cre-
ate significant pressure on the on-call engineers, damaging the
well-being of individual team members and possibly prompting
SREs to make incorrect choices that can endanger the avail-
ability of the service. Stress hormones like cortisol and CRH are
known to cause behavioral consequences—including fear—that
can impair cognitive functions and cause suboptimal decision-
making [6].

Under the influence of these stress hormones, the more deliber-
ate cognitive approach is typically subsumed by unreflective and
unconsidered (but immediate) action, leading to potential abuse
of heuristics. Heuristics are very tempting behaviors when on-
call. For example, when the same alert pages for the fourth time
in the week, and the previous three pages were initiated by an
external infrastructure system, it is extremely tempting to exer-
cise confirmation bias by automatically associating this fourth
occurrence of the problem with the previous cause.

While intuition and quick reactions can seem like desirable
traits in the middle of incident management, they have down-
sides. Intuition can be wrong and is often less supportable by
obvious data. Thus, following intuition can lead an engineer to
waste time pursuing a line of reasoning that is incorrect from
the start. Quick reactions are deep-rooted in habit, and habitual
responses are unconsidered, which means they can be disas-
trous. The ideal methodology in incident management strikes
the perfect balance between taking steps at the desired pace
when enough data is available to make a reasonable decision and
simultaneously critically examining your assumptions.

It’s important that on-call SREs understand that they can rely
on several resources that make the experience of being on-call
less daunting than it may seem. The most important on-call
resources are:

◆◆ Clear escalation paths

◆◆ Well-defined incident-management procedures

◆◆ A blameless postmortem culture [4]

The developer teams of SRE-supported systems usually par-
ticipate in a 24/7 on-call rotation, and it is always possible to
escalate to these partner teams when necessary. The appropri-
ate escalation of outages is generally a principled way to react to
serious outages with significant unknown dimensions.

When handling incidents, if the issue is complex enough to
involve multiple teams, or if, after some investigation, it is not yet
possible to estimate an upper bound for the incident’s time span,
it can be useful to adopt a formal incident-management protocol.
Google SRE uses the protocol described in “Managing Incidents”
[7], which offers an easy to follow and well-defined set of steps
that aid an on-call engineer in rationally pursuing a satisfactory
incident resolution with all the required help. This protocol is
internally supported by a Web-based tool that automates most of
the incident management actions, such as handing off roles and
recording and communicating status updates. This tool allows
incident managers to focus on dealing with the incident, rather
than spending time and cognitive effort on mundane actions
such as formatting emails or updating several communication
channels at once.

Finally, when an incident occurs, it’s important to evaluate
what went wrong, recognize what went well, and take action to
prevent the same errors from recurring in the future. SRE teams
must write postmortems after significant incidents, and detail
a full timeline of the events that occurred. By focusing on events
rather than the people, these postmortems provide significant
value. Rather than placing blame on individuals, value is derived
from the systematic analysis of production incidents. Mistakes
happen, and software should make sure that we make as few
mistakes as possible. Recognizing automation opportunities is
one of the best ways to prevent human errors [4].

http://www.usenix.org

46    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

Avoiding Inappropriate Operational Load
Operational Overload
As mentioned in the “Balanced On-Call” section above, SREs
spend at most 50% of their time on operational work. What hap-
pens if operational activities exceed this limit? The SRE team
and leadership are responsible for including concrete objectives
in quarterly work planning in order to make sure that the work-
load returns to sustainable levels.

Ideally, symptoms of operational overload should be measurable,
so that goals can be quantified (e.g., number of daily tickets < 5,
paging events per shift < 2).

Monitoring misconfiguration is a common cause of operational
overload. Paging alerts should be aligned with the symptoms
that threaten a service’s SLOs. All paging alerts should also be
actionable. Low-priority alerts that bother the on-call engineer
every hour (or more frequently) disrupt productivity, and the
fatigue such alerts induce can also cause serious alerts to be
treated with less attention than necessary.

It is also important to control the number of alerts that the on-
call engineers receive for a single incident. Sometimes a single
abnormal condition can generate several alerts, so it’s important
to regulate the alert fanout by ensuring that related alerts are
grouped together by the monitoring or alerting system. If, for any
reason, duplicate or uninformative alerts are generated during
an incident, silencing those alerts can provide the necessary
quiet for the on-call engineer to focus on the incident itself.
Noisy alerts that systematically generate more than one alert per
incident should be tweaked to approach a 1:1 alert/incident ratio.
Doing so allows the on-call engineer to focus on the incident
instead of triaging duplicate alerts.

Sometimes the changes that cause operational overload are not
under the control of the SRE teams. For example, the application
developers might introduce changes that cause the system to be
more noisy, less reliable, or both. In this case, it is appropriate
to work together with the application developers to set common
goals to improve the system.

In extreme cases, SRE teams may have the option to “give back
the pager”—SRE can ask the developer team to be exclusively
on-call for the system until it meets the standards of the SRE
team in question. Giving back the pager doesn’t happen very
frequently, as it’s almost always possible to work with the
developer team to reduce the operational load and make a given
system more reliable. In some cases, though, complex or archi-
tectural changes spanning multiple quarters might be required
to make a system sustainable from an operational point of view.
In such cases, the SRE team should not be subject to an exces-
sive operational load. Instead, it is appropriate to negotiate the
reorganization of on-call responsibilities with the development

team, possibly routing some or all paging alerts to the developer
on-call. Such a solution is typically a temporary measure, during
which time the SRE and developer teams work together to get
the service in shape to be onboarded by the SRE team again.

The possibility of renegotiating on-call responsibilities between
SRE and developer teams attests to the balance of powers
between the teams. This working relationship also exemplifies
how the healthy tension between these two teams and the values
that they represent—reliability vs. feature velocity—is typically
resolved by greatly benefitting the service and, by extension, the
company as a whole.

A Treacherous Enemy: Operation Underload
Being on-call for a quiet system is blissful, but what happens
if the system is too quiet or when SREs are not on-call often
enough? An operation underload is undesirable for an SRE team.
Being out of touch with production for long periods of time can
lead to confidence issues, both in terms of overconfidence and
underconfidence, while knowledge gaps are discovered only
when an incident occurs.

To counteract this eventuality, SRE teams should be sized to
allow every engineer to be on-call once or twice a month, thus
ensuring that each team member is sufficiently exposed to
production.

Some teams also run so-called “Wheel of Misfortune” exer-
cises, in which theoretical (or practical) incident scenarios are
presented to the team by a dungeon master, much in the style
of traditional role-playing games. This exercise is also a useful
team activity that can help to hone and improve troubleshooting
skills and knowledge of the service.

Google also has a company-wide annual disaster recovery
event called DiRT (Disaster Recovery Training) that combines
theoretical and practical drills to perform multi-day testing of
infrastructure systems and individual services.

Onboarding New Systems
It is common for SRE teams to become responsible for new
systems, a process that typically culminates in handing off pager
responsibilities, also called onboarding.

The SRE team needs to engage with the new system well before
the onboarding process starts. Ideally, the SREs are involved
from the early design phase of the new system, as their knowl-
edge and experience with the production infrastructure can
offer an important perspective on the architecture of the new
systems. Direct involvement by SREs during the development
phase might be necessary as the system approaches its launch,
in preparation for a Production Readiness Review (PRR) or
Launch Review.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  47

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

After the new system launches, the application developers may
remain on-call for the system until the ownership is transitioned
to SRE. A system must meet specific requirements with regards
to reliability, Service Level Objectives (SLOs), alerting, and the
on-call load before it is onboarded by SRE. The on-call training
can begin towards the end of the onboarding process. Generally,
the application developers train SREs on the internals of the new
systems, explaining the most likely or common failure modes
and how to react to these failures. To demonstrate debugging
techniques, developers may fake troubleshooting scenarios and
demonstrate their resolution to SREs.

All alerts are expected to have corresponding documentation
that enables the on-call engineer to take appropriate actions
when paged. Upon service handoff, documentation ownership is
transitioned to SREs, who are expected to keep the docs up-to-
date in collaboration with the application developers.

Conclusion
The approach to on-call we described serves as a guideline for
all SRE teams in Google and is key to fostering a sustainable
and safe work environment. Google’s approach to on-call has
enabled us to use engineering work as the primary means to
scale production responsibilities and maintain high reliability
and availability despite the increasing complexity and number of
systems and services for which SREs are responsible.

References
[1] http://www.site-reliability-engineering.info/.

[2] Thomas A. Limoncelli, Strata R. Chalup, Christina J.
Hogan, “Oncall,” in The Practice of Cloud System Adminis
tration: Designing and Operating Large Distributed Systems,
vol. 2, Pearson Education, 2014.

[3] Jeffrey S. Durmer and David F. Dinges, “Neurocognitive
Consequences of Sleep Deprivation,” in Seminars in Neurol-
ogy, vol. 25, no. 1, 2005.

[4] Jake Loomis, “How to Make Failure Beautiful: The Art and
Science of Postmortems,” in Web Operations: Keeping the Data
on Time, O’Reilly Media, 2010.

[5] Daniel Kahneman, Thinking, Fast and Slow, Farrar, Straus
and Giroux, 2011.

[6] George P. Chrousous, “Stress and Disorders of the Stress
System,” Nature Reviews Endocrinology, vol. 5, July 2009,
doi: 10.1038/nrendo.2009.106.

[7] Andrew Stribblehill, Kavita Guliani, “Managing Inci-
dents,” ;login:, vol. 40, no. 2, April 2015: https://www.usenix
.org/publications/login/apr15/stribblehill.

The USENIX Store
Is Open for Business!

Want to buy a subscription to ;login:, the latest short topics book, a USENIX or conference shirt, or the

box set from last year’s workshop? Now you can, via the USENIX Store!

Head over to www.usenix.org/store and check out the collection of t-shirts, video box sets, ;login:

 magazines, short topics books, and other USENIX and LISA gear. USENIX and LISA SIG members save,

so make sure your membership is up to date.

www.usenix.org/store

http://www.usenix.org
http://www.site-reliability-engineering.info/
https://www.usenix.org/publications/login/apr15/stribblehill
http://www.usenix.org/store
http://www.usenix.org/store
https://www.usenix.org/publications/login/apr15/stribblehill

48    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN

/var/log/manager
How Technical Managers Tell Time

A N D Y S E E L Y

Time management for sysadmins is a largely solved equation thanks
to Mr. Limoncelli [1]. I would like to offer a humble extension to his
work and talk about time management for the technical manager.

Normal and Interrupt for the Sysadmin
The sysadmin has recurring tasks. Flush logs. Check backups. Monitor loads. Look up
Simpsons quotes to use in the next change control meeting. Answer email from the manager.
Probably in that order. Managers know they rate below looking up pop culture references.

The sysadmin has interrupt-driven tasks that trump all the recurring, normal tasks. The
prioritization is now whatever the interrupt signal is. The datacenter is on fire. The SAN
just crashed. The boss’s printer is out of paper. The public-facing e-commerce site certifi-
cate expired. You know, the critical break-fix things that are instantly more important than
anything that may have been planned out in advance.

Normal and Interrupt for the Technical Manager
The technical manager has recurring tasks. Read and answer email. Listen to and answer
voice mail. Check and update calendars. Attend scheduled meetings. Meet weekly dead-
lines like time card queues. Prepare reports and briefings. Take any administrative actions
required, like approving expenses, denying training requests (don’t be disappointed, you may
resubmit again in 30 days for further denial!), and responding to requests for information
from the VP.

The technical manager has interrupt-driven events that just move the recurring tasks to
later in the day. The VP overheard something in the board meeting and wants an explana-
tion. Another VP wants to talk about his golf swing and you’re the first person he sees.
Another manager wants to complain about your people doing something wrong. A customer
wants to know when a project will be delivered, with a full review of schedule, today. HR has
to have a meeting immediately to discuss a complaint someone filed. An employee is in a bind
and needs top-cover.

Taking Control of the Manager’s Information Flow
It’s all true, and it all has to get done. There are some practical tips and tricks I can offer to
help a busy technical manager never forget a promise (or a threat) and always have the right
answers. There are two things you need above everything else, even above a vacation where
you take your laptop and work anyway: discipline and a system. I’m going to tell you about my
system.

First, you have to baseline. Understand your own inputs. For me, my inputs span multiple
inject points that I cannot coalesce any further for a variety of reasons:

Andy Seely is the Chief
Engineer and Division Manager
for an IT enterprise services
contract, and is an Adjunct
Instructor in the Information

and Technology Department at the University
of Tampa. His wife Heather is his PXE Boot and
his sons Marek and Ivo are always challenging
his thin-provisioning strategy.
andy@yankeetown.com

http://www.usenix.org
mailto:andy@yankeetown.com

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  49

SYSADMIN
/var/log/manager: How Technical Managers Tell Time

1.	 Multiple calendars

2.	 Multiple inboxes

3.	 Two telephones with voice mail

4.	 Drive-by tasks and requests for information from my peers and
leadership

5.	 Drive-by information updates and status reports from my team

6.	 Drive-by requests for close air support when one of my team
needs me to help them

7.	 Scheduled meetings

8.	 Unscheduled meetings

9.	 The hallway, which is where a surprising amount of coordina-
tion seems to get done

My durable repositories of information:

1.	 My active inboxes

2.	 My email archives

3.	 SharePoint portal “wiki” file

4.	 My analog, handwritten, completely illegible notebook

After you’ve articulated what your inputs and repositories are,
you need to have a system for processing flow. My system owes a
debt to the Getting Things Done approach [2].

First, own your inbox and make it work for you. Create at least
seven folders in your inbox. Label them Monday, Tuesday,
Wednesday, Thursday, Friday, Sooner, and Later. By the end of
every day, do this “Four-D” process on everything in your inbox:
If you can “do” it, do it on the spot. If you can “delegate” it, make
it an assignment for someone else and CC yourself, then file the
message in a future day’s folder for follow-up. If you can or must
wait on something, “defer” it by filing it in the appropriate day’s
folder and worry about it then. If it can’t be done, delegated, or
deferred, then just “delete” it. In my case, I delete to an archive
for future reference. At the start of each day, process all the
items in the “sooner” folder and all the items in that day’s box. On
Friday, review everything in the “later” folder. Doing this every
day, you never lose email, you never miss something important.
You never miss anything.

Second, ignore your telephone and practice the concept of “one
conversation at a time,” which is a lesson of the “Fierce Con-
versations” school of thought [3]. If you are talking to a live
person who took the time to walk to your desk, give that person
your attention and don’t even look to see who is calling on the
telephone. If a second person comes to talk to you while you’re
talking to the first, don’t put the first person in sleep status to

process the new interrupt first. Finish the first conversation and
move to the second. Check voice messages several times per day
and return calls, and in general treat the telephone like it’s just
a voice-activated email system. Don’t work for your telephone,
make it work for you.

