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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org During the HotCloud ’15 workshop, I was invited to join a discussion 

group. We were supposed to decide which was better, VMs or con-
tainers. An hour later, we really hadn’t answered the question posed 

to us, but we did have some answers.

Virtual machine technology has been around since IBM developed VMs as a method for shar-
ing mainframes. That might sound funny, but mainframes in businesses were used to run 
batch jobs or long-running transaction processing applications, like managing accounts for  
a bank. Sharing the computer, even if that computer wasn’t always busy, was a side issue.

With VMs, customers could run other applications when demand by the main application 
was low. You could even run IBM’s version of UNIX, AIX, and later, Linux, providing the 
illusion of a time-sharing system that we are most familiar with. 

In the early noughts, VM technology really took off. Xen and VMware became popular ways 
of sharing underused systems. And like the original IBM VMs, you could run applications 
requiring different operating systems all on the same server.

Containers
Container technology was taking off at about the same time, and the biggest users of con-
tainers were companies with clusters all running the same OS. For those uses, running one 
operating system inside of another, however stripped down, was a waste of processing power. 
Also, why run an operating system per VM when you could just have a single operating sys-
tem supporting all of your containers?

For many years, VMs were the prominent technology, with containers being used at Google 
or hosting companies. And there are both advantages and disadvantages to using containers. 
While containers were great at improving efficiency and making management easier because 
there was just one set of system software to manage, containers were not as good as VMs for 
security. That extra level of separation, eventually supported by special CPU instructions, 
really did make the combination of a hypervisor and VMs more secure than a system running 
containers using a single Linux kernel.

And those were, roughly, the results of our discussion group: that VMs were best for running 
legacy applications and for security, while containers were a packaging framework that is 
more efficient and easier to manage than VMs. But we did discuss one other technology, one 
not included in our original remit: unikernels.

The Middle Path
We had two people from Cambridge in our group, and they suggested that we should also 
consider unikernels, like MirageOS. So let’s talk about unikernels.

Where VMs are entire operating systems that happen to be running applications, and 
containers are namespaces [1] used to isolate just one application, unikernels are more like 
applications that run directly on top of a hypervisor [2]. Unikernels can be even more efficient 
than containers because instead of sharing an operating system, like containers, unikernels 

http://www.usenix.org
mailto:rik@usenix.org
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don’t have an operating system. Unikernels by design run a 
single-threaded application and rely on the hypervisor for access 
to hardware resources.

You might just be thinking that being constrained to a single 
thread can be a serious issue, and you’d be right—for some 
applications. But for many others, a single, stripped down to  
bare essentials, dedicated thread is just right. Unikernels jet-
tison almost all of the support found in traditional operating 
systems in exchange for single-minded efficiency.

The unikernel focus on doing one thing has security benefits as 
well. While VMs and containers include a whole array of applica-
tions, such as shells, administrative commands, and compilers, 
unikernels have nothing except the application and the support 
library needed by that application for communication with the 
hypervisor. Unikernels are a manifestation of least privilege and 
minimal configuration hard to achieve with VMs or containers.

And it turns out that because the security model of containers 
is weaker than that of VMs or unikernels, most people who 
use containers run containers belonging to the same security 
domain within a VM. I was surprised to learn this because 
it means that most of the gain in performance over VMs gets 
tossed for stronger security. That containers are still used at all 
speaks to how much easier it is to manage applications within 
containers as compared to entire VMs. Someone who works for 
a company that runs giant clusters mentioned that they even run 
VMs from within containers, meaning that they start with a VM 
that runs containers that run VMs. Sounds silly, but the point is 
that containers are easier to manage than VMs, and that is actu-
ally very important to people who run huge clusters.

You might be wondering why we don’t see unikernels everywhere, 
and you are right to wonder. Unikernels appear to be the best 
choice when it comes to efficiency and security for many appli-
cations. But there are some things that the unikernel people 
aren’t going to tell you.

MirageOS, with its Cambridge and Xen connections, is the best 
known of unikernels today, but there are others: LING, based on 
Erlang, and HaLVM, based on Haskell, to name two. MirageOS 
uses OCaml, a functional programming language. Erlang and 
Haskell are also functional programming languages. Functional 
programming languages have real advantages when it comes to 
security, although OCaml does not require the programmer to 
write purely functional code. Learning how to write in Haskell, 
for example, requires serious effort on the part of the program-
mer: you need to think differently, more like a mathematician, to 
become a useful functional programmer. 

The requirement of needing to be a programmer, familiar with 
functional languages, is currently a huge impediment to the suc-
cess of unikernels. Unlike VMs, which provide an environment 

that appears identical to the one that most people normally work 
with, and with containers, which focus on packaging, working 
with a unikernel today means using an application written for a 
particular unikernel technology. You can certainly do that, but 
you best be a programmer who can adopt the application of your 
choice to run in that environment.

Perhaps the easiest unikernel technology to use are rump kernels 
based on NetBSD, as the environment is POSIX and the language 
commonly used is C. Antti Kantee, one of the primary creators 
of rump kernels, has written an article in this issue arguing for 
the use of unikernels. One of his many points is that much of 
what operating systems provide us with is support needed by 
time-sharing systems. Time-sharing was a method designed for 
sharing mainframes among multiple users; today, most servers 
run applications that provide services, and their users are other 
applications, not people. Times have changed, but operating 
systems have remained the same.

Well, I am exaggerating. Operating systems haven’t remained 
quite the same. They have grown. Enormously. For example, 
Linux has grown from 123 system calls [3] in version 1 to nearly 
400 system calls for the 3.2 kernel. Microsoft Windows Server 
2012 has 1144 system calls [4]. Operating systems have become 
incredibly complex.

While researching how to run legacy code securely within Web 
browsers, Douceur et al. [5] discovered that they could run some 
desktop applications with minimal modifications while using 
just a handful of system calls. Unikernels move us closer to a 
similarly minimal environment.

The Lineup
We start out this issue with an opinion piece by Antti Kantee. 
While Kantee certainly has his own axe to grind, he also makes 
some very good points while being amusing at the same time.

Next we have an article about Grappa (no, not the liquor), a dis-
tributed shared memory framework developed by a group at the 
University of Washington, Nelson et al. The Grappa framework 
creates an abstraction of a single memory space for program-
mers seeking to develop software that works like Hadoop, Spark, 
or GraphLab. Their system also hides the latency of remote 
memory accesses by taking advantage of the parallelism inher-
ent in processing big data.

We next take a look at a different issue, also caused by non-uniform 
memory access. Lepers et al. studied how the core interconnects 
work in server-class AMD processors, and discovered that the 
bandwidth between cores in AMD chips varies tremendously. 
They developed and tested software that can determine the best 
placement for multithreaded applications, and migrate threads 
to cores with more bandwidth between them.

http://www.usenix.org
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Both of these articles are based on papers presented at USENIX 
ATC ’15. The next article was related to a FAST ’15 paper and 
presents a novel algorithm for fast inserts, deletes, and updates 
in B-trees, while providing the same level of read performance. 
B-epsilon trees trade space used for pivot keys in each node 
for space used to buffer writes, and the article by Bender et al. 
explains how the algorithm works, as well as proving it to be 
faster than B-trees for writes.

Singh et al. present Beam, part of a Microsoft project with a goal 
of collecting more useful information about certain events from 
the Internet of Things (IoT). While one type of sensor can provide 
potentially useful information, having an abstraction for multiple 
sensors can better answer a query such as “Is someone home?”

Andrea Spadaccini and Kavita Guliani continue the series of 
articles about the practices of System Resource Engineers 
(SREs) within Google. They explain how SRE teams handle  
on-call, one of the many vexing issues facing anyone who sup-
ports software services, in a way that has proven to work well 
and be fair to all participants.

Brendan Burns explains the Kubernetes (pronounced koo-ber-
net-tees) project. While Docker has made containers into an 
easy-to-use packaging system, Kubernetes focuses on managing 
the services presented by applications running in containers. 
Kubernetes presents a single IP address for a group of contain-
ers, handles load balancing, keeps the configured number of 
services running, and handles scaling and upgrades.

Andy Seely has more tips for technical managers. In this column, 
Andy explains how time management is different for managers 
(compared to sysadmins and other technical staff), and provides 
advice from his own experience on how to best manage your time.