Third, keep a running tab on everything you have to do, that
you’ve asked others to do, and that you want to track. Carry a
notebook and write things down. If you don’t have a notebook,
write things down on your hand (I’m well-known for my “palm
pilot” that has a tendency to reboot when I wash my hands). Don’t
trust your brain. Move everything from your notebook (or hand)
to your wiki. The wiki should be something only you see, and
should lay out the same way as your email inbox folders, but with
more range. Days of the week, sooner and later, but also months
and years out. Keep track of ideas you have that might be worth
exploring next year. Take special note of anything you have to do
in the morning to prevent getting fired. Consult and update this
wiki when you start your day and when you end it, so you know
what you’ve done and what you have to do next, while never los-
ing sight of what your long-term issues are.

Finally, understand your own priorities. My priorities are, in
order: people on my team, my customers, my managers, human
resources and finance, other people in my organization, and
external entities like vendors. My golden rule: if one of my own
people needs me, they are my priority. Their job is sysadmin. My
job is taking care of them.

Using the System
I’ve been using this system for three years with great success,
and I’m pleased to share it with you. My goal is to understand
the things that are really important and to be able to absorb and
process all the relevant information flows in my organization. In
the modern digital age, information is both faster and has more
volume than the average person can handle. A reliable system is
like a fulcrum, it helps me to lift more than I’m actually capable
of doing. This system helps me to understand what’s important
and to focus where my efforts matter most, which is usually in
support of my team. I’m the manager, and this is how I do my job.

[1] T. Limoncelli, Time Management for System Administrators,
O’Reilly Media, 2005.

[2] D. Allen, Getting Things Done, Penguin, 2002.

[3] S. Scott, Fierce Conversations: Achieving Success at Work
and in Life One Conversation at a Time, The Berkley Publishing
Group, 2002.

http://www.usenix.org

50    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

HISTORYWorkshops and Publications
P E T E R H . S A L U S

Peter H. Salus is the author of A
Quarter Century of UNIX (1994),
Casting the Net (1995), and The
Daemon, the Gnu and the Penguin
(2008). peter@pedant.com

A lthough I mentioned the first graphics workshop a few months ago,
after 1985 both the number of workshops and the number of publica-
tions increased dramatically over the next decade. And not all of the

publications were on paper. Here’s the tale.

UNIX NEWS may have been the first UNIX publication outside of AT&T, but only by a bit.
On April 30, 1976, it was announced that Lew Law of the Harvard Science Center would
“undertake the task of duplicating and distributing the manuals for UNIX.” That was “Sixth
edition,” or v6. It was the beginning of external publication.

The same issue of UNIX NEWS carried an article by Bill Mayhew (of the Children’s Museum
in Boston) on “How to fix your PDP-11/40’s static electricity problems for 49 cents (plus
tax).” And the next issue (May-June 1976) announced “the first mailing from the software
exchange.” Software exchange?

Lew Law supplied software from Harvard, and Mike O’Brien did the duplication and mail-
ing of tapes. Freely redistributed software in 1976! And there was a second distribution in
November 1976, containing software from the RAND Corporation, the Naval Postgraduate
School, UCSD, Yale, and UIUC. There was a third distribution in May 1977, and contributed
software was assembled and distributed on tape until 1989.

Conferences and Workshops
For the decade following the June 1975 meeting in New York, there were two USENIX
conferences each year, one in the east (New York, Cambridge, Chicago, Urbana, Newark
(DE), Toronto, Austin) and one in the west (Monterey, Berkeley, Menlo Park, Santa Monica,
Boulder, San Francisco). Some years there were three.

The first separately published Proceedings was for Toronto (July 13–15, 1983), and the second
was for Salt Lake City (June 13–15, 1984). There were also proceedings for the “Unicom” con-
ferences—USENIX and /usr/group co-located—San Diego, January 1983, and Washington,
DC, January 1984. Proceedings appeared for nearly 20 years. I miss them, although I realize
that bits have superseded paper.

In 1984 the (newly elected) USENIX Board announced three “limited enrollment” work-
shops: Distributed Systems, Communications and Networking, and Graphics. For organiza-
tional reasons, the Communications and Networking Workshop was cancelled. Distributed
Systems was held in what proved to be an unsatisfactory venue in Newport, RI, although
nearly all of the 100 attendees regarded it as “clearly worthwhile” and “should be repeated.”
The “UNIX and Computer Graphics Workshop,” held in Monterey, CA, was a great success.

The report on “Distributed UNIX” by Veigh S. Meer (a transparent pseudonym) appeared in
;login: 9.5 (November 1984), pp. 5–9.

A Digression on ;login: and on Manuals
The May–June 1977 issue of UNIX NEWS was its last. As of July 1977, the publication was
;login:. Mel Ferentz had been phoned by an AT&T lawyer and told that the group (it still had
no name) could not use “UNIX” without permission from Western Electric. At a meeting

http://www.usenix.org
mailto:peter@pedant.com

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  51

HISTORY
Workshops and Publications

at Columbia’s College of Physicians and Surgeons (May 24–27,
1978) a committee was set up to propose bylaws for an organiza-
tion. Margaret Law, then at Harvard and Radcliffe, coined the
name USENIX.

UNIX NEWS was succeeded by ;login:. As Dennis Ritchie
explained, “The ; was utilitarian. During most of the early ’70s
the most popular terminal was the Teletype model 37. The
sequence <esc>; put it in full-duplex mode so the terminal didn’t
print characters locally, but let the system echo them. So this
sequence was put into the greeting message.”

Through the 1970s, AT&T UNIX came with next to no docu-
mentation; hence Lew Law’s offer of 1976. By the time Berkeley
UNIX (BSD) was developed, diverging from AT&T UNIX, manu-
als were in real demand. The Computer Systems Research Group
(CSRG) had no way of coming to grips with the demand, so the
USENIX office, now in El Cerrito, just north of Berkeley, took on
the printing and distribution. Thus, in April 1984, ;login: featured
an announcement of the availability of the 4.2BSD manuals in
five volumes. They sold out quickly. In February 1985, a new
printing was announced. A third and a fourth printing ensued in
late 1985 and early 1986. In late 1986, 4.3BSD followed with an
index volume (thanks to Mark Seiden) added. (The 4.4BSD set
was published by O’Reilly.)

As these were CSRG documents, printed and sold by USENIX,
I’ve never been certain whether to consider them USENIX
publications.

Back to Workshops
Six papers from the 1984 Graphics Workshop appeared in ;login:
10.4, October-November 1985 (pp. 22–83), along with a CFP
for the Second Workshop, to be held in December in Monterey.
Embarrassingly, there were only four issues of ;login: in 1985.
One of the consequences of this was the replacement of the
Executive Director (who served for less than a year) by the pres-
ent writer.

One of the things the Board asked of me in the spring of 1986
was an increase in the number of workshops and of publications.
Among the items on my desk was a manila envelope containing
the papers from the 1985 Graphics Workshop.

I consulted with Tom Strong and he had sheets with headers
and footers printed. I hired Steven Katz to paste up the articles,
and we sent the bundle off to be printed: the Association’s first
workshop proceedings appeared in late summer 1986.

With that, and the third Graphics Workshop under way, Rob
Kolstad suggested a Large Installation Systems Administra-
tors’ Workshop, and Kirk McKusick and John S. Quarterman
suggested a POSIX Workshop as well as one on C++ and a fourth
Graphics Workshop for 1987.

Just over 50 people attended the first LISA in Philadelphia
(April 9–10); about 30 were admitted to the POSIX event in
Berkeley (October 22–23), where several thousand comments
and corrections were appended to the P1003.1 draft. The Fourth
Graphics Workshop was held in Cambridge, MA, October 8–9,
and C++ was held in Santa Fe, November 9–10, rounding off a
busy 1987.

Over the past decades, there have been a number of major
changes where “gatherings” are concerned: first, the USENIX
Association dropped down to a single annual meeting; parallel
to that, the number of small- or medium-sized workshops has
blossomed. I personally think this is less than wonderful. At a
large semiannual meeting in the late 1980s or the 1990s, one
might wander into a session on a new OS or a bizarre language or
on networking hundreds of small CPUs. You might not have had
colorful acronyms, like SOUPS or WOOT or CSET or JETS or
HOTSEC, but you had a very large number of interesting people
in one place.

And you never knew whom you might meet in a corridor or at the
Scotch BoF.

The last big change was moving from print on paper to bits.

R.I.P. COMPUTING SYSTEMS
One of the things the USENIX Board wanted in 1986-87 was a
journal that concerned software more than hardware. Think of
CACM and that “M” for Machinery. So I spoke to folks at several
academic publishers and came in with a proposal for a quarterly
journal. It was announced in ;login: 12.6 (November-December
1987). It first appeared (Mike O’Dell, Editor in Chief) the next
year, published by University of California Press.

I was Managing Editor for its whole nine-year lifespan. Mike
was superseded by Dave Presotto after a brilliant seven years.
MIT Press took over as publisher. Computing Systems: I could
wax nostalgic and itemize authors and articles, but I’ll refrain
from doing so.

However, let me note that in 1988, CS published an article by
Mike Lesk, “Can UNIX Survive Secret Source Code?” In 1990
an entire issue (accompanied by a CD) was devoted to music. In
1992 there was an entire issue on Internet search mechanisms.
And in 1996, a final issue on distributed objects.

I wish it were still being published.

Everything changes: the things we like and those we don’t.

http://www.usenix.org

52    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

1975–2015

HISTORY

Interview with Dr. Dan Geer
R I C H A R D T H I E M E

Dr. Dan Geer was at the time of this interview [Fall 2000] the Chief
Technical Officer of @stake, a digital security consulting firm, and
had recently been elected President of the USENIX Association.

USENIX is a 10,000-member organization comprising engineers, system
administrators, scientists, and technicians working on the cutting edge of
the computing world. Geer, who holds a ScD from Harvard University, was a
professor at the Harvard School of Public Health and participated in MIT’s
Project Athena and the development of the X Window System and Kerberos.
He held executive positions at Open Market, Inc., OpenVision Technologies
(now Veritas), and CertCo, the leading online risk assurance authority. Geer
has testified before the House Science Committee and Subcommittee on
Technology regarding public policy in the age of electronic commerce. He is
currently (2015) the CISO of In-Q-Tel, a research and development arm of
the CIA.

RT: Dan, you were just chosen President of USENIX. What’s the significance of that for you?
What’s your vision for USENIX?

DG: I think the best way to thank somebody is to help them out. I got a lot out of that place,
and I am trying to put something back. That may sound corny, but it’s a fact. I guess my
momma raised me right.

In lots of ways, USENIX made me what I am. USENIX has kept me from getting too satisfied.
People who get satisfied stop growing. People who are never satisfied are always curious.
They keep growing.

When I try to hire new people, I put a checkmark on the page when I realize that the person
I’m interviewing is never satisfied with what they know or can do. The smartest people feel
as if they know the least. Over and over again, USENIX told me things I didn’t know I didn’t
know.

I highly recommend that any young person starting out, or even someone not so young,
should work with program committees for conferences, editorial boards for journals, any-
thing where the interesting traffic is concentrated in your direction. It’s almost impossible
to lose if you’re serious about putting in the effort. Otherwise you have to search for the best
work and it’s rarely in one place or conveniently indexed. It’s much more difficult to learn to
swim if you’re not in the water.

That’s what I’ve gotten out of it. What I am trying to put back in—maybe it’s my heritage, that
I’m a security guy—but I’m a professional paranoid. If you think that good times are perma-
nent, you guarantee that they won’t be. USENIX, like everyone else, must be aware of what’s
changing, what old opportunities are being eclipsed and what new ones are showing up. As
President I intend to push us pretty hard to obsolete our products before someone else does,
just as Andy Grove and Jack Welch try to do.

Richard Thieme
(www.thiemeworks.com,
neuralcowboy@gmail.com)
is an author and professional
speaker focused on the deeper

implications of technology, religion, and
science for twenty-first-century life. He has
published hundreds of articles, dozens of
short stories, three books, and has delivered
hundreds of speeches. A novel, FOAM, is now
available, and “A Richard Thieme Reader,”
collecting selected fiction and non-fiction, will
be published soon. rthieme@thiemeworks.com

http://www.usenix.org
http://www.thiemeworks.com
mailto:neuralcowboy@gmail.com

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  53

HISTORY
Interview with Dr. Dan Geer

Even for a nonprofit in very good shape like USENIX, it’s
essential to obsolete our product or someone else will. We need
to bring on new conferences. The established conferences in
our game more than pay for themselves, while the brand new
ones don’t even come close. So there is a cross-subsidy: what you
already do well allows you to take risks in things you don’t do so
well. I am pushing pretty hard in that direction.

In the venture capital arena, investors want to invest in compa-
nies that go straight down or straight up. They don’t want a 2%
grower that makes it impossible to get your money out yet you
can’t write it off. In some sense, intellectual capital has the same
characteristics—I want prompt failure or prompt success. I don’t
want to spend ten years on something that finally struggles to its
feet. As a wise person said, the cost of anything is a foregone alter-
native. That’s the kind of paranoia I am trying to bring to the job.

I have always tried to pick jobs where my colleagues would chal-
lenge me. The best jobs I have had, I knew I would be embar-
rassed from day one.

RT: It’s critical to keep moving out of your comfort zone, to keep
yourself on the edge.

DG: Yes. I am not an adrenaline sports guy, but maybe it’s the
same urge applied in a way that has greater long-term value.

[Editor’s note: There was a lot more in this interview, which will
someday appear in a collection of Richard Thieme’s interviews.
We include an exchange near the end of the interview, as we found
it quite prescient.]

RT:… and anomaly detection and misuse detection. So maybe
in some gray area we must compromise, and that’s where risk
management comes in. We may never achieve a stasis at the level
of totalitarian control, but we are moving in that direction.

DG: Yes. It is unlikely that someone will come to you personally
and take your privacy away, but children do not have an expecta-
tion of privacy. They only develop it later. So if you don’t know
that you never had it, how much of a fight will you put up when
you don’t get it?

I don’t think it’s possible to go much further in our technological
world on a “small is beautiful”/egalitarian basis. To continue to
rail that way is to give away the lead time we have to modify the
coming culture rather than allow it to wash over us like a wave.

Source: Richard Thieme, “All Geered Up,” Information Security,
October 2000, vol. 3, no. 10, pp. 86–92.

Thanks to Our USENIX
and LISA SIG Supporters

USENIX Patrons
Facebook Google Microsoft Research NetApp VMware

USENIX and LISA SIG Partners
Booking.com Cambridge Computer Can Stock Photo Fotosearch Google

USENIX Partners
Cisco-Meraki EMC Huawei

USENIX Benefactors
Hewlett-Packard Linux Pro Magazine Symantec

Open Access Publishing Partner
PeerJ

http://www.usenix.org

54    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

1975–2015

HISTORY

UNIX News
Volume 2, Number 10, May–June 1977

Third Software Distribution
The Third Software Distribution is now being prepared for
release. We expect to start mailing it out in late July. The
Software Distribution Center has been moved from Chicago
Circle to the City University of New York. We all owe Mike
O’Brien a debt of gratitude for the work he as done in setting
up the software distribution service. Mike is leaving Chicago
for the West Coast soon. He prepared the Third Distribution
and has passed on to me (Mel Ferentz) all of the tapes people
sent him as well as the entire correspondence file.

The distributions will be prepared on the City University’s
370/168, which we view as a suitable back-end for a UNIX
system. Complete details on the distribution will be continued
in the next Unix News. Those of you who have already sent
tapes to Chicago will receive your tapes mailed from New
York. No further tapes should be mailed to Chicago. The
CUNY Computer Center sells tapes over-the-counter and
while we will continue to write onto your tape if you send one,
the preferred medium for us is to write your distribution on
a virgin 2400 foot tape. An order form will be included in the
next newsletter.

Urbana Meeting
The Urbana Meeting was attended by over 150 people and
was a great success. The attendance list will be published
as soon as we get a tape from Steve Holmgren to replace the
one he send us that was folded and spindled by our favorite
postal service.

We have been promised minutes of the meeting which will
also appear as soon as received.

Children’s Museum Information System
The Children’s Museum has announced the availability of

its “Information System—Version 3.” A four page product description was distributed at the
Urbana Meeting. For a copy of the description, more details, or licensing information, contact
Bill Mayhew.

Future Software Releases
At the Urbana Meeting it was said (announced is too strong a verb) that Bell is preparing
Programmer’s Work Bench for release this summer with Version 7 of Unix soon thereafter.
Mini-Unix has been released and LSI-Unix and Mert will probably follow along at some
later date.

UNIX News, volume 2, number 5, published in June 1977 by Professor Melvin
Ferentz of Brooklyn College of CUNY, was the last issue of the newsletter under
that title. In July 1977, the first issue of ;login: The UNIX Newsletter, appeared.
These excerpts from UNIX News have been reproduced as they appeared in the
original, including any typographic errors. Note: We have not included the mailing
list and other addresses and telephone numbers that appeared in the original issue.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  55

1975–2015

HISTORY
UNIX News

Vrije Universiteit, Amsterdam
From E.G. Keizer

We are using UNIX on our PDP 11/45 for almost a year now and
are very enthusiastic about it. Our system is somewhat over-
loaded but we hope that the disk drives we ordered will help to
solve the problem.

Lately we found a “bug” in the UNIX kernel. One of our users was
having troubles with his program that was switching back and
forth between single and double precision Floating Point node.
We discovered that the F.P. registers are saved in the node the
F.P. processor has at the moment the program is stopped. This
means that the low order 32 bits of the users double precision
registers were not saved whenever his program was stopped in
single mode. By adding setd instructions in m45.s just before
the lines where the F.P. registers are moved to and from _u, we
solved the problem. Consequently the F.P. registers are always
stored in double mode. The programs db and cdb will have to be
changed to reflect the new situation.

A few months ago somebody noticed that the times stated by
the time command were somewhat off. Time expects that the
system command times returns process and system times in
60ths of seconds. But since we have a 50 Hz power supply, times
returned those times in 50ths of seconds. He changed time.s
according to our situation.

We had some problems with the pipe mechanism. When several
processes were writing simultaneously on one pipe their mes-
sages got intermixed if the pipe pointers reached the end of the
pipe buffer.

In case somebody is interested in a driver for the old DEC DM11
multiplexer, we would be glad to send a copy of our driver.

Katholieke Universiteit Nijmegen
From George Rolf

If no one else wrote you about the matter before, here is our fix to
the ttyn(III) problem mentioned in the February issue of UNIX
News. I found the bug about 3 months ago.

After the line at reads:	 mov	 buf+2,(sp)

I inserted	 mov	 buf,r1

	 sys	 stat;dev;buf

	 bes	 er1

	 cmp	 buf,r1

	 bne	 cr1

A similar change has to be made to nroff(I), file: s7/nroff1.s. This
file contains a slightly different version of ttyn. The following
commands may be considered candidates for recompilation: em,
goto, pr, rn, login, mail, mesg, ps, who.

Problems with creat system call on Unix version 6
From George Goble, Purdue University

We have discovered two problems with the “creat” system call.
The following sequence of commands will cause “orphaned” files
(files that are not in any directory) to be created:

chdir /tmp

mkdir a

chdir a

rmdir /tmp/a

ls -l / >orphan

chdir /

The rmdir causes the link count for the /tmp/a inode to goto zero,
however the inode is not deallocated because it is the shell’s cur-
rent directory. As this point one can create files in the current
directory. One (except super user) cannot create directories in
the current directory because mkdir does a stat on “..” which does
not exist. Upon doing a chdir /, the reference count for the old
current directory goes to 0, causing deallocation of its inode and
stranding the newly created files.

The second problem occurs when the maknode call in creat()
fails due to no inodes on the device. Namei leaves the last direc-
tory inode in the pathname locked because a return is executed
after the maknode failure. The next process to reference the
locked inode will go to sleep (and hang!) with PINOD (-90)
priority.

The fix for the first problem consists of adding an error return
if the current directory inode has a link count of zero. Below
is a copy of the existing creat() in /usr/sys/ken/sys2.c and the
revised one.

Existing creat() in /usr/sys/ken/sys2.c
creat()

{

 register *ip;

 extern uchar;

 ip = namei (&uchar, 1) ;

 if(ip == NULL) {

 if(u.u_error)

 return;

 ip = maknode(u.u_arg[1]&07777&(-ISVTX)) ;

 if = (ip==NULL)

 return;

 open1(ip, FWRITE, 2);

] else

 open1(ip, FWRITE, 1);

}

http://www.usenix.org

56    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

1975–2015

HISTORY
UNIX News

Modified create() in /usr/sys/ken/sys2.c
create()

{

 register *ip;

 extern uchar;

 ip = namei (&uchar, 1) ;

 if(ip == NULL) {

 if(u.u_error)

 return;

 if((u.u_cdir->i_nlink == 0) && (fubyte(u.u_arg[0])!= ‘/’)) {

 u.u_error = ENOENT;

err: iput(u.u_pdir); /* namei left parent dir locked */

 return;

 }

 ip = maknode(u.u_arg[1]&07777&(-ISVTX)) ;

 if = (ip==NULL)

 goto err;

 open1(ip, FWRITE, 2);

 } else

 open1(ip, FWRITE, 1);

}

 University of Glasgow
From Alistair C. Kilgour

I am writing to let you know of the formation of a U.K. Unix
Users Group. The first meeting took the form of a Colloquium
at Glasgow University on Friday 27th May, attended by about
40 people. Short Talks were presented on aspects of the kernel
including the scheduler and the buffer cache system, the struc-
ture of CAC “Network Unix”, the features of the Carnegie Mellon
INGRES relational database system, and some early experience
with the Toronto graphics software. During the afternoon session
the User Group was formally constituted. Two officials were
elected, myself as chairman and Peter Gray of Aberdeen Univer-
sity as Secretary and Newsletter Editor. It was not felt necessary
at the present time to elect any form of executive committee.

It was agreed that an attempt should be made to constitute the
group as a Special Interest Group under the umbrella of DECUS
U.K. We are seeking approval of this move both from Bell and
from the DECUS Executive Board. DECUS have agreed to handle
distribution of the U.K. Unix Newsletter, and will undertake to
send it only to accredited Unix license-holders, so we don’t foresee
any problems with Bell. General information about meetings etc.,
will be published in the DECUS U.K. Newsletter, but all system-
specific material will be restricted to the SIG publication.

On the question of languages the appearance in the U.K. of the
Princeton RT11 FORTRAN implementation was generally
welcomed, at least by the “engineering” interests. The avail-
ability (subject, of course, to having purchased appropriate DEC
licenses) of a good FORTRAN which can be configured for the
full range of hardware is bound to enhance the appeal of Unix in
non-computer-science departments.

Software Standards
Concern was expressed on several points in the area of system
standards, particularly in distributed software. Among the
points raised were the following:

(i) �User group standard software: since it is increasingly difficult
for U.K. users to attend personally any of the U.S. meetings,
it would be nice if the views of users outside the U.S. could be
sought before a piece of software or a system mod. is adopted
as a standard. In the case of the Yale Shell, we are all delighted
with it, but future proposals could be more controversial.

(ii) �Assumed hardware: wherever possible distributed soft-
ware should be configured for a “standard” system, with
instructions for modifications required for other hardware.
Assumed conventions about pathnames, etc., should be made
explicit.

(iii) �Documentation: manual pages should be in ‘nroff’ form,
using the standard ‘tmac.naa’ macro definitions, and have
extension ‘1’ or ‘6’. Other documentation should include any
required nroff macro definitions.

(iv) �System calls: the adoption of the ‘terms’ system call as a
standard was suggested. The group from 56 to 63 should be
reserved for locally added system calls, and no distributed
software should make any assumptions about the system
calls in this range.

Software Distribution
The meeting agreed that Glasgow University Computing
Science Department should enter negotiations with a view
to becoming a software distribution centre for the U.K. We
have three exchangeable HK05 drives, and by the end of July
should have an 800/1600 bpi magnetic tape drive. We will
also act as a collection centre for software which U.K. users
with to contribute to the U.S. distribution centre.

If any U.S. Unix addicts are visiting the U.K. this summer,
please drop in and see us. (I’m sure that goes for all of the U.K.
Unix sites).

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  57

COLUMNS
A s you read this, Python 3.5 should be hitting the streets with a wide

assortment of new features and even some new syntax. “New syn-
tax?” you ask. Why yes. Even though Python has been around for

more than 25 years now, it continues to evolve and sprout surprising new
features from time to time. In this month’s installment, I’m going to look at a
seemingly minor part of Python that turns out to be fairly useful—the use of *

and ** in function arguments, function argument passing, and data handling.

You Want an Argument?
Traditionally, * and ** have been used to write functions that accept any number of posi-
tional or keyword arguments. For example, this function accepts any number of positional
arguments, which are passed as a tuple to args:

>>> def f(*args):

... print(args)

...

>>> f(1,2,3)

(1, 2, 3)

>>> f(1)

(1,)

>>> f(4,5)

(4, 5)

>>>

This function accepts any number of keyword arguments, which are passed to kwargs as a
dictionary:

>>> def g(**kwargs):

... print(kwargs)

...

>>> g(color=’red’, size=’huge’)

{‘color’: ‘red’, ‘size’: ‘huge’}

>>> g(xmin=0, xmax=-10, title=’Plot’)

{‘xmin’: 0, ‘xmax’: -10, ‘title’: ‘Plot’}

>>>

The *args and **kwargs can be combined with other arguments and even used together as
long as they go at the end of the argument list and the keyword arguments appear last. For
example:

def h(x, y, *args, **kwargs):

 ...

A common use of *args and **kwargs is in writing code that’s meant to be very general
purpose. For example, consider this class definition that makes it easy for someone to define
simple data structures:

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Seeing Stars
D A V I D B E A Z L E Y

http://www.usenix.org
http://www.swig.org
http://www.dabeaz.com/ply.html
http://www.dabeaz.com/ply.html
mailto:dave@dabeaz.com

58    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Seeing Stars

class Structure(object):

 _fields = ()

 def __init__(self, *args):

 if len(args) != len(self._fields):

 raise TypeError(‘Expected %d arguments’ % len(self._

fields))

 for name, val in zip(self._fields, args):

 setattr(self, name, val)

Examples

class Date(Structure):

 _fields = (‘year’, ‘month’, ‘day’)

class Address(Structure):

 _fields = (‘hostname’, ‘port’)

Sometimes **kwargs is used to write functions that take a large
number of options that you want specified by keyword only. For
example:

def config(**options):

 outfile = options[‘outfile’] # Required argument

 level = options.get(‘level’, 0) # Optional argument

 ...

config(outfile=’output.txt’, level=20) # Ok

config(‘output.txt’, 20) # Error.

Passing Argument
The * and ** syntax are also used to pass data as arguments to
functions. For example, suppose you have this function:

def f(x, y, z):

 ...

If you already have a sequence of arguments or a dictionary of
keywords, you can pass them as follows:

a = (1, 2, 3)

b = { ‘x’: 1, ‘y’: 2, ‘z’: 3}

f(*a) # Same as f(1, 2, 3)

f(**b) # Same as f(x=1, y=2, y=3)

Both of these conventions can be especially useful when working
with data that you have already obtained somehow but that you
want transformed into another form. For example, suppose you
have a list of tuples and a class definition like this:

stocks = [

 (‘IBM’, 50, 91.25),

 (‘HPQ’, 75, 37.23),

 (‘MSFT’, 100, 47.80)

]

class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

You can easily convert the list into instances using a statement
like this:

stocks = [Stock(*s) for s in stocks]

The use of * also enables some unusual tricks. For example,
consider this example of “unzipping” data:

>>> a = [‘name’, ‘shares’, ‘price’]

>>> b = [‘IBM’, 50, 91.25]

>>> # Zip the two sequences into a list of tuples

>>> c = list(zip(a,b))

>>> c = [(‘name’, ‘IBM’), (‘shares’,50), (‘price’, 91.25)]

>>> # Unzip a list of tuples into separate sequences

>>> d, e = zip(*c)

>>> d

(‘name’, ‘shares’, ‘price’)

>>> e

(‘IBM’, 50, 91.25)

>>>

Needless to say, that last step with zip(*c) might require a bit
more study (left as an exercise).

Keyword-Only Arguments
Python 3 introduced an extension to the * syntax that makes
it easier to have keyword-only arguments. Specifically, named
arguments are allowed to appear after an argument with *. For
example:

def receive(maxsize, *, block=True):

 ...

msg = receive(1024) 	 # OK

msg = receive(1024, block=False) 	 # OK

msg = receive(1024, False) 	 # Error

def total(*items, initial=0):

 total = initial

 for it in items:

 total += it

 return total

a = total(1,2,3, initial=100) # a <- 106

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  59

COLUMNS
Seeing Stars

This ability to have named keyword-only arguments can be a
useful way to clean up library code that might otherwise depend
on **kwargs. For example, the config() function from earlier
could be rewritten as follows:

def config(*, outfile, level=0):

 ...

This version will produce better error messages, have a more
useful help screen, and involve much less code related to han-
dling the arguments. Keyword-only arguments are good.