Dave Beazley’s Python column explains some new syntax in 
Python 3.5. * and ** have been available for use in function 
arguments, where the function needs to be able to accept a vari-
able number of arguments. Version 3.5 extends how this syntax 
works, including for specifying keyword-only arguments and 
conversion of arguments.

David Blank-Edelman explains how you can get Perl to work 
with WordPress. WordPress currently has a WP-API plugin that 
might become a standard part of WordPress, and David demon-
strates how to get that plugin to work gracefully with the CRUST 
Web service.

Dave Josephsen wanted to be able to monitor the relative per-
formance of some apps on different laptops. Dave shows how to 
install and use the Nagios Cross-Platform Agent for Linux and 
Apple systems.

Dan Geer discusses the denominator of risk: when we attempt 
to calculate risk, how best to choose the number of systems at 
risk. When comparing the number of unpatched exploits to the 
number of potential targets (the denominator), knowing the 
denominator can make a huge difference.

Robert Ferrell decides to redesign the Internet for better secu-
rity, working as a non-network non-specialist.

Mark Lamourine has two book reviews this time, on The Essen-
tial Turing and Drift into Failure.

Peter Salus has written another in his series of columns on 
the history of USENIX, covering the change from having two 
Annual Tech conferences each year to having many more 
focused workshops and conferences. Salus also discusses the 
journal Computer Systems.

We conclude this issue with a portion of an interview conducted 
with Dan Geer in 2000, where he talks about why he became 
President of the USENIX Board of Directors. We included these 
statements because Geer explains both where USENIX was at 
this time (much larger) and his own remarkably insightful pro-
jections about the future he imagined 15 years ago.

Speaking of the future, I think we will continue to see both con-
tainers and VMs used on the same system. Whether unikernels 
will become as popular is still up in the air. Containers and VMs 
provide something familiar, and it is always easier for people 
to continue dealing with the familiar than to launch into the 
wilderness of the new. If support for unikernel-based applica-
tions continues to grow, these streamlined packages are likely 
to become just as popular.

Resources
[1] James Bottomley and Pavel Emelyanov, “Containers,” 
;login:, vol. 39, no. 5, October 2014: https://www.usenix.org 
/publications/login/october-2014-vol-39-no-5/containers.

[2] Unikernels: http://wiki.xenproject.org/wiki/Unikernels.

[3] Linux system calls: http://man7.org/linux/man-pages 
/man2/syscalls.2.html, http://asm.sourceforge.net/syscall 
.html.

[4] Microsoft, Supported System Calls: https://technet 
.microsoft.com/en-us/library/Cc754234.aspx.

[5] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob 
R. Lorch, Microsoft Research, “Leveraging Legacy Code to 
Deploy Desktop Applications on the Web”: http://www.usenix 
.org/events/osdi08/tech/full_papers/douceur/douceur_html 
/index.html.
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Hello,

I received an issue of ;login: magazine, “Sysadmin and Distributed 
Computing” (April 2015) while attending SouthEast LinuxFest 
(SELF) in June.  I was very impressed with your publication and 
am now thoroughly disgusted with Wired magazine.

There was a mention of a Student Programs contact program, 
and I wanted to ask if you already have a rep on the Virginia Tech 
campus.  If you have a rep, I would like to talk to them; if not, I 
would be glad to set up a Web site for USENIX info and library, 
which I can restrict to campus authorization.

I’ll also be glad to forward USENIX info to our student Linux 
Users Group, VTLUG, and the Tech Support and/or Sys Admin 
campus groups.

Denton Yoder 
Computer Systems Engineer 
Biological Systems Engineering 
Virginia Tech

Rik,

Thank you…USENIX is a great org and ;login: a great mag. When 
it arrives, I know there will be an hour coming up shortly where I 
can put on the headphones, kick back, and read about people and 
ideas that relax and educate my poor tired computational soul.  
Good things by good people working for a better Net.

Thanks, and I promise to get on the stick and start submitting. 
Cyberville here is going 90 mph and just getting warmed up. 
Look forward to seeing folks out in my neck of the woods for 
WOOT and then for LISA.

Keep the faith…

Best,  
Hal Martin 
University of Maryland, Baltimore County

Do you have a  USENIX Representative on your university or college campus?
If not, USENIX is  interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association 
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is 
always looking for academics to participate. The  program is designed for faculty who directly interact with students. We 
fund one representative from a campus at a time. In return for service as a campus representative, we offer a complimen-
tary membership and other benefits.

A campus rep’s responsibilities include:
■  Maintaining a library (online and in print) of  USENIX 

publications at your university for student use
■  Distributing calls for papers and upcoming event 

 brochures, and re-distributing informational emails 
from  USENIX

■  Encouraging students to apply for travel grants to 
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas 
of the USENIX Web site, free conference registration once a year (after one full year of service as a  Campus Representative), 
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty 
have access.

To qualify as a campus representative, you must:
■ Be full-time faculty or staff at a four-year accredited university
■  Have been a dues-paying member of USENIX for at least one full year in the past

■  Providing students who wish to join USENIX with infor-
mation and applications

■  Helping students to submit research papers to  relevant 
USENIX conferences

■  Providing USENIX with feedback and suggestions on 
how the organization can better serve students

For more information about our Student Programs, contact 
Julie Miller, Marketing Communications Manager, julie@usenix.org

http://www.usenix.org
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The Rise and Fall of the Operating System
A N T T I  K A N T E E

A n operating system is an arbitrary black box of overhead that enables 
well-behaving application programs to perform tasks that users are 
interested in. Why is there so much fuss about black boxes, and could 

we get things done with less?

Historical Perspective
Computers were expensive in the ’50s and ’60s. For example, the cost of the UNIVAC I in 
1951 was just short of a million dollars [1]. Accounting for inflation, that is approximately 
nine million dollars in today’s money. It is no wonder that personal computing had not been 
invented back then. Since it was desirable to keep millions of dollars of kit doing something 
besides idling, batch scheduling was used to feed new computations and keep idle time to a 
minimum.

As most of us intuitively know, reaching the solution of a problem is easier if you are allowed 
to stumble around with constant feedback, as compared to a situation where you must have 
holistic clairvoyance over the entire scenario before you even start. The lack of near-instant 
feedback was a problem with batch systems. You submitted a job, context switched to some-
thing else, came back the next day, context switched back to your computation, and discov-
ered the proverbial missing comma in your program.

To address the feedback problem, time-sharing was invented. Users logged into a machine 
via a teletype and got the illusion of having the whole system to themselves. The time-
sharing operating system juggled between users and programs. Thereby, poetic justice was 
administered: the computer was now the one context-switching, not the human. Going from 
running one program at a time to running multiple at the “same” time required more complex 
control infrastructure. The system had to deal with issues such as hauling programs in and 
out of memory depending on if they were running or not (swapping), scheduling the tasks 
according to some notion of fairness, and providing users with private, permanent storage 
(file systems). In other words, 50 years ago they had the key concepts of current operating 
systems figured out. What has happened since?

It’s Called Hardware Because It Makes Everything Hard
When discussing operating systems, it is all but mandatory to digress to hardware, another 
black box. After all, presenting applications with a useful interface to hardware is one of the 
main tasks of an operating system, time-sharing or otherwise. So let’s get that discussion out 
of the way first. The question is: why does hardware not inherently present a useful interface 
to itself? We have to peer into history.

I/O devices used to be simple, very simple. The intelligent bit of the system was the software 
running on the CPU. It is unlikely that manufacturers of yore desired to make I/O devices 
simpler than what they should be. The back-then available semiconductor technologies 
simply did not feasibly allow building complex I/O devices. An example of just how hopeless 
hardware used to be is the rotational delay parameter in old versions of the Berkeley Fast File 
System. That parameter controlled how far apart, rotationally speaking, blocks had to be 
written so that contiguous I/O could match the spinning of the disk. Over the years, adding 

Antti has been an open source 
OS committer for over 15 years 
and believes that code which 
works in the real world is not 
born, it is made. He is a fan 

of simplest possible solutions. Antti lives in 
Munich and can often be seen down by the 
Isar River when serious thinking is required. 
pooka@rumpkernel.org
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more processing power to storage devices became feasible, 
and we saw many changes: fictional disk geometry, I/O buffer-
ing, non-spinning disks, automated bad block tracking, etc. As 
a result of the added processing power, approaches where the 
systems software pretends it still knows the internal details of 
devices, e.g., rotational delay, are obsolete or at least faltering.