Wildcard Unpacking
If you have a tuple, it is easy to unpack into separate variables.
For example:

address = (‘www.python.org’, 80)

hostname, port = address # Unpack

This all works well as long as the number of items in the tuple
exactly matches the number of variables specified—if not, you
get an error. Python 3 allows you to use the * as a wildcard in
unpacking. For example:

>>> row = (‘Elwood’, ‘Blues’, ‘1060 W Addison’, ‘Chicago’, ‘IL’,

‘60613’)

>>> first, last, *rest = row

>>> first

‘Elwood’

>>> last

‘Blues’

>>> rest

[‘1060 W Addison’, ‘Chicago’, ‘IL’, ‘60613’]

>>> first, last, *rest, zipcode = row

>>> first

‘Elwood’

>>> last

‘Blues’

>>> zipcode

‘60613’

>>> rest

[‘1060 W Addison’, ‘Chicago’, ‘IL’]

>>>

Notice how all of the extra values are simply placed in a list.
Wildcard unpacking can be particularly useful if you’re work-
ing with rows of data of varying length but are only interested in
some of the values. For example:

rows = [

 (1, 2),

 (3, 4),

 (5, 6, ‘x’),

 (7, 8, ‘x’, ‘y’),

 (9, 10)

]

for x, y, *extra in rows:

 ...

Unpacking and Argument-Passing Extensions
Python 3.5 extends the capabilities of * and ** in some new and
interesting directions. First, you can use both operations more
than once when making function calls. For example:

def f(a, b, c, d):

 ...

x = (1, 2)

y = (3, 4)

f(*x, *y) # Same as f(1, 2, 3, 4)

x = { ‘a’: 1, ‘b’: 2}

y = { ‘c’: 3, ‘d’: 4}

f(**x, **y) # Same as f(a=1, b=2, c=3, d=4)

These extensions simplify code that previously had to assemble
the arguments by hand. For example, in previous versions of
Python, you would have had to write the following:

f(*(x+y))

f(*(tuple(x)+tuple(y))) 	� # Safer version to make sure types

match in +

kwargs = dict(x) 	 # Make a copy of x

kwargs.update(y) 	 # Merge in values from y

f(**kwargs)

You can also perform unpacking when creating list, tuple, set,
and dictionary literals. For example:

a = [1, 2]

b = [*a, 3, 4] 	 # b = [1, 2, 3, 4]

c = [3, *a, 4] 	 # c = [3, 1, 2, 4]

d = [3, *a, *a, 4] 	 # d = [3, 1, 2, 1, 2, 4]

m = { ‘x’: 1, ‘y’: 2 }

n = { **m, ‘z’: 3 } 	 # n = {‘x’:1, ‘y’:2, ‘z’:3 }

In such unpacking, later elements will silently replace earlier
elements if there happen to be any duplicates. For example:

a = { ‘x’: 1, ‘y’: 2 }

b = { ‘x’: 3, ‘z’: 4 }

c = { **a, **b } # c = { ‘x’:3, ‘y’:2, ‘z’:4 }

http://www.usenix.org
http://www.python.org%E2%80%99

60    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Seeing Stars

Although these enhancements look minor, they do enable certain
kinds of new operations. It is now easy to merge dictionaries as a
single expression as shown above. This can extend naturally into
operations involving lists of dictionaries and other structures.
For example:

s1 = [

 {‘x’: 1, ‘y’: 2},

 {‘x’: 3, ‘y’: 4},

 {‘x’: 5, ‘y’: 6}

]

s2 = [

 {‘z’: 10, ‘w’: 11 },

 {‘z’: 12, ‘w’: 13 },

 {‘z’: 14, ‘w’: 15 }

]

merged = [{ **i1, **i2 } for i1, i2 in zip(s1, s2)]

merged = [

{ ‘x’: 1, ‘y’: 2, ‘z’: 10, ‘w’: 11},

{ ‘x’: 3, ‘y’: 4, ‘z’: 12, ‘w’: 13},

{ ‘x’: 5, ‘y’: 6, ‘z’: 14, ‘w’: 15}

]

This change also enables a common dictionary type transfor-
mation that I find myself performing with some regularity. For
example, suppose you have some raw dictionary data read from a
file such as this:

rows = [

 {‘name’: ‘AA’, ‘price’: ‘32.20’, ‘shares’: ‘100’},

 {‘name’: ‘IBM’, ‘price’: ‘91.10’, ‘shares’: ‘50’},

 {‘name’: ‘CAT’, ‘price’: ‘83.44’, ‘shares’: ‘150’},

 {‘name’: ‘MSFT’, ‘price’: ‘51.23’, ‘shares’: ‘200’},

 {‘name’: ‘GE’, ‘price’: ‘40.37’, ‘shares’: ‘95’},

 {‘name’: ‘MSFT’, ‘price’: ‘65.10’, ‘shares’: ‘50’},

 {‘name’: ‘IBM’, ‘price’: ‘70.44’, ‘shares’: ‘100’}

}

Now suppose you wanted to apply a conversion to some of the
values (e.g., convert shares to an integer and price to a float). You
can do this:

conversions = [(‘shares’, int), (‘price’, float)]

converted = [{**row, **{name:func(row[name]) for name, func

in conversions}}

 for row in rows]

This does exactly what you want, although I’m willing to con-
cede that it might be too clever for its own good. The alternative
is to unwind it to this:

converted = []

for row in rows:

 newrow = dict(row)

 for name, func in conversions:

 newrow[name] = func(row[name])

 converted.append(newrow)

Needless to say, that’s not nearly as clever nor preserving of one’s
future job security.

More Information
If you’re intrigued by some of the new uses of * and **kwargs,
more information can be found in various PEPs. For example,
PEP 448 describes the generalized unpacking features added to
Python 3.5 [1]; PEP 3102 describes keyword-only arguments [2];
and PEP 3132 describes the wildcard unpacking of sequences [3].

These are not the only syntax changes to Python 3.5. In future
installments, we’ll look at some of the new features added to the
language. In the meantime, you might take a look at the “What’s
New in Python 3.5” document [4].

References
[1] PEP 448: https://www.python.org/dev/peps/pep-0448/.

[2] PEP 3102: https://www.python.org/dev/peps/pep-3102/.

[3] PEP 3132: https://www.python.org/dev/peps/pep-3132/.

[4] https://docs.python.org/dev/whatsnew/3.5.html.

http://www.usenix.org
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-3102/
https://www.python.org/dev/peps/pep-3132/
https://docs.python.org/dev/whatsnew/3.5.html

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  61

COLUMNS

Practical Perl Tools
Blog, Can We Talk?

D A V I D N . B L A N K - E D E L M A N

A ccording to some figures (those at http://w3techs.com/technologies
/details/cm-wordpress/all/all to be precise), WordPress powers
24.2% of the sites on the Internet. I don’t have any reason to doubt

that number. WordPress (WP) has lots of great things going for it when you
are looking to bring up a Web site containing dynamic content. Beginners
can grasp it fairly quickly, it has a huge and vibrant ecosystem, a strong
development effort, oh, and it’s free. It’s my “goto” tool when someone comes
to me and needs my help building a Web site for their aardvark repair com-
pany or whatnot. It may have started as blogging software, but it has evolved
far beyond that over the years into a reasonable Web development platform.

So why am I giving you a sales pitch for WP in a Perl column? In addition to making my bias
clear, I figure if it powers close to a third of the Web sites on the planet, it could be a good
idea to learn to interact with it via Perl. Why would you want to do this? For me, the best
reasons center around being able to easily extract information posted on a WordPress site or,
even better, the ability to post external sources of information right to a WordPress site. For
example, let’s say you had a process for generating sales reports that took hours of heavy-duty
computation on a massive data warehouse. It might be very handy to post the results to an
internal WordPress site every day for people to be able to easily access.

The good news is we are going to be able to draw strongly on past columns and knowledge for
this effort. One quick prerequisite: I’m going to make the assumption that you have at least a
passing familiarity with WordPress (you know it has posts, pages, and users, and you know
how to install plugins) and administrative access to a working up-to-date WP site.

Here’s What We Are Not Going to Do
There are lots of inelegant ways we could interact with WP (some of which we’ve explored in
this column). For example, we could use something like WWW::Mechanize or Selenium to pre-
tend to be Web browsers to screenscrape the pants off the site or fake like we are typing/click-
ing. I could make you more nauseous by noting that WordPress has a MySQL backend (plus
access to a file system) so we could just whip out DBI and go to town. Nope, not going to do it.

A much more reasonable approach might be to use the closest thing WordPress has had to
an external API: the XML-RPC interface it provides via the xmlrpc.php file. And, indeed,
there have been modules written in days of yore like WordPress::XMLRPC that use this API.
Even though XML-RPC has been around for quite a while, it doesn’t seem to get much love
or respect from the WordPress community these days. Part of this could be because XML-
RPC isn’t the simplest of protocols: at the very least you need to understand and know how
to manipulate XML. But another large part is likely how incomplete the API support is. It
exposes certain WordPress operations, but it omits whole classes of things you might want to
do remotely over an API. So what’s a better option if we want to stick with the magical three
letters “API”?

David Blank-Edelman is
the Technical Evangelist at
Apcera (the comments/
views here are David’s alone
and do not represent Apcera/

Ericsson). He has spent close to 30 years
in the system administration/DevOps/SRE
field in large multiplatform environments,
including Brandeis University, Cambridge
Technology Group, MIT Media Laboratory,
and Northeastern University. He is the author
of the O’Reilly Otter book Automating System
Administration with Perl and is a frequent invited
speaker/organizer for conferences in the field.
David is honored to serve on the USENIX
Board of Directors. He prefers to pronounce
Evangelist with a hard “g.”
dnblankedelman@gmail.com

http://www.usenix.org
http://w3techs.com/technologies/details/cm-wordpress/all/all
mailto:dnblankedelman@gmail.com
http://w3techs.com/technologies/details/cm-wordpress/all/all

62    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

There are two choices. Once upon a time, Automattic, the com-
mercial entity that runs the WordPress hosting at wordpress.
com, made available a JSON-based REST service their custom-
ers could use. This was available for wordpress.com, but self-
hosted WordPress sites couldn’t use it. Later this functionality
was added to their kitchen-sink plugin Jetpack (http://jetpack
.me), which “supercharges your self-hosted WordPress site with
cool functionality from WordPress.com.” I’ve not used Jetpack
on any site I’ve set up, largely because it always seemed a bit
heavyweight to me even if it does do a ton of cool stuff simulta-
neously out of the box. Plus it introduces some dependencies on
the wordpress.com backend infrastructure I didn’t really want.
That takes this option out of the running for me.

The second choice, better in some ways (worse in others, more
on that in a moment), is a plugin that provides a similar JSON-
based REST API. The later version of the plugin (v2, in beta) is
meant to be a reference implementation merged into WordPress
core in short order. This means the functionality will eventually
be available out of the box without having to install a plugin. I’m
not entirely sure if this is still the plan for WordPress roadmap,
but the intent to add this to core is a pretty strong indicator
of support. That’s the good part of this option. There are two
aspects that I am less enamored of: v2 of this plugin’s imple-
mentation is relatively new, so information about installing and
using it is much less mature than what is available for v1 (e.g., the
API documentation at http://v2.wp-api.org is more a collection
of section headings than actual documentation). This leads to
lots of peeking back and forth between v1 and v2 docs and more
hunting down of arcana/reading of the source than I would
prefer. In this column, I will largely try to cut through all of that
and provide some more direct instruction. There is, however, one
place I’m going to punt on how to do things (my second negative);
we’ll come to that a little later on.

WP-API Install
Assuming again that you have a functioning and up-to-date
WordPress install to work with, let’s see how to get the WP-API
stuff functional. There are 3–4 steps; let’s start with the first
two and bring the others in when we need them.

First off, you will want to install and activate the “WordPress
REST API (Version 2)” plugin. You can either do this by entering
that phrase into the search box in Plugins -> Add New (be sure
to get the Version 2 one), or if you want to flex your dev chops,
you can change to the wp-content/plugins directory of your WP
installation and clone the plugin from its GitHub repo right into
place:

git clone git://github.com/WP-API/WP-API.git

(Be sure to activate the plugin once you’ve installed it.)

The second step is to confirm you have a compatible permalinks
scheme selected (Settings -> Permalinks in the dashboard). Any
scheme except for the one listed as “Default” will work. Switch it
away from Default to something else and save the change if this
is not the case.

To confirm that the installation works, the v1 Getting Started
guide (http://wp-api.org/guides/getting-started.html) suggests
you can type the following:

curl -I {URL of your WP site}

The -I tells cURL to make a HEAD request because all we really
need to see is the headers this returns. If everything is hunky-
dory, you should see something like this:

$ curl -I http://local.wordpress.dev

HTTP/1.1 200 OK

Server: nginx

Date: Thu, 30 Jul 2015 03:17:23 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

X-Powered-By: PHP/5.5.9-1ubuntu4.11

X-Pingback: http://local.wordpress.dev/xmlrpc.php

Link: <http://local.wordpress.dev/>; rel=shortlink

Link: <http://local.wordpress.dev/wp-json>; rel=”https://

github.com/WP-API/WP-API”

The second Link: header we get back above is the key: it shows
that WP-API is installed and ready to take requests at the wp-
json endpoint. As a quick aside, the examples in this column will
all be using a local WordPress install I have on my laptop pro-
vided by the Varying Vagrant Vagrants package (https://github
.com/Varying-Vagrant-Vagrants/VVV). If you use Vagrant, be
sure to check VVV out because it is quite well done.

Now That It’s Installed, What Can We Do?
Now that we know it is working, what can we do with it? Let’s
actually ask it:

$ curl http://local.wordpress.dev/wp-json/

{“name”:”Local WordPress Dev”,”description”:”Just

another WordPress site”,”url”:”http:\/\/local.wordpress

.dev”,”namespaces”:[“wp\/v2”],”authentication”:[],”routes”:{“

\/”:{“namespace”:””,”methods”:[“GET”],”_links”:{“self”:”http:

\/\/local.wordpress.dev\/wp-json\/”}},”\/wp\/v2”:{“namespace”:

”wp\/v2”,”methods”:[“GET”],”_links”:{“self”:”http:\/\/local

.wordpress.dev\/wp-json\/wp\/v2”}},”\/wp\/v2\/posts”:

{“namespace”:”wp\/v2”,”methods”:[“GET”,”POST”],”_links”:

{“self”:”http:\/\/local.wordpress.dev\/wp-json\/wp\/v2\/

posts”}},”\/wp\/v2\/posts\/{id}”:{“namespace”:”wp\/v2”

,”methods”:[“GET”,”POST”,”PUT”,”PATCH”,”DELETE”]},”\/wp\/v2\/

posts\/schema”:{“namespace”:”wp\/v2”,”methods”:[“GET”],”

_links”:{“self”:”http:\/\/local.wordpress.dev\/wp-json\/

http://v2.wp-api.org
http://www.usenix.org
http://jetpack.me
http://jetpack.me
git://github.com/WP-API/WP-API.git
http://wp-api.org/guides/getting-started.html
http://local.wordpress.dev
http://local.wordpress.dev/xmlrpc.php
http://local.wordpress.dev/
http://local.wordpress.dev/wp-json
https://github.com/WP-API/WP-API%E2%80%9D
https://github.com/WP-API/WP-API%E2%80%9D
https://github.com/Varying-Vagrant-Vagrants/VVV
https://github.com/Varying-Vagrant-Vagrants/VVV
http://local.wordpress.dev/wp-json/

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  63

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

wp\/v2\/posts\/schema”}},”\/wp\/v2\/posts\/{parent_id}\/

meta”:{“namespace”:”wp\/v2”,”methods”:[“GET”,”POST”]},”\/

wp\/v2\/posts\/{parent_id}\/meta\/{id}”:{“namespace”:”wp\/

v2”,”methods”:[“GET”,”POST”,”PUT”,”PATCH”,”DELETE”]},”\/

wp\/v2\/posts\/meta\/schema”:{“namespace”:”wp\/

v2”,”methods”:[“GET”],”_links”:{“self”:”http:\/\/local

.wordpress.dev\/wp-json\/wp\/v2\/posts\/meta\/schema”}},

...

Note: I could have made this request via Perl (perhaps used GET
from the LWP::Simple package, HTTP::Tiny, or any of the mod-
ules we’ve discussed in the past for this sort of thing) but cURL
was already in my shell history.

Egads, that’s one big blob of JSON we get back (I cut it off at an
arbitrary point; the whole thing is 6443 characters total). It is
kind of hard to read, so let’s run it through a JSON pretty-printer
to make it more legible. Again, we could write some Perl code
to parse and pretty print, but in command-line cases like this, I
tend to use one of two really great JSON tools: underscore-
cli (https://github.com/ddopson/underscore-cli) or jq (http://
stedolan.github.io/jq/). Both are excellent, so if you haven’t
encountered them before, I highly recommend you go check them
out. Let’s run that last request through jq (and show an excerpt
from the reply):

$ curl -s http://local.wordpress.dev/wp-json/|jq .

{

 “name”: “Local WordPress Dev”,

 “description”: “Just another WordPress site”,

 “url”: “http://local.wordpress.dev”,

 “namespaces”: [

 “wp/v2”

],

 “authentication”: [],

 “routes”: {

 “/”: {

 “namespace”: “”,

 “methods”: [

 “GET”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/”

 }

 },

 “/wp/v2”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2”

 }

 },

 “/wp/v2/posts”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2/posts”

 }

 },

 “/wp/v2/posts/{id}”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”,

 “PUT”,

 “PATCH”,

 “DELETE”

]

 },

...

 “/wp/v2/users”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2/users”

 }

 },

 “/wp/v2/users/{id}”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”,

 “PUT”,

 “PATCH”,

 “DELETE”

]

 },

...

http://www.usenix.org
https://github.com/ddopson/underscore-cli
http://stedolan.github.io/jq/
http://stedolan.github.io/jq/
http://local.wordpress.dev/wp-json/|jq
http://local.wordpress.dev%E2%80%9D
http://local.wordpress.dev/wp-json/%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2/posts%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2/users%E2%80%9D

64    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

Let’s take a closer look at some of this output. Specifically, I want
to draw your attention first to the info it printed regarding the
route available to query post info:

 “/wp/v2/posts”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2/posts”

 }

 },

 “/wp/v2/posts/{id}”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”,

 “PUT”,

 “PATCH”,

 “DELETE”

]

 },

This says I can either make a GET or a POST request for
http://local.wordpress.dev/wp-json/wp/v2/posts to read or
change the list of posts on the site. If I want to address an indi-
vidual post (to GET, submit a new one with POST, DELETE it,
and so on), I can do so at the same URL with the ID for that post
tacked on to the path. This pattern repeats itself in the previ-
ous output for users, so we now know how to with users of the
system. Let’s try to get the list of users on the site:

$ curl -s http://local.wordpress.dev/wp-json/wp/v2/users|jq .

[

 {

 “code”: “rest_forbidden”,

 “message”: “You don’t have permission to do this.”,

 “data”: {

 “status”: 403

 }

 }

]

Whoops, that didn’t work—and good thing too! We really don’t
want anyone with cURL to be able to pull a list of users. That
leads to the second part of the WP-API install/setup and a bit of
a screed.

WP-API Authentication
In order for authentication of any type to work, there has to be
an existing user defined on your site that you will authenticate
to do the work. If you plan to query information that only an
admin-level user should have access to (e.g., a list of site users),
this user will have to be created as an admin. If you don’t need
that level of access from the API, I encourage you to create a user
at a lower role or just send unauthenticated requests for publicly
viewable information. New users for WP-API are created using
the normal WordPress process (Users -> Add New). For this col-
umn, I created an admin user with the user name “api” and the
password “api” (yup, security by alliteration, yay!) on my local
test site.

WP-API has two contexts it operates in, one I’ll call “internal,”
where code running on the site (e.g., a PHP-based WordPress
theme), the other “external” (some outside code calls the API
remotely). We’re going to totally ignore the former and only look
at the external context. In this context, there are two, maybe
three mechanisms for authentication.

The first is the least secure one and is only recommended for
development and testing. This is using the HTTP Basic Authen-
tication found in RFC 2617. To use this, you need to git clone the
Basic Authentication plugin into place as we did earlier:

$ cd wp-content/plugins

$ git clone git://github.com/WP-API/Basic-Auth.git

and then activate the plugin in the dashboard.

The second and third options are to use OAuth. OAuth is a mildly
complicated protocol that comes in two incompatible versions
(1.0a and 2.0) and that is designed to allow a third-party client
to be given permissions to act on the behalf of a user. So, for
example, if you install a new Twitter or Gmail client, it is likely
that the first thing it will do is ask you to authenticate to those
services and then permit that client to act on your behalf to
perform certain operations (post tweets, manipulate your mail,
etc.). This is OAuth in action.

Here’s where it starts to get tricky and we quickly descend down
a rabbit hole. The WP-API docs suggest that you install an
OAuth 1.0a plugin from GitHub (“git clone git@github.com
:WP-API/OAuth1.git content/plugins/oauth-server”; see https://
github.com/WP-API/OAuth1) and use that for authentication. It
is suggested that this plugin will also eventually be incorporated
into WP core. Ordinarily at this point in the column, we’d go off
and talk about how OAuth works and how to work with it in Perl.
I won’t be doing that here for two reasons:

http://www.usenix.org
http://local.wordpress.dev/wp-json/wp/v2/posts%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2/posts
http://local.wordpress.dev/wp-json/wp/v2/users|jq
git://github.com/WP-API/Basic-Auth.git
git@github.com:WP-API/OAuth1.git content/plugins/oauth-server
https://github.com/WP-API/OAuth1
https://github.com/WP-API/OAuth1
git@github.com:WP-API/OAuth1.git content/plugins/oauth-server

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  65

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

1.	 The protocol/framework is a wee bit complicated and needs a
little bit of explanation before you can dive into using it, and I
don’t have the space.

2.	 I’m annoyed that WP-API’s suggested plugin implements 1.0a
of OAuth and not 2.0. As far as I can tell, there isn’t a major
service provider using 1.0a instead of 2.0, so the value of going
deeper into a barely used protocol is unclear to me. Some say
that the older version was a stronger protocol, but I’m not sure
that pragmatically justifies the column space.

Now let me make things even more interesting. There exists
a commercial plugin (or at least one that would like to charge
licensing fees) that implements OAuth2. It can be found at
https://wp-oauth.com. It claims to support WP-API (at least in
part of the doc, while in another part it claims it doesn’t, sigh).
I’m also not clear whether it supports the 2.0 WP-API beta ver-
sion either. Because OAuth2 leans on SSL/TLS for some of its
security, you would want that set up on your site before truly
using it. I have yet to test it.

Given these complications, I’m going to punt on the more secure
methods (even though I know it means that somewhere an angel
isn’t going to get its wings) and just go with Basic Authentication
in our examples. Just so you don’t feel I’m hanging you out to dry,
I will mention that the Net::OAuth and Net::OAuth2 modules
(plus a couple others like OAuth::Lite) do exist, so you can defi-
nitely perform OAuth operations (from both protocol versions)
from Perl. If you’d like to see another column about just OAuth,
please drop me a line and I will see about writing one.

To review as we leave the rabbit hole: to use WP-API operations
of a certain level, you need a suitably empowered WordPress
user and a way to authenticate as that user installed. We’ll be
using the Basic Authentication plugin for the latter (boo hiss).

Perl Time
In a previous column about using REST interfaces from Perl, we
tiptoed up to using Perl modules that provided lots of “do what I
mean” syntactical sugar. In this column, I’m just going to put the
pedal to the metal and go right for using that kind of module.

Let’s start off with getting the list of pages on a site. Our first
attempt to write code to this would probably look a bit like this:

use WebService::CRUST;

my $w = new WebService::CRUST(

 base 	=> ‘http://local.wordpress.dev/wp-json/wp/v2/’,

 format 	=> [‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’],

);

this is the equivalent of

$w->get(‘pages’);

we could also write $w->pages;

yummy syntactic sugar!

my $result = $w->get_pages;

print “Total items: “ .

 $result->crust->{response}->{_headers}->{‘x-wp-total’},

 “\n”;

foreach my $page (@{ $result->result }) {

 print 	$page->{‘id’} . ‘:’ .

 	 $page->{‘title’}->{‘rendered’} .

 	 “ (“ . $page->{‘link’} . “)\n”;

}

The code creates a WebService::CRUST object and tells it that
all of our requests are going to start with that URL. It also speci-
fies that we will want to use JSON::XS (the faster JSON parser)
to decode the responses we get back. The next step is to query for
all of the pages on the system. As you can see in the comments,
WebService::CRUST allows us to write code that makes it look
like pages() or get_pages() is a real method call. This is one of
the things I like about this module: it makes for very readable
code, even if it is doing a bit of autoload magic behind the scenes.

For fun (or actually, for foreshadowing), we reach deep into
the WebService::CRUST::Response object using the crust
method to pull out one of the headers WordPress sends us in
response to our query (X-WordPress-Total, which gets down-
cased when stored in the object). This header provides the
number of items we should expect back from our query. Then
we proceed to iterate over the response we got back in that
WebService::CRUST::Response object (via the result method) to
print out the ID, title, and the URL for each page on the system.
Here are the results on my local test instance (which I’ve pre-
loaded with a bunch of example pages):

Total items: 248

2:Sample Page (http://local.wordpress.dev/sample-page/)

5434:2008 Festival (http://local.wordpress.dev/archive

/2008-festival/)

5433:2007 Festival (http://local.wordpress.dev/archive

/2007-festival/)

5432:2006 Festival (http://local.wordpress.dev/archive

/2006-festival/)

5409:2012 Festival (http://local.wordpress.dev/archive

/2012-festival/)

5407:2011 Festival (http://local.wordpress.dev/archive

/2011-festival/)

5405:2010 Festival (http://local.wordpress.dev/archive

/2010-festival/)

5403:2009 Festival (http://local.wordpress.dev/archive

/2009-festival/)

http://www.usenix.org
https://wp-oauth.com
http://local.wordpress.dev/wp-json/wp/v2/%E2%80%99
http://local.wordpress.dev/sample-page/
http://local.wordpress.dev/archive/2008-festival/
http://local.wordpress.dev/archive/2008-festival/
http://local.wordpress.dev/archive/2007-festival/
http://local.wordpress.dev/archive/2007-festival/
http://local.wordpress.dev/archive/2006-festival/
http://local.wordpress.dev/archive/2006-festival/
http://local.wordpress.dev/archive/2012-festival/
http://local.wordpress.dev/archive/2012-festival/
http://local.wordpress.dev/archive/2011-festival/
http://local.wordpress.dev/archive/2011-festival/
http://local.wordpress.dev/archive/2010-festival/
http://local.wordpress.dev/archive/2010-festival/
http://local.wordpress.dev/archive/2009-festival/
http://local.wordpress.dev/archive/2009-festival/

66    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

5305:Pick-Up Band 2014 (http://local.wordpress.dev/archive

/2014-festival/pick-up-band-2014/)

5280:Saturday Schedule by Location (2014) (http://local

.wordpress.dev/archive/2014-festival/saturday-in-davis-square

/saturday-schedule-by-location-2014/)

Hey, wait a second, something is wrong. WordPress says there
are 248 pages on the system, but it has only returned 10. Wel-
come to the world of pagination. Perhaps showing its blogging
roots, WordPress wants to hand back the reply one “page” at a
time. This isn’t entirely out of the ordinary because other servers
(e.g., LDAP servers) often have a max size for data returned that
you can only deal with by requesting a chunk at a time. We could
try to get around this pagination by asking WordPress to create
pages that are big enough to hold all of the items or even turn off
pagination, but I think it is better to work within the system than
try to hack around it.

So how do we get more pages past the first one? If we were
to peek more closely at what was returned from our request,
we would notice that WordPress has sent us a “link” header
(remember that from the beginning of the column?). Here’s what
it looks like from the request above (it is all one long line):

‘http://local.wordpress.dev/wp-json/wp/v2/pages?page=

2>; rel=”next”’

That is the URL we will have to request to get the next set of
results (i.e., the next page). We’ll need to write code that parses
this header and extracts the next page number, then repeats the
request. Here’s what that code looks like:

use WebService::CRUST;

my $w = new WebService::CRUST(

 base 	=> ‘http://local.wordpress.dev/wp-json/wp/v2/’,

 format 	=> [‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’],

);

my $nextpage = 1;

my $result = $w->get_pages(‘page’ => $nextpage,);

print “Total items: “ .

 $result->crust->{response}->{_headers}->{‘x-wp-total’},

 “\n”;

print	“Total pages of content: “ .

 	 $result->crust->{response}->{_headers}->{‘x-wp-totalpages’},

 	 “\n”;

while (defined $result and $nextpage) {

 foreach my $page (@{ $result->result }) {

 print $page->{‘id’} . ‘:’ .

 $page->{‘title’}->{‘rendered’} .

 “ (“ . $page->{‘link’} . “)\n”;

 }

 ($nextpage) =

 $result->crust->{response}->{_headers}->{‘link’} =~

 /\?page=(\d+)>; rel=”next”/;

 last unless (defined $nextpage);

 $result = $w->get_pages(‘page’ => $nextpage,);

}

Let’s focus for a moment on how this differs from the previous
code. WordPress is willing to tell us how many pages it will take
to provide the entire result set, so I print that for informational
purposes. For the real work, our get_pages requests now take an
argument that is the parameter and the value to be sent with that
request. Adding this argument means we’ll be requesting:

http://local.wordpress.dev/wp-json/wp/v2/pages?page=N

where N is the value of $nextpage. We print the information
returned for that page, determine if there are more pages (as
specified in the link header), and if so, we perform another
request for the next page. As a quick aside, we could have taken
the number of pages returned in the X-WP-TotalPages header
and iterate from page 1 to that value, but I believe it is less likely
to cause a race condition if we work from the “here’s the next
page” info we get back on each query instead.