As a result of added I/O device processing power, what else is 
obsolete in the software/hardware stack? One is tempted to 
argue that everything is obsolete. The whole hardware/soft-
ware stack is bifurcated at a seemingly arbitrary position which 
made sense 30 years ago, but no longer. Your average modern 
I/O device has more computing power than most continents had 
30 years ago. Pretending that it is the same dumb device that 
needs to be programmed by flipping registers with a sharpened 
toothpick results in sad programmers and, if not broken, at 
least suboptimal drivers. Does doing 802.11 really require 30k+ 
lines of driver code (including comments), 80k+ lines of generic 
802.11 support, and a 1 MB firmware to be loaded onto the NIC? 
For comparison, the entire 4.3BSD kernel from 1986 including 
all device drivers, TCP/IP, the file system, system calls, and so 
forth is roughly 100k lines of code. How difficult can it be to join 
a network and send and receive packets? Could we make do with 
1k lines of system-side code and 1.01 MB of firmware?

The solution for hardware device drivers is to push the complex-
ity where it belongs in 2015, not where it belonged in 1965. Some 
say they would not trust hardware vendors to get complex soft-
ware right, and therefore the complexity should remain in soft-
ware running on the CPU. As long as systems software authors 
cannot get software right either, there is no huge difference in 
correctness. It is true that having most of the logic in an operat-
ing system does carry an advantage due to open source systems 
software actually being open source. Everyone who wants to 
review and adjust the 100k+ lines of code along their open source 
OS storage stack can actually do so, at least provided they have 
some years of spare time. In contrast, when hardware vendors 
claim to support “open source,” the open source drivers com-
municate with an obfuscated representation of the hardware, 
sometimes through a standard interface such as SATA AHCI or 
HD audio, so in reality the drivers reveal little of what is going on 
in the hardware.

The trustworthiness of complex I/O devices would be improved 
if hardware vendors truly understood what “open source” means: 
publishing the most understandable representation, not just any 
scraps that can be run through a compiler. Vendors might prefer 
to not understand, especially if we keep buying their hardware 
anyway. Would smart but non-open hardware be a disaster? 
We can draw some inspiration from the automobile industry. 
Over the previous 30 years, we lost the ability to fix our cars and 
tinker with them. People like to complain about the loss of that 

ability. Nobody remembers to complain about how much better 
modern cars perform when they are working as expected.

Technology should encapsulate complexity and be optimized for 
the common case, not for the worst case, even if it means we, the 
software folk, give up the illusion of being in control of hardware. 

If It Is Broken, Don’t Not Fix It
The operating system is an old concept, but is it an outdated one? 
The early time-sharing systems isolated users from other users. 
The average general purpose operating system still does a decent 
job at isolating users from each other. However, that type of 
isolation does little good in a world that does not revolve around 
people logging into a time-sharing system from a teletype. The 
increasing problem is isolating the user from herself or himself. 

Ages ago, when those who ran programs also wrote them, or at 
least had a physical interaction possibility with the people who 
did, you could be reasonably certain that a program you ran did 
not try to steal your credit card numbers. Also, back then your 
credit card information was not on the machine where you ran 
code, which may just as well be the root cause as to why nobody 
was able to steal it. These days, when you download a million 
lines of so-so trusted application code from the Internet, you 
have no idea of what happens when you run it on a traditional 
operating system.

The time-sharing system also isolates the system and hard-
ware components from the unprivileged user. In this age when 
everyone has their own hardware—virtual if not physical—that 
isolation vector is of questionable value. It is no longer a catas-
trophe if an unprivileged process binds to transport layer ports 
less than 1024. Everyone should consider reading and writing 
the network medium as unlimited due to hardware no longer 
costing a million dollars, regardless of what an operating system 
does. The case for separate system and user software compo-
nents is therefore no longer universal. Furthermore, the abstract 
interfaces that hide underlying power, especially that of modern 
I/O hardware, are insufficient for high-performance computing. 
If the interfaces were sufficient, projects looking at unleashing 
the hidden I/O power [3, 4] would not exist.

In other words, since the operating system does not protect 
the user from evil or provide powerful abstractions, it fails its 
mission in the modern world. Why do we keep on using such 
systems? Let us imagine the world of computing as a shape 
sorter. In the beginning, all holes were square: all computa-
tion was done on a million-dollar machine sitting inside of a 
mountain. Square pegs were devised to fit the holes. The advent 
of time-sharing brought better square pegs, but it did so in the 
confines of the old scenario of the mountain-machine. Then the 
world of computing diversified. We got personal computing, we 
got mobile devices, we got IoT, we got the cloud. Suddenly, we 
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had round holes, triangular holes, and the occasional trapezoid 
and rhombus. Yet, we are still fascinated by square-shaped pegs, 
and desperately try to cram them into every hole, regardless of 
whether they fit.

Why are we so fascinated with square-shaped pegs? What hap-
pens if we throw away the entire operating system? The first 
problem with that approach is, and it is a literal show-stopper, 
that applications will fail to run. Already in the late 1940s com-
putations used subroutine libraries [2]. The use of subroutine 
libraries has not diminished in the past 70 years, quite to the 
contrary. An incredible amount of application software keeping 
the Internet and the world running has been written against the 
POSIX-y interfaces offered by a selection of operating systems. 
No matter how much you do not need the obsolete features pro-
vided by the square peg operating system, you do want the appli-
cations to work. From-scratch implementations of the services 
provided by operating systems are far from trivial undertakings. 
Just implementing the 20-or-so flags for the open() call in a 
real-world-bug-compatible way is far from trivial. 

Assuming you want to run an existing libc/application stack, you 
have to keep in mind that you still have roughly 199 system calls 
to go after open(). After you are done with the system calls, you 
then have to implement the actual components that the system 
calls act as an interface to: networking, file systems, device 
drivers, etc. After all that, you are finally able to get to the most 
time-consuming bit: testing your implementation in the real 
world and fixing it to work there. In essence, we are fascinated by 
square-shaped pegs because our applications rest on the support 
provided by those pegs. That is why we are stuck in a rut and few 
remember to look at the map.

There Is No Such Thing as Number One
The guitarist Roy Buchanan was confronted with a yell from 
the audience titling him as number one. Buchanan’s response 
was: “There is no such thing as number one ... but I love you for 
thinking about it, thank you very much.” The response contains 
humble wisdom: no matter how good you are at some style(s), you 
can never be the arch master of all the arts. Similarly, in the ages 
past the mountain-machine, there is no one all-encompassing 
operating system because there are so many styles to computing. 
We need multiple solutions for multiple styles. The set presented 
below is not exhaustive but presents some variations from the 
mountain-machine style.

Starting from the simplest case, there is the embedded style case 
where you run one trust-domain on one piece of hardware. There, 
you simply need a set of subroutines (drivers) to enable your 
application to run. You do not need any code that allows the single-
user, single-application system to act like a time-sharing system 
with multiple users. Notably, the single-application system is even 

simpler and more flexible than the single-user system [5], which, 
in turn, is simpler and more flexible than the multi-user system.

Second, we have the cloud. Running entire time-sharing systems 
as the provisioning unit on the cloud was not the ticket. As a 
bootstrap mechanism it was brilliant: everything worked like 
it worked without virtualization, so the learning curve could 
be approximated as having a zero-incline. In other aspects, the 
phrase “every problem in operating systems can be solved by 
removing layers of indirection” was appropriate. The backlash 
to the resource wastage of running full operating systems was 
containers, i.e., namespace virtualization provided by a single 
time-sharing kernel. 

While containers are cheaper, the downside is the difficulty in 
making guarantees about security and isolation between guests. 
The current cloud trend is gearing towards unikernels, a term 
coined and popularized by the MirageOS project [6], where the 
idea is that you look at cloud guests just like you would look 
at single-application hardware. The hypervisor provides the 
necessary isolation and controls guest resource use. Since the 
hypervisor exposes only a simple hardware-like interface to the 
guest, it is much easier to reason about what can and should hap-
pen than it is to do so with containers. Also, the unikernel can 
be optimized for each application separately, so the model does 
not impose limiting abstractions either. Furthermore, if you can 
reasonably partition your computations so that one application 
instance requires at most one full-time core, most of the multi-
core programming performance problems simply disappear. 

We also need to address the complex general purpose desktop/
mobile case, which essentially means striking a balance between 
usability and limiting what untrusted applications can do. Virtu-
alization would provide us with isolation between applications, 
but would it provide too much isolation?