This is the basic pattern for most things we can pull back from
the API. For example, if we wanted a list of users:

use WebService::CRUST;

my $w = new WebService::CRUST(

 base => ‘http://local.wordpress.dev/wp-json/wp/v2/’,

 basic_username => ‘api’,

 basic_password => ‘api’,

 format => [‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’],

);

my $nextpage = 1;

my $result = $w->get_users(‘page’ => $nextpage,);

while (defined $result and $nextpage) {

 foreach my $user (@{ $result->result }) {

 print $user->{‘id’} . ‘:’ . $user->{‘name’} . “\n”;

 }

 ($nextpage) =

 $result->crust->{response}->{_headers}->{‘link’} =~

 /\?page=(\d+)>; rel=”next”/;

 last unless (defined $nextpage);

 $result = $w->get_users(‘page’ => $nextpage,);

}

http://www.usenix.org
http://local.wordpress.dev/archive/2014-festival/pick-up-band-2014/
http://local.wordpress.dev/archive/2014-festival/pick-up-band-2014/
http://local.wordpress.dev/archive/2014-festival/saturday-in-davis-square/saturday-schedule-by-location-2014/
http://local.wordpress.dev/archive/2014-festival/saturday-in-davis-square/saturday-schedule-by-location-2014/
http://local.wordpress.dev/archive/2014-festival/saturday-in-davis-square/saturday-schedule-by-location-2014/
http://local.wordpress.dev/wp-json/wp/v2/pages?page=
http://local.wordpress.dev/wp-json/wp/v2/%E2%80%99
http://local.wordpress.dev/wp-json/wp/v2/pages?page=N
http://local.wordpress.dev/wp-json/wp/v2/%E2%80%99

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  67

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

Almost identical, yes? The only differences are that we add
some initial parameters to send along authentication with every
request (in an insecure manner, don’t rub it in) and later on pull
out different fields from the returned information.

Where Do We Go from Here?
We’re almost out of room, but there are a few important things
to mention. First off, the examples we’ve seen here all pull a col-
lection of items (pages, users, etc.). If we want to retrieve a single
item, we can reference that item as a part of the path we request
by appending the ID we need—for example:

$result = $w->get(“pages/$id”);

Second, we’ve only seen examples that retrieve content. If we
want to create or modify content on the site, we use the REST
idea of using other HTTP operations as verbs. Want to create a
new page or edit a page? Perform a PUT request (details found
in the v1 documentation) with the right parameters specified as
arguments to the put() method.

And lastly, one more advanced topic we didn’t discuss is how to
use more of the power of WordPress in our interactions. v1 of
the API had a working “filter” parameter which allowed you to
pass in a specification the WordPress WP_Query class could
work with. This means that you could say to WordPress “return
all of the posts by this author” or “only return a list of publicly
published posts.” I had difficulty using this facility with the v2
API because I believe it is still very much a work in progress as
of this writing. Hopefully, this facility will be up to snuff by the
time you read this.

In the meantime, enjoy, and I’ll see you next time.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes sponsorship and offers custom packages to help you promote your
 organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience,
we offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well
as our multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation in
neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholarships for
students, equal representation of women and minorities in the computing research community, open access
to our online library, and the development of open source technology.

Learn more at:
www.usenix.org/supporter

http://www.usenix.org
mailto:sponsorship@usenix.org
http://www.usenix.org/supporter

68    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS

iVoyeur
Using NCPA: Nagios Cross-Platform Agent

D A V E J O S E P H S E N

Dave Josephsen is the some
time book-authoring developer
evangelist at Librato.com. His
continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

I’ve been working at home for over a year now, and I can’t help but feel
that I’m somehow doing it incorrectly. I’m wearing pants for one thing,
and my hygiene habits have not changed whatsoever (although admit-

tedly I never was a hygiene Olympian). In fact I seem to be experiencing
very few of the great benefits one hears about, like drinking at inappropri-
ate times, playing video games, not interacting with people, and, well, not
working.

In their place I’m experiencing a whole slew of not very awesome side effects of having these
large, luxurious blocks of uninterrupted time to dig in and work on stuff. These include fail-
ing to stop working ever and starting too many side-projects because of all the “extra time” I
feel like I have (that I don’t actually have). I even have meetings. Oh crap, in fact I have meet-
ings right now; I’ll be right back.

Okay sorry, that’s another problem: meetings sneak up on me now, and nearly always coincide
with one meal or another that I’m supposed to be eating. An unlucky consequence, I sup-
pose, of the dissonance between the people in my life who make meetings and live two hours
ago, in California, and the people in my life who make lunch and dinner and who live now,
in Texas. It also has begun to seem weird that we have times for these things at all, eating,
meeting, and working, that is.

When I applied for this job, my first several interviews were undertaken by way of Google
Hangouts. This was a very real logistical concern for me at the time because I was running
a snowflake everything-compiled-from-scratch Linux laptop, and, well, you know how that
goes with cameras, soundcards, printers, and etc. I got it all sorted out in time, and experi-
enced my first few video-chats as job interviews, which, by the way, is not a very good idea. It
was extremely awkward and I kept spacing out. It felt like I was watching a job interview on
TV, so I kept forgetting to answer.

Anyway, I spend an inordinate amount of time on Hangouts, appear.in, and various other
hosted impromptu meeting services these days, and I’ve noticed that whenever Hangouts
is going, my CPU fans kick on. This is pretty noticeable on my MacBook, but downright dis-
tracting on my ThinkPads. My poor little ThinkPad x120 gasps and wheezes like it’s sprint-
ing the last 30 feet of an ultra-marathon when I try to run Hangouts on it.

Being a monitoring sort of person, I got curious about this behavior, and brought some tools
to bear to help me visualize the overhead, but I pretty quickly got myself entangled in the
question of whether I was comparing apples to apples. I mean literally. Is it the same thing to
measure CPU utilization on an Apple vs. a Linux box?

At this point I should point out that not only am I lazy by nature, but I also really don’t have
the time to put any actual effort into this, so I figured the shortest path was probably to get
my hands on a cross-platform monitoring agent. That would at least make me feel like I was
measuring both systems with the same ruler, and that’d probably help me to brute-force
ignore the screams of protest from my inner engineer.

http://www.usenix.org
mailto:dave-usenix@skeptech.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  69

COLUMNS
iVoyeur—Using NCPA: Nagios Cross-Platform Agent

Because I spend my time these days thinking about and working
with telemetry processing systems, I haven’t really looked at the
state of client-side data collection tools lately (especially tools
that might work on a Mac). There aren’t many cross-platform
monitoring agents that include support for OS X. The most
robust solution is probably DataDog, but that was overkill for my
purposes. I wanted something I could use for a few days and then
get rid of, and setting up DataDog would entail … artifacts like
emails, and passwords on Web sites, and well-intentioned pre-
sales, and support representatives.

Really, I just wanted something like good-old GKrellM, so I spent
a few minutes trying to get GKrellM to build on my Mac, which
was fun but fruitless. I was also a little surprised to find there
was no homebrew recipe for GKrellM; “brew install X” so rarely
fails me nowadays. Then I remembered NCPA.

NCPA, or the “Nagios Cross-Platform Agent,” is a monitoring
agent built and maintained by the folks at Nagios Enterprises.
It’s a cross-platform Python script that is distributed in binary
form (via cx_Freeze). In many ways, it’s exactly what you’d

expect if you asked Nagios Enterprises for an agent. It’s small,
easy to work with, and, out of the box, it doesn’t really know how
to monitor very much of anything. It can enumerate the run-
ning processes and measure CPU, Memory, Disk, and Network
utilization. And it does a great job of detecting all of these things
(it sees all of my vmnet network interfaces, for example), but like
its big brother it depends on plugins to do the heavy lifting, and
that’s a good thing IMO.

I’d never tried NCPA, so I thought this would be a great opportu-
nity. It, along with Nagios Core and the rest of the open source
software made by Nagios Enterprises, is on GitHub. I must be
getting old, though, because I just went and grabbed the official
binary distributions of NCPA for OS X and Debian from [1]. The
Linux install was pretty much what you’d imagine: one dpkg-i
and it was up and running.

The Mac put up a little more resistance. NCPA came packaged
in a disk-image (.dmg file), which contained an installer shell
script called install.sh. I could not chmod the script to make it
executable because .dmg’s are a read-only file system. All of my

Figure 1. NCPA’s spartan but functional built-in Web interface

http://www.usenix.org

70    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
iVoyeur—Using NCPA: Nagios Cross-Platform Agent

attempts to remount it as R/W were mockingly rejected by OS X.
Giving up on that, my first few attempts to indirectly execute the
script with, for example, “sh -c” were also rebuffed, but…

/bin/sh < /Volumes/NCPA-1.8.1/install.sh

…worked for me.

Like Nagios, NCPA installs itself to /usr/local/ncpa by default.
Inside this directory is an “etc” where you will find an ncpa.cfg file
that controls NCPA’s behavior. I left most of this alone, changing
only the “community_string” attribute, which specifies the auth
token you use to interact with NCPA.

Compared to the other agents, like Check_MK, commonly used
in the Nagios solar system, NCPA is a lot easier to install and
reason about. It eschews custom protocols and provides a Web-
API that responds in JSON over HTTPS on tcp/5693 by default
(change this along with everything else in the config file). This
is pretty great. You can interact with NCPA using cURL or any-
thing else that can speak HTTPS, and you can parse its output
with jq, or anything else that groks JSON.

It even comes with a Web UI that draws graphs!

Granted, it’s missing some fundamental features that I look for
in a metrics analysis tool. Its y-axis handling leaves a lot to be
desired, for example, but the UI is fine for ad hoc checking out
individual boxes, and obviously it was more than sufficient for
my current purposes. Anyway, NCPA really isn’t here to be an
analysis tool; it’s a lightweight, easy-to-run data collection agent.
One that, if I were in the market for an agent, is actually a quite
compelling choice.

I mean look at this API! There are eight top-level URIs: memory,
interface, agent, CPU, disk, agent, process, and services. I can,
for example, get a JSON dump of the running processes on my
MacBook at

https://localhost:5693/api/processes/

I can get the free memory with

https://localhost:5693/api/memory/virtual/available

I’m oversimplifying just a tad there. If you’re doing this outside
of a browser, you’ll need to pass in the token by setting it as an
attribute in the URL like so:

https://localhost:5693/api/memory/virtual

/available?token=zomgsecret

There are a slew of other attributes we can set: for example, get
Nagios-style output by setting threshold attributes like so:

https://localhost:5693/api/memory/virtual/available?token

=zomgsecret&warning=1&critical=2&check=true

If you copy or symlink some standard Nagios plugins into /usr/
local/ncpa, you can even run them from the API from the agent
tree like so:

https://localhost:5693/api/agent/plugin/check_thing

/”First Arg”/”Second Arg”/?token=zomgsecret

You’ll get back a JSON blob of the plugin’s output that looks like
this:

{ “value”: { “returncode”: 0, “stdout”: “Thingy looks ok! First

Arg, Second Arg\n” } }

If you aren’t already using check_mk and especially if you’re
running NRPE/NRDP, then you might want to consider running
NCPA as a replacement for your current remote plugin-execu-
tion framework. In my admittedly teensy experience, it’s been
simple and painless, and has a slew of features built in for emit-
ting to preexisting NRDP daemons and otherwise cohabitating
with your existing Nagios toolchain.

It certainly scratched my itch for comparing the utilization char-
acteristics of the various video conferencing tools I use every
day (for the moment, it looks like appear.in on my MacBook is the
best option). The next time I’m helping someone design and/or
build out their Nagios infrastructure, NCPA will definitely play
a role.

Take it easy.

Resources
[1] NCPA agent: https://assets.nagios.com/downloads/ncpa
/download.php.

http://www.usenix.org
https://localhost:5693/api/processes/
https://localhost:5693/api/memory/virtual/available
https://localhost:5693/api/memory/virtual
https://assets.nagios.com/downloads/ncpa/download.php

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  71

COLUMNS

Let’s start with a recent paper that is very much worth your time to
read: “Global Cyberspace Is Safer than You Think: Real Trends in
Cybercrime” by Eric Jardine and released by Chatham House this

past July [1]. Its message is exactly that given by its title: that cyberspace is
getting better—not getting worse, that cyberspace is getting more safe—not
getting more dangerous. The argument for that message is that thinking
cyberspace is ever worse, ever more dangerous comes from failing to properly
normalize whatever measures of safety you’ve heretofore been paying atten-
tion to. It is only fair to quote its front matter directly:

Information technology (IT) security firms such as Norton Symantec and
Kaspersky Labs publish yearly reports that generally show the security of
cyberspace to be poor and often getting worse. This paper argues that the level
of security in cyberspace is actually far better than the picture described by
media accounts and IT security reports. Currently, numbers on the occurrence of
cybercrime are almost always depicted in either absolute (1,000 attacks per year)
or as year-over-year percentage change terms (50 percent more attacks in 2014
than in 2013). To get an accurate picture of the security of cyberspace, cybercrime
statistics need to be expressed as a proportion of the growing size of the Internet
(similar to the routine practice of expressing crime as a proportion of a population,
i.e., 15 murders per 1,000 people per year).…In particular, the absolute numbers tend
to lead to one of three misrepresentations: first, the absolute numbers say things are
getting worse, while the normalized numbers show that the situation is improving;
second, both numbers show that things are improving, but the normalized numbers
show that things are getting better at a faster rate; and third, both numbers say that
things are getting worse, but the normalized numbers indicate that the situation is
deteriorating more slowly than the absolute numbers. Overall, global cyberspace is
actually far safer than commonly thought.

In short, Jardine is saying that the denominator matters, i.e., that reporting counts of any-
thing is poorer decision support than reporting rates and proportions, that counts of events
per unit time will, and must, mislead. It is incorrect to talk about how much mayhem there is
without talking about how much opportunity for mayhem there is.

Jardine’s line of critique is entirely straightforward, and cyberspace is not the only place that
such arguments about the validity of inference are taking place. As a prominent example,
consider Stephen Pinker’s 2012 book The Better Angels of Our Nature: Why Violence Has
Declined. In a synopsis in the Wall Street Journal, he wrote:

For Good Measure
The Denominator

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

http://www.usenix.org
mailto:dan@geer.org

72    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
For Good Measure: The Denominator

We tend to estimate the probability of an event from the
ease with which we can recall examples, and scenes of
carnage are more likely to be beamed into our homes
and burned into our memories than footage of people
dying of old age. There will always be enough violent
deaths to fill the evening news, so people’s impressions
of violence will be disconnected from its actual
likelihood.