Notably, when you virtualize, it is more difficult to optimize 
resource usage, since applications do not know how to play 
along in the grand ecosystem. For the cloud, that level of general 
ignorance is not a huge problem, since you can just add another 
datacenter to your cloud.

You cannot add another datacenter into your pocket in case your 
phone uses the local hardware resources in an exceedingly slack 
manner. Time will tell if virtualization adapted for the desktop 
[7] is a good enough solution, or if more fine-grained and precise 
methods [8] are required, or if they both are the correct answer 
given more specific preconditions. Even on the desktop, the 
square peg is not the correct shape: we know that the system 
will be used by a single person and that the system does not need 
to protect the user from non-existent other users. Instead, the 
system should protect the user from malware, spyware, trojans, 
and anything else that can crawl up the network pipe.
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What We Are Doing to Improve Things
We can call them drivers, we can call them components, we can 
call them subroutines, we can call them libraries, but we need 
the pegs at the bottom of the computing stack for our applica-
tions to work. In fact, everything apart from the topmost layer of 
the software stack is a library. These days, with virtually unlim-
ited hardware, it is mostly a matter of taste whether something 
is a “system driver” or “application library.”

Rolling your own drivers is a hopeless battle. To address that 
market, we are providing componentized, reusable drivers at 
http://rumpkernel.org/. Those drivers come unmodified from 
a reputable kernel. Any approach requiring modification (aka 
porting) and maintenance induces an unbearable load for any-
thing short of the largest projects with vast amounts of developer 
resources.

Treating the software stack as a ground-up construction of 
driver components gives the freedom to address each problem 
separately, instead of trying to invent ways to make the problem 
isomorphic to a mountain-machine. Drivers lifted from a time-
sharing system will, of course, still exhibit time-sharing char-
acteristics—there is no such thing as number one with drivers 
either. For example, the TCP/IP driver will still prevent non-root 
from binding to ports less than 1024. For example, in a uniker-
nel, you are free to define what root or non-root means or simply 
compile the port check out of the driver. You can perform those 
modifications individually to suit the needs of each application. 
As a benefit, applications written for time-sharing-y, POSIX-y 
systems will not know what hit them. They will simply work 
because the drivers provide most everything that the applica-
tions expect.

We ended up building a unikernel based on the drivers offered 
by rump kernels via rumpkernel.org: Rumprun. We were not 
trying to build an OS-like layer but one day simply realized that 
we could build one which would just work, with minimal effort. 
The noteworthiness of the Rumprun unikernel does not come 
from the fact that existing software such as Nginx, PHP, and 
mpg123 can be cross-compiled in the normal fashion and then 
run directly on the cloud or on bare metal. The noteworthiness 
comes from the fact that the implementation is a few thousand 
lines of code ... plus drivers. The ratio of drivers to “operating 
system” is on the order of 100:1, so there is very little operat-
ing system in there. The Rumprun implementation is that of an 
orchestrating system, which conducts the drivers.

Conclusion
Time-sharing systems were born over 50 years ago, a period 
from which we draw our concept of the operating system. Back 
then, hardware was simple, scarce, and sacred, and those attri-
butes drove the development of the concepts of the system and 
the users. In the modern world, computing is done in a multitude 
of ways, and the case for the all-encompassing operating system 
has been watered down. Advances in semiconductor technology 
have enabled hardware to be smart, but hardware still exposes 
dumb interfaces, partially because we are afraid of smart 
hardware.

The most revered feature of the modern operating system is sup-
port for running existing applications. Minimally implemented 
application support is a few thousand lines of code plus the driv-
ers, as we demonstrated with the Rumprun unikernel. Therefore, 
there is no reason to port and cram an operating system into 
every problem space. Instead, we can split the operating system 
into the “orchestrating system” (which also has the catchy OS 
acronym going for it) and the drivers. Both have separate roles. 
The drivers define what is possible. The orchestrating system 
defines how the drivers should work and, especially, how they 
are not allowed to work. The two paths should be investigated 
relatively independently as opposed to classic systems develop-
ment where they are deeply intertwined.
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The rising importance of data-intensive applications has fueled the 
growth of a plethora of distributed computing frameworks, including 
Hadoop, Spark, and GraphLab. We have developed a system called 

Grappa [1, 2] to aid programmers in developing new frameworks. Grappa pro-
vides a distributed shared memory abstraction to hide complexity from the 
programmer, and takes advantage of parallelism in the data to hide remote 
access latency and to trade latency for more performance. These techniques 
allow it to outperform existing frameworks by up to an order of magnitude.

Data-Intensive Applications on Distributed Shared Memory
Software distributed shared memory (DSM) systems provide shared memory abstractions 
for clusters. Historically, these systems performed poorly, largely due to limited inter-node 
bandwidth, high inter-node latency, and the design decision of piggybacking on the virtual 
memory system for seamless global memory accesses. Past software DSM systems were 
largely inspired by symmetric multiprocessors, attempting to scale that programming 
mindset to a cluster. However, applications were only suitable for them if they exhibited sig-
nificant locality, limited sharing, and coarse-grained synchronization—a poor fit for many 
modern data-intensive applications.

DSM offers the promise of simpler implementations of data-intensive application frame-
works. Figure 1 shows a minimal example of a “word count”-like application in actual Grappa 
DSM code. The input array, chars, and output hash table, cells, are distributed over multiple 
nodes. A parallel loop runs on all nodes to process shards of the input array, hashing each key 
to its cell and incrementing the corresponding count atomically. The code looks similar to 
plain shared-memory code, yet it spans multiple nodes and scales efficiently.

Applying the DSM concept to common data-intensive computing frameworks is similarly 
straightforward:

MapReduce. Data parallel operations like Map and Reduce are simple to think of in terms 
of shared memory. Map is simply a parallel loop over the input (an array or other distributed 
data structure). It produces intermediate results into a hash table similar to that in Figure 1. 
Reduce is a parallel loop over all the keys in the hash table.

Vertex-centric. GraphLab/PowerGraph is an example of a vertex-centric execution model, 
designed for implementing machine-learning and graph-based applications. Its three-phase 
gather-apply-scatter (GAS) API for vertex programs enables several optimizations pertinent 
to natural graphs. Such graphs are difficult to partition well, so algorithms traversing them 
exhibit poor locality. Each phase can be implemented as a parallel loop over vertices, but 
fetching each vertex’s neighbors results in many fine-grained data requests.

Relational query execution. Decision support, often in the form of relational queries, is 
an important domain of data-intensive workloads. All data is kept in hash tables stored in a 
DSM. Communication comes from inserting into and looking up in hash tables. One parallel 
loop builds a hash table, followed by a second parallel loop that filters and probes the hash 
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table, producing the results. These steps rely heavily on consistent, fine-grained updates to 
hash tables. 

While these frameworks are easy to express conceptually in a DSM system, obtaining good 
performance can be challenging for a number of reasons:

Small messages. Programs written to a shared memory model tend to access small pieces 
of data. On a DSM system this requires communication. What were simple load or store 
operations become implicit, complex transactions involving the network. When these mes-
sages are small (~32 bytes), the network (optimized for multi-kilobyte packets) struggles to 
achieve a fraction of its peak throughput.

Poor locality. Data-intensive applications often exhibit poor locality. For example, the vol-
ume of communication in GraphLab’s gather and scatter operations is a function of the graph 
partition. Complex graphs frustrate even the most advanced partitioning schemes. This 
leads to poor spatial locality. Moreover, which vertices are accessed varies from iteration to 
iteration. This leads to poor temporal locality.

Need for fine-grained synchronization. Typical data-parallel applications offer coarse-
grained concurrency with infrequent synchronization—e.g., between phases of processing 
a large chunk of data. Conversely, graph-parallel applications exhibit fine-grained concur-
rency with frequent synchronization—e.g., when done processing work associated with a 
single vertex. Therefore, for a DSM solution to be general, it needs to support fine-grained 
synchronization efficiently.

Fortunately, data-intensive applications have properties that can be exploited to make DSMs 
efficient: their abundant data parallelism enables high degrees of concurrency; and their 
performance depends not on the latency of execution of any specific parallel task, as it  
would in, for example, a Web server, but rather on the aggregate execution time (i.e., through-
put) of all tasks.

Grappa Design
Figure 2 shows an overview of Grappa’s DSM system. We will first describe the multithread-
ing and communication layers and then explore the distributed shared memory layer, which 
is built on top of these lower-level components. Our recent USENIX ATC paper [2] describes 
these in more detail.