This is, again, an argument for looking at rates and proportions
rather than counts. But in a direct cross, Nassim Nicholas Taleb
responded with a paper, “On the Super-Additivity and Estima-
tion Biases of Quantile Contributions” [2], in which he argues
that when a distribution is fat-tailed, estimations of parameters
based on historical experience will inevitably mislead:

When I finished writing The Black Swan, in 2006, I
was confronted with ideas of “great moderation,” by
people who did not realize that the process was getting
fatter and fatter tails (from operational and financial
leverage, complexity, interdependence, etc.), meaning
fewer but deeper departures from the mean. The fact
that nuclear bombs explode less often than regular
shells does not make them safer. Needless to say that
with the arrival of the events of 2008, I did not have
to explain myself too much. Nevertheless people in
economics are still using the methods that led to
the “great moderation” narrative, and Bernanke, the
protagonist of the theory, had his mandate renewed.

And to highlight his central point:

[We are] undergoing a switch between [continuous low
grade volatility] to … the process moving by jumps, with
less and less variations outside of jumps.

You will possibly find Taleb’s paper difficult, but he is speaking
to our interest in cybersecurity—are we getting worse or are we
getting better? Is there anything we are currently measuring
that is leading us to conclude that we are doing the right thing(s)
as inferred from measurements of what we believe to be out-
comes? Are our inferences confounded with little understood
assumptions about thin tails (Gaussian) when we are actually
in a fat-tailed (power law) situation? Are we moving into a world
where, as Taleb suggests, we are switching from continuous low
grade volatility to less frequent but much larger jump changes in
the state of the (our) world?

The present author asked this question in a naive form in the
spring of 2008 at SOURCE Boston:

Everyone but everyone classifies the 9/11 attack as out-
of-nowhere—a black swan to use Taleb’s terminology.
That attack changed everything because it was not
foreseen. It was a physical attack, but we, here, deal
in digital attacks. Many of us have heard the phrase
“Digital Pearl Harbor,” and many of us here have
wished we hadn’t. If we talk with a member of the
general public, we are likely to hear something like,
“Look, you paranoid worry-warts keep predicting a
big problem and if it was all that likely it would have
happened by now. In fact, every day that goes by without
something like that happening makes it more likely that
it never will. Would you just stop bothering me?”

Now, a statement like, “That we have gone this long
without anything big happening” is precisely the kind
of statement that expects stability to continue, and
which is necessary but not sufficient for a punctuation
of that stability. If we look at 9/11 as digital security
people, we might remember that the Nimda virus
appeared the evening of September 18, 2001, i.e., a
week later. Until that point, we’d never seen a virus
that had carried more than one method of attack, and
Nimda had five. So, to begin with, even if we had known
everything about each of those five methods, including
population statistics for the numbers and connectivity
of vulnerable machines, we would not have predicted
the ability of Nimda to spread as it did as we had not yet
thought to model the union of multiple vulnerabilities.

That, however, is not all. For writers of classic virus
attacks, the measure of their success is the energy
differential between the first entry into a given target
and the second, i.e., the bigger the difference in how
hard it is to break in the first time and how easy it is to
break in the second time, the bigger the win. The lowest
energy way to maximize this energy differential is to
install a new back door. Nimda followed this pattern
and installed such a back door.

Because it had five methods for propagation and
because it was evidently written with speed in mind,
Nimda was also the fastest spreading virus we had yet
seen. That rate of spread is known among infectious-
disease people as virulence, and we’ll return to that in
a moment.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  73

COLUMNS
For Good Measure: The Denominator

As you know, nearly all malware in the wild persists
there. An older virus called E911 was such an example.
E911 would cause your modem to dial 911 repeatedly;
that is all it did. Now when I call you on the phone, the
circuit stays up until the calling party disconnects.
When I call 911, however, the circuit stays up until the
called party disconnects, a difference that is done at the
switch for the obvious reason that you do not want the
intruder to cut the phone line and the police dispatcher
to have to say, “Now whom was I talking to?” For the
police to hang up on a 911 call when the calling party
has gone away requires a human decision, made under
uncertainty, done at human time scales. Because of
this, it is possible to saturate a 911 console and that is
precisely what the E911 virus was crafted to do.

The E911 virus was old and forgotten on September 18,
2001, but it was still available on the Net, and, of course,
the Internet in the fall of 2001 was still dominated
by dial-up connections. We got lucky in the simplest,
stupidest, dumb luck kind of way. No jackass had the
imagination to grab the E911 virus and re-target it
at the back door Nimda was busy installing at warp
speed everywhere while we all were preoccupied
with watching CNN 24x7. If someone had done that,
then everyone in America would have gotten up the
morning of September 19 only to find that there was
no emergency service available nationwide; it would
have been turned off everywhere and all at once, like a
light switch. While that would not have been a disaster
of a physical sort, I submit that it would have been a
grand mal seizure of the public confidence. Clinically,
that defines terror; it would have required no planning
just opportunistic reaction, and it would have been an
unpredictable event whose downstream influence was
out of all proportion to its concrete effects. It would
parallel the Treasury’s position that money lost or
banks folded is a private tragedy of no importance, but
that public loss of confidence in the financial system
must be avoided.

On September 18, 2001, we escaped a public loss of
confidence by luck and luck alone. As such, the next
time someone tells you that the absence of a major
Internet attack to date makes the absence of one
tomorrow more assured, you can remind them that this
proof (that we escaped such an attack by dumb luck)
puts to bed any implication that every day without such
an attack makes such an attack less likely. It does not
make it less likely, but what it does most assuredly do is
make it more surprising when it does come.

So is cyberspace getting worse or getting better? Jardine asks
us to normalize how many events did occur to the size of how
many events could have occurred, not how many did occur in an
interval of unit time. He is correct that the possible event space
is expanding dramatically, accelerating in its expansion by all
accounts. Part of that is network extent, which I’ve estimated
as having a 35% compound annual growth rate [3]. Part of that
is the question of attack surface, per se [4]. In any case, Jardine
is right that when we count events, we are misleading ourselves
as to whether we are getting better or getting worse. But does
changing the divisor alone really make the correction we need?

There is a power law here, to be sure. Wikipedia’s concise
reminder (under “Power Law”) is that “Power-laws have a
well-defined mean only if the exponent exceeds 2 and have a
finite variance only when the exponent exceeds 3; most identi-
fied power laws in nature have exponents such that the mean is
well-defined but the variance is not, implying they are capable
of black swan behavior.” That, my friends, is our situation—
cyberspace does not have a well-defined variance for what can
go wrong and hence cyberspace is unarguably capable of black
swan behavior.

Elroy Dimson famously suggested that the definition of risk is
that “more things can happen than will happen” [5], and our rate
of growth in interdependence is absolutely making the number
of things that can happen larger. Unfortunately, complexity
prevents us from counting the number of things that can hap-
pen, and hence Jardine’s argument that we divide the number
of things that did happen by the number of things that could
have happened is correct in spirit but would be irrelevant if our
estimate of the number of things that could have happened were
to be wrong.

Yet if the denominator is the number of things that could have
happened and we severely underestimate that, doesn’t that make
the news even better? Taleb says “no” emphatically; the fat tails
of power law distributions enlarge the variance of our estimates,
leading to less frequent but more severe failures (The Black
Swan). The best one could say is that most days will be better and
better but some will be worse than ever. Everything with a power
law underneath has that property (think earthquakes and whether
one is overdue in California), and cyberspace’s interconnectivity
and interdependence are inherently power law phenomena.

Put differently, are pessimists getting the right answer for the
wrong reasons? Is what Pinker said about the memorableness of
televised violence making violence seem more prevalent than it
is both true and yet misleading? Is what Jardine said about how
looking at time series of cybersecurity failures is inherently mis-
leading when the numbers of failures are not normalized in some
way? Is what Taleb describes as the trivializing of risk when a
power law is mistaken for a Gaussian the heart of what is in play?

http://www.usenix.org

74    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
For Good Measure: The Denominator

In an article in the San Francisco Chronicle [6], Thomas Lee
recounted how

I found myself at a dinner in a fancy Menlo Park hotel
to discuss cybersecurity with the executives of top
Silicon Valley firms. [T]he mood was decidedly grim.

“A devastating cyberattack is likely to occur in the next
five years,” said a top HP exec. Companies are nowhere
near prepared for it. Neither are the feds. There were
plenty of comparisons to hurricanes and earthquakes.

“A slow-moving train wreck,” one executive said.

There [is] a kind of collective cognitive dissonance in
Americans’ thinking about tech. We’ll eagerly pursue
new innovations like the Internet of Things and
electronic health records even as we’re increasingly
aware how vulnerable such technology makes us to
terrorists and criminals.

What struck me about the dinner, attended by
executives from Hewlett Packard, Cloudera and PayPal,
along with academics and investors, was the naked
pessimism expressed by those in the room. Nobody
even tried to put a happy face on the situation.

Are those executives, academics, and investors getting the
right answer for the wrong reasons? Are Jardine and/or Pinker
getting the wrong answer for the right reasons? Is it a truism
that when risk cannot be estimated it will therefore be under-
estimated [7]? How do we tell if we are getting better or getting
worse, and how can we explain this to citizens, regulators, and
reinsurers? Is Taleb right that fat-tailed distributions and asym-
metry are where risk lies and, which is more, that the apparent
suppression of small failures is “balanced” by yet-to-be-observed
black swan excursions?

Resources
[1] Eric Jardine, “Global Cyberspace Is Safer than You Think:
Real Trends in Cybercrime,” Centre for International Gover-
nance Innovation, Chatham House: http://www.cigionline
.org/sites/default/files/no16_web_0.pdf.

[2] Nassim Nicholas Taleb, “On the Super-Additivity and
Estimation Biases of Quantile Contributions”: http://www
.fooledbyrandomness.com/longpeace.pdf.

[3] Dan Geer, “T. S. Kuhn Revisited”: http://geer.tinho.net
/geer.nsf.06i15.txt.

[4] Dan Geer, “Attack Surface Inflation”: http://geer.tinho.net
/geer.secot.7v14.txt.

[5] Peter L. Bernstein on Risk (Flash video): http://www
.mckinsey.com/insights/risk_management/peter_l_bernstein
_on_risk.

[6] Thomas Lee, “Forget Target, Ashley Madison Hacks;
a Bigger Online Threat Looms” (paywalled): http://www
.sfchronicle.com/business/article/Forget-Target-Ashley
-Madison-hacks-a-bigger-6395645.php.

[7] Dan Geer, “Cybersecurity as Realpolitik”: http://geer.tinho
.net/geer.blackhat.6viii14.txt.

XKCD

xkcd.com

http://www.usenix.org
http://www.cigionline.org/sites/default/files/no16_web_0.pdf
http://www.fooledbyrandomness.com/longpeace.pdf
http://geer.tinho.net/geer.nsf.06i15.txt
http://geer.tinho.net/geer.secot.7v14.txt
http://www.mckinsey.com/insights/risk_management/peter_l_bernstein_on_risk
http://www.sfchronicle.com/business/article/Forget-Target-Ashley-Madison-hacks-a-bigger-6395645.php
http://geer.tinho.net/geer.blackhat.6viii14.txt
http://www.cigionline.org/sites/default/files/no16_web_0.pdf
http://www.fooledbyrandomness.com/longpeace.pdf
http://geer.tinho.net/geer.nsf.06i15.txt
http://geer.tinho.net/geer.secot.7v14.txt
http://www.mckinsey.com/insights/risk_management/peter_l_bernstein_on_risk
http://www.sfchronicle.com/business/article/Forget-Target-Ashley-Madison-hacks-a-bigger-6395645.php
http://geer.tinho.net/geer.blackhat.6viii14.txt
xkcd.com

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  75

COLUMNS

/dev/random

R O B E R T G . F E R R E L L

I am not a computer scientist. I don’t designs ’em, I just runs ’em. When
talk ’round the cocktail party buffet table turns to B-trees, linked lists,
and why bubble sorts are awful, I grab another stuffed jalapeño and look

for a less esoteric knot in which to mingle. Consequently, I am in no position
to pontificate with authority or even basic coherence on any topic that con-
tains a CS-related word more advanced than “algorithm.” I had probably been
a sysadmin for ten years before I learned what that one meant.

Computer science and systems administration are very different disciplines. Whenever I
see a job opening for a system administrator that lists as one of its requirements an under-
graduate degree in computer science, I roll my eyes and write that company, or at least their
HR department, off as personae sans clue. Requiring a CS degree for your sysadmins is like
insisting a Formula 1 driver possess a degree in traffic engineering. It’s essentially a non
sequitur. I think I’ve ranted on this before.

We used to joke that the only truly secure system was one with no I/O devices that had been
encased in concrete and dumped into the Challenger Deep. Apparently that was no joke.
Recent events have shown us that any system connected to another not only can but eventu-
ally will be compromised. I would now go so far as to say if you have ever used a credit card,
applied for a US security clearance, or shopped online, your information is available to any-
one who cares to purchase access to it. You and I and virtually everyone you know have been,
to bring the subject into sharp focus, quite thoroughly pwned.

Prior to becoming a full-time writer I made my career, such as it was, in information secu-
rity. Back in those days we naively believed that, were proper precautions taken and best
practices followed faithfully, you could operate an enterprise-level network in relative safety
where the vaunted C-I-A (confidentiality, integrity, and availability) were concerned. It’s
become increasingly obvious over the past few years, however, that networking is rotten at
its most fundamental core, security-wise, and can’t be fixed. I think the only sensible way
to proceed from this point forward is to assume that every single bit of data you place in any
networked environment will be, without any realistic possibility of sanctuary, compromised.

My personal solution, were money and profound inconvenience no obstacles, would be to tear
the entire network infrastructure down and start over again from square one. In my ideal-
ized network protocol, which I will call the “No-Eavesdropping Data Transfer Protocol,” or
NEDTP, all connections would be point-to-point and determinative, meaning every device
knows for an indisputable fact the identity of the other devices to which it is attached. No
spoofing is possible. No man-in-the-middle attacks are possible. When a packet comes in, its
origin and data integrity are assured by the simple expedient that every link along the way is
known and any tampering modifies the integrity hash in an irreversible manner. This would
suck from a privacy standpoint, but what we have now isn’t exactly exemplary in that depart-
ment. At least in my world you could buy crap online without needing your phone in the other
hand to cancel that account when, moments later, the first inevitable fraudulent charge came
through.