Expressing and Exploiting Parallelism
Work is most commonly expressed in Grappa using parallel for loops. Tasks may also be 
spawned individually, with optional data locality constraints. Under the hood, both methods 
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Global Heap

Local heap

"a" 7

"g" 2

Cell[2] Cell[5]Cell[3] Cell[4]Cell[1]Cell[0]

Node 0 Node 1 Node 2 ...

...
"h""g""d""c""x""c""o" "b""q" "p""i""a"

"b" 1

"o" 1

"i" 5

"c" 3

"e" 1 "f" 2

"l" 1

// distributed input array

GlobalAddress<char> chars = load_input();

// distributed hash table:

using Cell = std::map<char,int>;

GlobalAddress<Cell> cells = global_alloc<Cell>(ncells);

forall(chars, nchars, [=](char& c) {

  // hash the char to determine destination

  size_t idx = hash(c) % ncells;

  delegate(&cells[idx], [=](Cell& cell)

  { // runs atomically

    if (cell.count(c) == 0) cell[c] = 1;

    else cell[c] += 1;

  });

});

hash("i")

Figure 1: “Character count” with a simple hash table implemented using Grappa’s distributed shared memory
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work by pushing closures into a global task pool. These closures 
are generally expressed using C++11 lambda constructs to pro-
vide both code to execute and initial state. Tasks are executed 
by idle threads on cores across the system, which pull from the 
global task queue subject to the tasks’ locality constraints. When 
a task executes a long-latency operation, it is suspended until the 
operation is complete; the core it is running on is kept busy with 
other, independent, work.

Grappa is built around a user level, cooperative multithreading 
system. Due to the large inter-node latencies that must be toler-
ated in a distributed system like Grappa, the scheduler is built to 
support on the order of 1000 concurrent threads per core. We do 
this by storing and switching minimal context for threads, and 
by prefetching thread contexts into cache before switching to 
them, thereby enabling context switches to happen at a rate lim-
ited only by DRAM bandwidth, rather than cache miss latency.

Communication Support
Grappa’s communication layer has two components. The upper 
(user-level) layer is designed to support sending very small mes-
sages—tens of bytes—at a high rate, with low memory overhead. 
We use an asynchronous active message approach: the sender 
creates a message holding a C++11 lambda or other closure, and 
the receiver executes the closure. We take advantage of the fact 
that our homogeneous cluster hardware runs the same binary 
in every process: each message consists of a template-generated 
deserializer pointer, a byte-for-byte copy of the closure, and an 
optional dynamically sized data payload.

At the lower (network) level, Grappa moves these small messages 
over the network efficiently by transparently aggregating inde-
pendent messages destined for common network destinations. 
This process, shown in Figure 3, works as follows. When a com-
pute task sends a message, the data is not immediately placed on 
the network but instead is stored in a per-core buffer. A com-

munication task runs periodically; when it finds a large group 
of messages headed for the same node, or messages that have 
been waiting for a long time, it serializes them into a single, large 
network packet, which it sends to the destination node. When 
the remote node receives the packet, it distributes the messages 
to their destination cores, where messages are deserialized and 
their handlers are executed.

Grappa uses RDMA to move messages, but only indirectly. 
User-level messages are created using non-temporal memory 
operations and prefetches to avoid cache pollution. Aggregated 
messages are moved between nodes using MPI for portability, 
tuned to use RDMA when available. By amortizing network 
invocation costs across many messages, we are able to obtain 
significantly better performance than using native RDMA 
operations: on a simple random-access benchmark, Grappa’s 
DSM operations performed atomic increments 25 times faster 
than native RDMA increments on our 128-node AMD Interlagos 
cluster connected with 40 Gb Mellanox ConnectX-2 InfiniBand 
cards.

Addressing in Grappa’s Distributed Shared Memory
In Grappa, memory is partitioned across cores; each byte is 
considered local to a single core within a node in the system. 
Accesses to local memory occur through conventional pointers. 
Local pointers cannot refer to memory on other cores; they are 
valid only on their home core. Local accesses are used to refer-
ence many things in Grappa, including the stack associated with 
a task, scheduling and debugging data structures, and the slice of 
global memory local to a core.

Accesses to non-local memory occur through global pointers. 
Grappa allows any local data on a core’s stacks or heap to be 
exported to the global address space and made accessible to 
other cores across the system. This uses a partitioned global 
address space (PGAS) model, where each address is a tuple of a 
core ID and an address local to that core.

Memory

Cores

Infiniband network, user level access

...

Memory

Cores

Memory

Cores

Memory

Cores

Message aggregation layer

Distributed 
Shared 
Memory

Lightweight 
Multihreading w/
Global Task Pool

Communication
Layer

MapReduce GraphLab
Relational 

Query  
Engine

Irregular 
apps, native 
code, etc...

Core 0

Messages lists
aggregated

locally per core

Sending core
serializes
into buffer

Buffer moved
over network

via MPI/RDMA

Receiving core
distributes 
messages

to dest. cores

Messages
deserialized; 
handlers run

on home cores

Core 1

Core 0

Core 1

Node 0 Node n

Figure 2: Grappa’s distributed shared memory abstraction is designed 
to make it easy to implement data-intensive application frameworks. It 
uses lightweight threads to tolerate remote access latencies by exploiting 
fine-grained parallelism in the data, and it transparently aggregates small 
messages into larger ones to improve communication performance.

Figure 3: Grappa achieves high throughput for small messages by auto
matically batching messages with a common destination in order to move 
larger packets over the network, amortizing network invocation and 
delivery costs over multiple messages.
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Grappa also supports symmetric allocations, which reserves 
space for a copy of an object on every core in the system. The 
behavior is identical to performing a local allocation on all cores, 
but the local addresses of all the allocations are guaranteed to 
be identical. Symmetric objects are often treated as a proxy for 
a global object, holding local copies of constant data, or allowing 
operations to be transparently buffered. A separate publication 
[3] describes how this was used to implement Grappa’s synchro-
nized global data structures, including vector and hash map.

Figure 4 shows an example of how global, local, and symmetric 
memory can all be used together for a simple graph data struc-
ture. In this example, vertices are allocated from the global heap, 
automatically distributing them across nodes. Symmetric point-
ers are used to access local objects which hold information about 
the graph, such as the base pointer to the vertices, from any core 
without communication. Finally, each vertex holds a vector of 
edges allocated from their core’s local heap, which other cores 
can access by going through the vertex.

Accessing Memory with Delegate Operations
Access to Grappa’s distributed shared memory is provided 
through delegate operations, which are short operations per-
formed at a memory location’s home core. When the data access 
pattern has low locality, it is more efficient to modify the data on 
its home core rather than bringing a copy to the requesting core 
and returning a modified version. While delegates can trivially 
implement read/write operations to global memory, they can also 
implement more complex read-modify-write and synchroniza-
tion operations (e.g., fetch-and-add, mutex acquire, queue insert).

We have explored two approaches for expressing delegate opera-
tions. In the first, the programmer calls functions in Grappa’s 
API—a change from the traditional DSM model. Generally, these 
delegates are expressed as C++11 lambdas or other closures; Fig-
ure 5 shows an example. The second approach uses a compiler 
pass implemented with LLVM to automatically identify and 
extract productive delegate operations from ordinary code; this 
approach is explored in another publication [4]. In practice, we 
usually use the library-based approach, since exploiting avail-

able locality is important for getting maximum performance in a 
distributed system, and writing explicit delegate operations is an 
easy way to express that locality.

Delegates and Memory Consistency
Memory consistency and efficient synchronization are a result 
of delegation in Grappa.

All sharing, whether between cores within a node or between 
two nodes, as well as synchronization, is done via delegate opera-
tions. A delegate operation can execute arbitrary code subject to 
two restrictions: first, the code can reference only data local to 
the core on which the delegate is executing; and second, the code 
may not execute operations that lead to a context switch.

Since delegate operations execute on a particular core in some 
serial order and only touch data owned by that core, they are 
guaranteed to be globally linearizable, with their updates visible 
to all cores across the system in the same order. In addition, 
only one synchronous delegate will be in flight at a time from a 
particular task, so synchronization operations from a particular 
task are not subject to reordering. Moreover, once one core is able 
to see an update from a synchronous delegate, all other cores 
are too. Consequently, all synchronization operations execute in 
program order and are made visible in the same order to all cores 
in the system. These properties are sufficient to guarantee a 
memory model that offers sequential consistency for data-race-
free programs, which is what underpins C/C++.