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist
for the 2011 Robert Benchley
Society Humor Writing

Award. rgferrell@gmail.com

http://www.usenix.org
mailto:rgferrell@gmail.com

76    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
/dev/random

How easy would this be to implement? Beats me. I’m just the
idea guy here. If I really had an unhackable network protocol,
I’d be rubbing elbows with Elon Musk and having craters on
Charon named after me. I’m just a humorist, after all. But I do
know something needs to be done. I’m tired of getting emails
and/or snail mail letters every other week announcing that yet
another of the supposedly secure data archives to which my life’s
statistics are entrusted has been breached by hackers working
for career criminals or the unfriendly state du jour. I have more
free subscriptions to LifeLock these days than pairs of wearable
shoes.

Maybe we should just stop trying to protect our vital informa-
tion. If we all simply proceed on the presumption that every
purchase, every bank account, every electronically enabled
transaction of any sort is being monitored by criminals who fully
intended to exploit whatever information we provide in order to
conduct them, we might actually be safer. Instead of established
account numbers, we could all use one-time pads that ceased
to be of further utility the moment they were used. That pretty
much describes all of my credit accounts, anyway.

I’d like to devote the rest of this column to addressing the thorny
issue of operating systems, specifically the requirement thereof.
Way back in the Cretaceous era of computing someone decided
that just having a computer wasn’t enough: it needed to be usable
for something. So long as all users were engineers and deeply
competent in machine language, the usability monster did not
dare raise its misshapen head, but once the proposal was put
forth that people who were not married to the system might
want to do computing as well, the toxin-belching chimera was
released into the wild.

It became obvious before long to those tasked with implementing
this radical idea that some form of interface between the human
who spoke a rich language full of nuance and complex syntacti-
cal rules and the machine that only made use of ones and zeroes
was going to be needed. Various solutions were suggested to
fulfill this requirement, the battles among the various camps
reaching epic proportions at times. After much acrimony and
several spoiled friendships, the basic operating system design
that we know and love/loathe today emerged victorious.

What alternatives do we have to the familiar architecture? I, for
one (because multiple personalities are so far not one of the men-
tal aberrations with which I am saddled), would prefer that oper-
ating systems be stripped down. The examples we have today are
so bloated with “features” that people spend huge chunks of their
careers just trying to understand them. That’s messed up, if you
think about it. These are devices that are supposed to simplify
our lives so we can devote more time and attention to the stuff
that really matters, not occupy vast tracts of neocortical real
estate in and of themselves.

Imagine needing a six-week course just to be able to make toast
with your toaster. Ponder if you dare the impact of similar
complexity on the efficient operation of your electric toothbrush.
Except for those holding the Certified Powered Dental Cleansing
Appliance Operator designation, we’d all be toothless.

I didn’t intend to draw a parallel between operating systems and
dental hygiene when I started out, but that’s the nature of cre-
ative writing. Sometimes when you dig for gold you come across
earthworms instead. When that happens it’s time to go fishing.

I’ll be out in the boat.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  77

BOOKSBook Reviews
M A R K L A M O U R I N E

The Essential Turing: The Ideas That Gave Birth to
the Computer Age
B. Jack Copeland, ed.
Oxford University Press, 2004, 614 pages
ISBN 978-0-19-825080-7

It’s really good to see Alan Turing finally getting his due in the
popular media. He’s been a large figure in the mathematical
foundations of modern computing from the 1930s (along with
John von Neumann and Emil Post, to name just a couple) for
quite a long time. Despite this, and despite the fact that Tur-
ing’s work is often glossed in elementary computing texts (who
hasn’t at least heard of a Turing machine?), the actual papers on
which his reputation is based are not often studied by students
of computer science or system administration. It’s certainly
not necessary anymore than it’s necessary to read Copernicus,
Galileo, or Newton in the original Latin to be able to do physics
or calculus, or to read Euclid in Greek to do geometry. For me,
though, something draws me to those original texts.

Turing’s work contains much more than his wartime work on
Enigma and the justifiably well-known “On Computable Num-
bers.” During his life Turing worked on mathematical topics in
artificial intelligence and even artificial life, anticipating the
discovery of DNA by positing a computational underpinning
to the origin and formation of biological structures. Copeland
presents 16 publications on these four topics, ranging from
peer-reviewed papers, to a letter from Turing and three others
at Bletchley Park that was hand delivered to Winston Churchill
to request additional resources for their code-breaking work, to
personal mail to his mother during his stay at Princeton before
the war. In each case, Copeland provides background and con-
text to help the reader fully appreciate the main texts.

Many of the examples and arguments in Turing’s essays may
seem obscure or dated to someone who is already familiar
with lambda calculus (through the use of Lisp or other modern
functional programming languages). A number of them have a
decidedly mathematical rather than computational bent, which
is understandable when you realize that Turing was writing
at a time when no real machines existed or were even under
development. It remains remarkable to me that Turing and his
colleagues, Alonzo Church, von Neumann, Post and others,
conceived these ideas entirely in the abstract. When contrasted
with today’s methods of prototyping and fast-failure, the rigor
involved is impressive (at least to a non-mathematician like
myself).

The computational and mathematical writings here are pre-
sented in essence and more clearly in modern texts. If you are
already familiar with Turing and his work through popular
media or formal education in computer science and software
development, you are unlikely to learn anything essential to your
work. But you will gain insight into the range of topics to which
Turing contributed and to the times and environment in which
he worked as well as the pleasure of working through his original
presentations.

I hope you will.

Postscript: If this kind of reading appeals to you, you might also
be interested to find that Stephen Hawking has, over the past
decade, released several edited volumes containing the founda-
tional works of classical physics, quantum physics, and mathe-
matics, translated into English and annotated, for those, like me,
who feel the call to read them: On the Shoulders of Giants: The
Foundations of Physics and Astronomy; The Dreams That Stuff Is
Made of: The Most Astounding Papers of Quantum Physics—and
How They Shook the Scientific World; and God Created the Inte-
gers: The Mathematical Breakthroughs That Changed History.

Drift into Failure
Sydney Dekker
Ashgate Publishing Ltd., 2011; 220 pages
ISBN 978-1-409402221-1

I think the most striking thing I found in Drift into Failure was
the final section of the first chapter. That section was titled
“Why we must not let Drift into Failure become the next folk
model.” (The previous section was titled “Great title, lousy meta-
phor.”) The entire chapter was a sort of apology, although I think
it was meant to set a framework for the rest of the book.

You see, the book is about how to think about failure, and more
precisely, how to think about and analyze events in complex
(nonlinear, to use a mathematical term) systems. The first and
most important feature of these systems is that they will exhibit
unpredictable behavior at times. This is the very nature of com-
plexity, which brings us to the title of the first chapter as a whole
(I’m working my way out of the Russian doll I built): “Failure
Is Always an Option.” If you’re looking for a way to eliminate
failure, you’re reading the wrong book. Or, more significantly,
you’re doomed to fail, and you should understand how the world
really works and pick an achievable goal: understanding how
failures happen, looking for the human behaviors that increase

http://www.usenix.org

78    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

BOOKS

the likelihood of failure (they’re not what you would think), and
knowing when not to waste money “solving” a problem that will
never happen again.

Throughout the book, Dekker seems to be aware of the tug of
human nature. This is explicit in what he writes but also seems
to influence how he writes it. We, modern humans, both by
nature (psychology) and culture (the legacy of Descartes and
Newton), expect the world to work in a predictable, mechanical,
linear way. Asking us to give up the certainty of the Clockwork
Universe is a tough sell. We want to be safe, we want to be in
control. The argument too is tough: “You want to be certain?
You can’t be certain, give up.” We all answer, “Of course we
can! Watch,” and we find The Part That Failed and say, “There!
That proves I can.” Dekker is in the position of trying to prove a
negative, to show that while you can always isolate “the cause of
failure” after the fact, you cannot in principle prevent all failures
by eliminating all points of failure. He knows this and is careful
never to offer “the solution.”

It’s scary to realize that we are not in control in the way we want
to be. Dekker’s argument is that we have two choices: ignore
the fact that we’re building and depending on complex systems
and continue to waste time and effort trying in vain to be 100%
safe, or accept that failure is inevitable, but learn to minimize it
systematically rather than reductively.

Dekker is trying to show that what we get through our reduction-
ist impulses isn’t what we think it is. In that quest he lays out
a series of well-known catastrophic failures of technology and
analyzes the analysis of the failure and response to the findings.
These failures range from a single point mechanical failure that
brings down an airliner to the systemic collapse of Enron. Each
resulted at its root not from some point failure, but from a series
of small, localized, apparently rational decisions that, when seen
from a higher scale and in light of the now-apparent flaw, look
reckless or even criminal. With each example, he comments on
how the seed of a response that would have avoided the failure
was already in place, but was minimized or ignored.

Dekker’s conclusion is that we, as a society, must change. We
must learn to accept risk and failure and respond not by punish-
ing the whistleblowers and the outliers who raise flags before
failures, but by encouraging them and listening to them. He
advocates creating businesses and other social structures where
variety and diversity are accepted, welcomed, and rewarded,
because these produce resilient systems. This is a message that
has been espoused and championed in the last decade in the
software development and service industries as DevOps and
Agile methods. More recently, more mainstream businesses
have picked up the banner and are finding that, when well done
and used appropriately, these methods can work.

There are also cases of both misuse and of failure even when
these methods are applied appropriately. The whole point of the
book is that failure is inevitable, but that risk is manageable. I
think Dekker’s reserved tone comes from his understanding of
how human nature and modern media, with their two-sides-to-
everything mentality, will misrepresent his ideas and lead to a
misguided and doomed popular movement akin to the common
pop culture abuse of the terms of evolution in places where it just
doesn’t apply.

For someone able to make a close and careful reading, Dekker
will help create a framework with which to begin thinking and
working to understand and (as much as is possible) control
complex systems in work and in real life. I’m not sure he’ll be able
to convince the general public, as wedded as it is to a reductionist
world model and as insistent on Keeping Me Safe and Finding
Someone To Blame as it is. I can only hope.

USENIX Board of Directors
Communicate directly with the USENIX Board of Directors
by writing to board@usenix.org.

P R E S I D E N T

Brian Noble, University of Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, EMC
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

Hakim Weatherspoon, Cornell University
hakim@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

http://www.usenix.org
mailto:board@usenix.org
mailto:noble@usenix.org
mailto:johna@usenix.org
mailto:carolyn@usenix.org
mailto:kurt@usenix.org
mailto:cat@usenix.org
mailto:dnb@usenix.org
mailto:dan.klein@usenix.org
mailto:hakim@usenix.org
mailto:casey@usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  79

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2014

The following information is provided as the annual report of the USENIX Association’s finances. The accompanying statements have
been reviewed by Michelle Suski, CPA, in accordance with Statements on Standards for Accounting and Review Services issued by the
American Institute of Certified Public Accountants. The 2014 financial statements were also audited by McSweeney & Associates, CPAs.

Accompanying the statements are charts that illustrate the breakdown of the following: operating expenses, program expenses, and general
and administrative expenses. The operating expenses for the Association consist of the following: program expenses, management and gen-
eral expenses, and fundraising expenses, as illustrated in Chart 1. The operating expenses include the general and administrative expenses
allocated across the Association’s activities. Chart 2 shows the breakdown of USENIX’s general and administrative expenses. The program
expenses, which are a subset of the operating expenses, consist of conferences and workshops; membership (including ;login: magazine);
projects, programs, and good works projects; their individual portions are illustrated in Chart 3.

The Association’s complete financial statements for the fiscal year ended December 31, 2014, are available on request.

Casey Henderson, Executive Director

Continued on page 80

http://www.usenix.org

80    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2014

Depreciation & Amortization
24%

Occupancy
14%

System Management &
Computer Exp

14%

Accounting & Legal
14%

Other Operating Expenses
11%

Board of Directors
Expenses

8%

Insurance
5%

Office Expenses 4%

Bank &
Internet Merchant Fees

3%

Telephone/Connectivity
3% Program Expenses

88%

Fundraising
Expenses

2%

Management &
General Expenses

10%

Conferences & Workshops
88%

Membership
(including ;login:)

6%

Projects, Programs,
and Good Works

6%

Chart 1: USENIX 2014 Operating Expenses

Chart 2: USENIX 2014
General & Administrative Expenses

Chart 3: USENIX 2014 Program Expenses

http://www.usenix.org

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

REAL SOLUTIONS
FOR REAL NETWORKS

FREE
CD or DVD
in Every Issue!

ORDER ONLINE AT: shop.linuxnewmedia.com

OOOOORRRRRDDDDDEEEEEERRRRRR OOOOOONNNNNNLLLLLLIIIIIINNNNNNEEEEEE AAAAAATTTTTT:: ssshhhhhhhhoooppp.llllllllliiiiiiiiinnnuuuxxxnnneeewwwwmmmmeeeeddddddddddiiiiiiiiiiaaaa.ccccoooommmmm6 issues per year!

ad_login_admin.indd 1 8/26/15 1:06 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

More craft.
Less cruft.

The LISA conference is where IT operations professionals, site reliability
engineers, system administrators, architects, software engineers, and
 researchers come together, discuss, and gain real-world knowledge
about designing, building, and maintaining the critical systems of our
interconnected world.

LISA15 will feature talks and training from:

 Mikey Dickerson, U.S. Digital Service
 Nick Feamster, Princeton University
 Matt Harrison, Python/Data Science Trainer, Metasnake
 Elizabeth Joseph, Hewlett-Packard
 Tom Limoncelli, SRE, Stack Exchange, Inc
 Dinah McNutt, Google, Inc.
 James Mickens, Harvard University
 Chris Soghoian, American Civil Liberties Union
 John Willis, Docker

EARLY BIRD DISCOUNT
REGISTER BY OCTOBER 15, 2015

usenix.org/lisa15

Nov. 8–13, 2015
Washington, D.C.

Sponsored by USENIX in cooperation with LOPSA

https://www.usenix.org/conference/lisa15

	Cover
	Upcoming Events
	Contents
	Musings
	The Rise and Fall of the Operating System
	Trading Latency for Performance in Data-Intensive Applications
	Thread and Memory Placement on NUMA Systems: Asymmetry Matters
	An Introduction to Be-trees and Write-Optimization
	It’s Time to End Monolithic Apps forConnected Devices
	How Kubernetes Changes Operations
	Being an On-Call Engineer: A Google SRE Perspective
	/var/log/managerHow Technical Managers Tell Time
	Workshops and Publications
	Interview with Dr. Dan Geer
	UNIX News: Volume 2, Number 10, May–June 1977
	Seeing Stars
	Practical Perl Tools: Blog, Can We Talk?
	iVoyeur: Using NCPA: Nagios Cross-Platform Agent
	For Good Measure: The Denominator
	/dev/random
	/dev/random
	USENIX Association Financial Statements for 2014