The synchronous property of delegates provides a clean model 
but can be overly restrictive for operations that are protected by 
collective synchronization like a global barrier. For such cases, 
we also support asynchronous delegates, which, like delegate 
operations, execute non-blocking regions of code atomically on 
a single core’s memory. Asynchronous delegates are treated as 
task spawns in the memory model and are generally linked with 
a collective synchronization operation to detect completion.
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Figure 4: Using global addressing for graph layout
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GlobalAddress<int> A = global_alloc<int>(N);

forall(0, N, [A](int i) {

  int j = random(i) % N;

  delegate( A + j, [](int& A_j){

    A_j += 1;

  });

});

[](int& A_j){

 A_j += 1;

}

move execution

notify completion

Node 0 Node 2Node 1

Figure 5: Grappa delegate example

http://www.usenix.org


14    O C TO B ER 20 1 5   VO L .  4 0,  N O.  5 	 www.usenix.org

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

Measuring Performance with Prototype Applica-
tion Frameworks
We implemented three prototype application frameworks in 
Grappa. The first is an in-memory MapReduce implementation, 
which we compared with Spark [5] with fault tolerance disabled. 
The second is a distributed backend for the Raco relational alge-
bra compiler and optimization framework [6], which we com-
pared with Shark [7]. The third is a vertex-centric programming 
framework in the spirit of GraphLab [8], which we compare with 
native GraphLab.

The full performance results are reported in our USENIX ATC 
paper [2]; here we provide a brief summary. On the cluster men-
tioned previously, we found the Grappa MapReduce implemen-
tation to be 10 times faster than Spark on a k-means clustering 
benchmark. The Grappa query processing engine was 12.5 
times faster than Shark on the SP2Bench benchmark suite [9]. 
The Grappa vertex-centric framework was 1.33 times faster than 
GraphLab on graph analytics benchmarks from the GraphBench 
suite [10].

Conclusion
Our work builds on the premise that writing data-intensive 
applications and frameworks in a shared memory environment 
is simpler than developing custom infrastructure from scratch. 
Based on this premise, we show that a DSM system can be effi-
cient for this application space by judiciously exploiting the key 
application characteristics of concurrency and latency tolerance. 
Our work demonstrates that frameworks such as MapReduce, 
vertex-centric computation, and query execution can be easy to 
build and are efficient in a DSM system.

Acknowledgments
This work was supported by NSF Grant CCF-1335466, Pacific 
Northwest National Laboratory and gifts from NetApp and 
Oracle.

References
[1] Grappa Web site and source code: http://grappa.io/.

[2] Jacob Nelson, Brandon Holt, Brandon Myers, Preston 
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin, “Latency-
Tolerant Software Distributed Shared Memory,” in Pro-
ceedings of the 2015 USENIX Annual Technical Conference 
(USENIX ATC ’15), Santa Clara, CA.

[3] Brandon Holt, Jacob Nelson, Brandon Myers, Preston  
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin, “Flat 
Combining Synchronized Global Data Structures,” Interna-
tional Conference on PGAS Programming Models (PGAS), 
October 2013.

[4] Brandon Holt, Preston Briggs, Luis Ceze, and Mark Oskin, 
“Alembic: Automatic Locality Extraction via Migration,” in 
Proceedings of the 2014 ACM International Conference on 
Object Oriented Programming Systems Languages and Appli-
cations (OOPSLA ’14), 2014.

[5] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, 
Scott Shenker, and Ion Stoica, “Spark: Cluster Computing 
with Working Sets,” in Proceedings of the 2nd USENIX Confer-
ence on Hot Topics in Cloud Computing (HotCloud ’10), 2010.

[6] Raco: The relational algebra compiler: https://github.com 
/uwescience/datalogcompiler, April 2014.

[7] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J.  
Franklin, Scott Shenker, and Ion Stoica, “Shark: SQL and  
Rich Analytics at Scale,” in Proceedings of the 2013 ACM 
SIGMOD International Conference on Management of Data 
(SIGMOD ’13), 2013.

[8] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny 
Bickson, and Carlos Guestrin, “PowerGraph: Distributed 
Graph-Parallel Computation on Natural Graphs,” in Proceed-
ings of the 10th USENIX Conference on Operating Systems 
Design and Implementation (OSDI ’12), 2012.

[9] Michael Schmidt, Thomas Hornung, Georg Lausen, and 
Christoph Pinkel, “SP2Bench: A SPARQL Performance 
Benchmark,” Computing Research Repository, abs/0806.4627, 
2008.

[10] GraphBench: http://graphbench.org/, 2014.

http://www.usenix.org
http://grappa.io/
https://github.com/uwescience/datalogcompiler
http://graphbench.org/
https://github.com/uwescience/datalogcompiler


www.usenix.org	   O C TO B ER 20 1 5   VO L .  4 0,  N O.  5  15

SYSTEMS

Thread and Memory Placement on NUMA Systems
Asymmetry Matters 

B A P T I S T E  L E P E R S ,  V I V I E N  Q U É M A ,  A N D  A L E X A N D R A  F E D O R O V A

Industry uses NUMA multicore machines for its servers. On NUMA 
machines, the conventional wisdom is to place threads close to the 
memory they access, and to collocate the threads that share data on the 

same CPU nodes. However, this is often not optimal. Indeed, modern NUMA 
machines have asymmetric interconnect links between CPU nodes, which 
can strongly affect performance, with best placement outperforming worst 
placement on nodes by a factor of almost two. We present the AsymSched 
algorithm, which uses CPU performance counters to measure performance 
and dynamically migrate threads and memory to achieve the best placement.

Modern Computers Are Asymmetric
Modern multicore machines are structured as several CPU/memory nodes connected via an 
interconnect. These architectures are usually characterized by non-uniform memory access 
times (NUMA), meaning that the latency of data access depends on where (which CPU-
cache or memory node) the data is located. For this reason, the placement of threads and 
memory plays a crucial role in performance. To that end, both researchers and practitioners 
designed a variety of NUMA-aware thread and memory placement algorithms [8, 7, 5, 13, 14, 
4]. Their insight is to place threads close to their memory, to spread the memory pages across 
the system to avoid the overload on memory controllers and interconnect links, to collocate 
data-sharing threads on the same node while avoiding memory controller contention, and 
to segregate threads competing for cache and memory bandwidth on different nodes. These 
algorithms assume that the interconnect between nodes is symmetric: given any pair of 
nodes connected via a direct link, the links have the same bandwidth and the same latency. 
On modern NUMA systems this is not the case. 

Figure 1 depicts an AMD Bulldozer NUMA machine with eight nodes, each hosting eight 
cores. Interconnect links exhibit many disparities: 

1.	 Links have different bandwidths: some have 16-bit width, some have 8-bit width. 

2.	 Some links can send data faster in one direction than in the other (i.e., one side sends data at 
3/4 the speed of a 16-bit link, while the other side can only send data at the speed of an 8-bit 
link). We call these links 16/8-bit links.

3.	 Links are shared differently. For instance, the link between nodes 4 and 3 is only used by 
these two nodes, while the link between nodes 2 and 3 is shared by nodes 0, 1, 2, 3, 6, and 7.

4.	 Some links are unidirectional. For instance, node 7 sends requests directly to node 3, but 
node 3 routes its answers via node 2. This creates an asymmetry in read/write bandwidth: 
node 7 can write at 4 GB/s to node 3, but can only read at 2 GB/s.
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Impact of Asymmetry on Performance
The asymmetry of interconnect links has dramatic and at times 
surprising effects on performance. Figure 2 shows the per-
formance of 20 different applications on the 64-core machine 
shown in Figure 1. Each application runs with 24 threads, so 
it needs three nodes to run on. We vary which three nodes are 
assigned to the application and hence the connectivity between 
the nodes. The relative placement of threads and memory on 
those nodes is identical in all configurations. The only differ-
ence is how the chosen nodes are connected. The figure shows the 
performance on the best-performing and the worst-performing 
subset of nodes for that application compared to the average 
(obtained by measuring the performance on all 336 unique 
subsets of nodes and computing the mean). We make several 

observations. First, the performance on the best subset is up to 
88% faster than the average, and the performance on the worst 
subset is up to 44% slower. Second, the maximum performance 
difference between the best and the worst subsets is 237% (for 
FaceRec). Finally, the mean difference between the best and 
worst subsets is 40% and the median 14%.

We measured that the memory accesses performed by FaceRec 
are approximately 600 cycles faster when running on the best 
subset of nodes relative to the average, and 1400 cycles faster 
relative to the worst. The latency differences are tightly corre-
lated with the performance difference between configurations. 

To further understand the cause of very high latencies on “bad” 
configurations, we analyzed streamcluster, an application from 

Figure 1: Modern NUMA systems, with eight nodes. The width of links varies; some paths are unidirectional (e.g., between 7 and 3), and links may be 
shared by multiple nodes. Machine A has 64 cores (8 cores per node—not represented in the picture), and machine B has 48 cores (6 cores per node). Not 
shown in the picture: the links between nodes 4 and 1 and between nodes 2 and 7 are bidirectional on machine B. This changes the routing of requests from 
node 7 to 2 and node 1 to 4.

Figure 2: Performance difference between the best, and worst thread placement with respect to the average thread placement on Machine A. Applica-
tions run with 24 threads on three nodes. Graph500, SPECjbb, streamcluster, PCA, and FaceRec are highly affected by the choice of nodes and are shown 
separately with a different y-axis range. 
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the PARSEC [11] benchmark suite, which is among the most 
affected by the placement of its threads and memory. We ran 
streamcluster with 16 threads on two nodes. Table 1 presents 
the salient metrics for each possible two-node subset. Depend-
ing on which two nodes we chose, we observe large (up to 133%) 
disparities in performance. The data in Table 1 leads to several 
crucial observations:

◆◆ Performance is correlated with the latency of memory ac-
cesses.

◆◆ Surprisingly, the latency of memory accesses is not correlated 
with the number of hops between the nodes: some two-hop 
configurations (shown in bold) are faster than one-hop 
configurations.

◆◆ The latency of memory accesses is actually correlated with 
the bandwidth between the nodes. Note that this makes sense: 
the difference between one-hop vs. two-hop latency is only 80 
cycles when the interconnect is nearly idle. So a higher number 
of hops alone cannot explain the latency differences of thou-
sands of cycles.

As a summary, we can say that bandwidth between the nodes 
matters more than the distance between them.

Computers Are Increasingly Asymmetric
Asymmetric interconnect is not a new phenomenon. Neverthe-
less, its effects on performance are increasing as machines are 
built with more nodes and cores. We measured the performance 
of streamcluster on four different asymmetric machines: two 
recent machines with 64 and 48 cores, respectively, and eight 
nodes (Machines A and B, Figure 1), and two older machines 
with 24 and 16 cores, respectively, and four nodes (Machines C 
and D, not depicted). All of these machines use AMD Opteron 

processors. Machines A and B have highly asymmetric inter-
connect. Machines C and D have a less pronounced asymmetry. 
Machine C has full connectivity, but two of the links are slower 
than the rest. Machine D has links with equal bandwidth, but 
two nodes do not have a link between them. 

Table 2 shows the performance of streamcluster with 16 threads 
on the best-performing and the worst-performing set of nodes 
on each machine. The performance difference between the best 
and worst configurations increases with the number of cores in 
the machine: from 3% for the 16-core machine to 133% for the 
64-core machine. We explain this as follows: 

1.	 On the 16-core Machine D, the only difference between con-
figurations is the longer wire delay between the nodes that 
are not connected via a direct link. This delay is not signifi-
cant compared to the extra latency induced by bandwidth 
contention on the interconnect. 

2.	 The CPUs on 24-core Machine C have a low frequency com-
pared to the other machines. As a result, the impact of longer 
memory latency is not as pronounced. More importantly, the 
network on this machine is still a fully connected mesh, so 
there is less asymmetry than on Machines A and B. 

3.	 The 48- and 64-core Machines B and A offer a wider range 
of bandwidth configurations, which increases the difference 
between the best and the worst placements. The 64-core 
machine is more affected than the 48-core machine because 
it has more cores per node, which increases the effects of 
bandwidth contention. 

Intel machines are currently built using symmetric intercon-
nect links, but we believe that, as the number of nodes in systems 
increases, this will no longer remain true in the future.

Table 1: Performance of streamcluster executing with 16 threads on two nodes on machine A. The performance depends on the connectivity between the 
nodes on which streamcluster is executing and on the node on which the master thread is executing. Numbers in bold indicate two-hop configurations that 
are as fast or faster than some one-hop configurations.
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Machine Best Time Worst Time Difference

A (64 cores) 148s 340s 133%

B (48 cores) 149s 277s  85%

C (24 cores) 171s 229s  33%

D (16 cores) 255s 262s  3%

Table 2: Performance of streamcluster executing on two nodes on ma-
chine A, B, C, and D. The performance of streamcluster depends on the 
placement of its threads. The impact of thread placement is more impor-
tant on recent machines (A and B) than on older ones (C and D).

Handling Asymmetry: The Challenges
To take into account interconnect asymmetry, the operating 
system should choose a “good” subset of nodes for each applica-
tion. More precisely, the operating system should try, for each 
application, to place threads and memory pages on a well-
connected subset of nodes. When an application executes on 
only two nodes on a machine similar to the one used in Table 1, 
the placement on the nodes connected with the widest (16-bit) 
link is always the best because it maximizes the bandwidth and 
minimizes the latency between the nodes. However, when an 
application needs more than two nodes to run, no configura-
tion exists with 16-bit links between every pair of nodes, so the 
operating system must decide which nodes to pick. Besides, 
when there is more than one application running, the operating 
system needs to decide how to allocate the nodes among multiple 
applications. Designing such a thread and memory placement 
algorithm raises several challenges that we list below.

Nodes % Perf. Relative to Best Subset

Streamcluster SPECjbb

0, 1, 3, 4, and 7 -64% 0% (best)

2, 3, 4, 5, and 6 0% (best) -9.4%

Table 3: Performance of streamcluster and SPECjbb on two different set 
of nodes on machine A, relative to the best set of nodes for the respective 
application 

Efficient online measurement of communication patterns 
is challenging: The algorithm must measure the volume of 
CPU-to-CPU and CPU-to-memory communication for different 
threads in order to determine the best placement. This measure-
ment process must be very efficient, because it must be done 
continuously in order to adapt to phase changes. 

Changing the placement of threads and memory may incur 
high overhead: Frequent migration of threads may be costly, 
because of the associated CPU overhead, but most importantly 
because cache affinity is not preserved. Moreover, when threads 
are migrated to “better” nodes, it might be necessary to migrate 
their memory in order to avoid the overhead of remote accesses 

and overloaded memory controllers. Migrating large amounts of 
memory can be extremely costly. Thus, thread migration must be 
done in a way that minimizes memory migration. 

Accommodating multiple applications simultaneously 
is challenging: Applications have different communication 
patterns and are thus differently impacted by the connectivity 
between the nodes they run on. As an illustration, Table 3 pres-
ents the performance of streamcluster and SPECjbb executing 
on two different sets of five nodes (the best set of nodes for the 
two applications, respectively). The two applications behave dif-
ferently on these two sets of nodes: streamcluster is 64% slower 
on the best set of nodes for SPECjbb than on its own best set. 
The algorithm must, therefore, determine the best set of nodes 
for every application. Furthermore, it cannot always place each 
application on its best set of nodes, because applications may 
have conflicting preferences. 

Selecting the best placement is combinatorially difficult: 
The number of possible application placements on an eight-node 
machine is very large (e.g., 5040 possible configurations for four 
applications executing on two nodes). So, (1) it is not possible 
to try all configurations online by migrating threads and then 
choosing the best configurations, and (2) doing even the simplest 
computation involving “all possible placements” can still add a 
significant overhead to a placement algorithm.

The AsymSched Algorithm
We designed AsymSched [9], a thread and memory placement 
algorithm that takes into account the bandwidth asymmetry of 
asymmetric NUMA systems. AsymSched’s goal is to maximize the 
bandwidth for CPU-to-CPU communication, which occurs between 
threads that exchange data, and CPU-to-memory communication, 
which occurs between a CPU and a memory node upon a cache 
miss. To that end, AsymSched places threads that perform exten-
sive communication on relatively well-connected nodes, and places 
the frequently accessed memory pages such that the data requests 
are either local or travel across high-bandwidth paths. 

AsymSched is implemented as a user-level process and interacts 
with the kernel and the hardware using system calls and /proc 
file system, but could also be easily integrated with the kernel 
scheduler if needed. 

AsymSched relies on three main techniques to manage threads 
and memory:

1.	 Thread migration: changing the node where a thread is 
running 

2.	 Full memory migration: migrating all pages of an applica-
tion from one node to another 

3.	 Dynamic memory migration: migrating only the pages that 
an application actively accesses as done in [7]

http://www.usenix.org


www.usenix.org	   O C TO B ER 20 1 5   VO L .  4 0,  N O.  5  19

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

The operating principle of AsymSched is the following: Asym-
Sched continuously gathers hardware counter values on the 
number of memory requests. Every second, AsymSched takes a 
thread placement decision. Roughly speaking, it groups threads 
of the same application that share data in virtual weighted clus-
ters. The weight of a cluster represents the intensity of memory 
accesses performed between threads belonging to the cluster. 
Then AsymSched computes possible placements for all the 
clusters. A placement is an array mapping clusters to nodes. For 
each placement, AsymSched computes the maximum bandwidth 
that each cluster would receive if it were put in this placement. 
AsymSched selects the placement, ensuring that clusters with 
the highest weights will be scheduled on the nodes with the best 
connectivity. Finally, AsymSched estimates the overhead of 
memory migration induced by the new placement. If the over-
head is deemed too high, the new placement will not be applied. 
Otherwise, AsymSched performs thread and memory migration 
to apply the new placement. 

AsymSched implements two main optimizations. The first opti-
mization allows fast memory migrations. When AsymSched 
performs full memory migration, all the pages located on one 
node are migrated to another node. The applications we tested 
have large working sets (up to 15 GB per node), and migrat-
ing pages is costly. Migrating 10 GB of data using the standard 
migrate_pages system call takes 51 seconds on average, making 
the migration of large applications impractical. 

We therefore designed a new system call for memory migration. 
This system call performs memory migration without locks in 
most cases, and exploits the parallelism available on multicore 
machines. Using our system call, migrating memory between 
two nodes is on average 17x faster than using the default Linux 
system call and is only limited by the bandwidth available on 
interconnect links. Unlike the Linux system call, our system call 
can migrate memory from multiple nodes simultaneously. So if 
we are migrating the memory simultaneously between two pairs 
of nodes that do not use the same interconnect path, our system 
call will run about 34x faster.

The second optimization avoids evaluating all possible place-
ments. It is based on two observations: 

1. 	 A lot of thread placement configurations are “obviously” bad. 
For instance, when a communication-intensive application 
uses two nodes, we only consider configurations with nodes 
connected with a 16-bit link. 

2.	 Several configurations are equivalent (e.g., in the machine 
depicted in Figure 1, the bandwidth between nodes 0 and 1 
and between nodes 2 and 3 is the same). To avoid estimating 
the bandwidth of all placements, we create a hash for each 
placement. The hash is computed so that equivalent configu-
rations have the same hash. 

Using simple dynamic programming techniques, we only 
perform computations on non-equivalent configurations. Our 
optimization allows skipping between 67% and 99% of computa-
tions in all tested configurations with clusters of two, three, or 
five nodes (e.g., with four clusters of two nodes, we only evaluate 
20 configurations out of 5040).

AsymSched Assessment
We evaluated the performance achieved when using AsymSched 
on Machine A. The latter is equipped with four AMD Opteron 
6272 processors, each with two NUMA nodes and eight cores 
per node (64 cores in total). The machine has 256 GB of RAM, 
uses HyperTransport 3.0, and runs Linux 3.9. We used several 
benchmark suites: the NAS Parallel Benchmarks suite [3], which 
is composed of numeric kernels; MapReduce benchmarks from 
Metis [10]; parallel applications from PARSEC [11]; Graph500 
[1], a graph processing application with a problem size of 21; 
FaceRec from the ALPBench benchmark suite [6]; and SPECjbb 
[2] running on OpenJDK7. 

Our goal was to evaluate the impact of asymmetry-aware 
thread placement in isolation from other effects, such as those 
stemming purely from collocating threads that share data on 
the same node. Performance benefits of sharing-aware thread 
clustering are well known [13]. AsymSched clusters threads 
that share data; the Linux thread scheduler, however, does not. 
We experimentally observed that Linux performed worse than 
clustered configurations. For instance, when Graph500 and 
SPECjbb are scheduled simultaneously, both run 23% slower on 
Linux than on an average clustered placement.

Since comparing Linux to AsymSched would not be meaning-
ful because of that, we instead compare AsymSched to the best 
and the worst static placements of data-sharing thread clusters. 
When running AsymSched, thread clusters are initially placed 
on a randomly chosen set of nodes. We also compare the aver-
age performance achieved under all static placements that are 
unique in terms of connectivity. We obtain all unique static place-
ments with respect to connectivity by examining the topology 
of the machine. There are 336 placements for single-application 
scenarios and 560 placements for multi-application scenarios.

Further, we want to isolate the effects of thread placement with 
AsymSched from the effects of dynamic memory migration. To 
that end, we compare AsymSched to the subset of our algorithm 
that performs the dynamic placement of memory only, turning 
off the parts performing thread placement. 

The results are presented in Figure 3. AsymSched always per-
forms close to the best static thread placement. In a few cases 
where it does not, the difference is not statistically significant. 
For applications that produce the highest degree of contention 
on the interconnect links (streamcluster, PCA, and FaceRec), 
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AsymSched achieves much better performance than the best 
thread placement, because the dynamic memory migration com-
ponent balances memory accesses across nodes, thus reducing 
contention on interconnect links and memory controllers. 

We also observe that dynamic memory migration without the 
migration of threads is not sufficient to achieve the best perfor-
mance. More precisely, dynamic memory migration alone often 
achieves performance close to average. Moreover, it produces a 
high standard deviation for many benchmarks: the minimum 
and maximum performance often being the same as that of 
the best and worst static thread placement. For instance, on 
SPECjbb, the difference between the minimum and maximum 
performance with dynamic memory migration alone is 91%.

In contrast, AsymSched produces a very low standard deviation 
for most benchmarks. Two exceptions are is.D and SPECjbb. 
This is because in both cases, AsymSched migrates a large 
amount of memory. Both applications become memory intensive 
after an initialization phase, and AsymSched starts migrating 
memory only after the entire working set has been allocated. For 
instance, in the case of is.D, AsymSched migrates between 0 GB 
and 20 GB, depending on the initial placement of threads. 

Conclusion
Asymmetry of the interconnect in modern NUMA systems dras-
tically impacts performance. We found that the performance 
is more affected by the bandwidth between nodes than by the 
distance between them. We developed AsymSched, a new thread 
and memory placement algorithm that maximizes the band-
width for communicating threads.

As the number of nodes in NUMA machines increases, the 
interconnect is less likely to remain symmetric. We believe that 
the clustering and placement techniques used in AsymSched 
will scale and be well adapted to these machines. Indeed, with 
very simple heuristics we were able to avoid computing up to 
99% of the possible thread placements. Such optimizations will 
still likely be possible on future machines, as machines are usu-
ally made of multiple identical cores/sockets (e.g., our 64-core 
machine has four identical sockets). On machines that offer a 
wider diversity of thread placements, a possibility will be to use 
statistical approaches, such as that of Radojković et al. [12] to 
find good thread placements with a bounded overhead.

Figure 3: Performance difference between the best and worst static thread placement, dynamic memory placement, and AsymSched relative to the average 
thread placement on Machine A. Applications run with 24 threads on three nodes. 
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An Introduction to B-trees and Write-
Optimization
M I C H A E L  A .  B E N D E R ,  M A R T I N  F A R A C H - C O L T O N ,  W I L L I A M  J A N N E N ,  R O B  J O H N S O N , 
B R A D L E Y  C .  K U S Z M A U L ,  D O N A L D  E .  P O R T E R ,  J U N  Y U A N ,  A N D  Y A N G  Z H A N

A B"-tree is an example of a write-optimized data structure and can be used to organize 
on-disk storage for an application, such as a database or file system. A B"-tree provides a key-
value API, similar to a B-tree, but with better performance, particularly for inserts, range 
queries, and key-value updates. This article describes the B"-tree, compares its asymptotic 
performance to B-trees and Log-Structured Merge trees (LSM-trees), and presents real-
world performance measurements. After finishing this article, a reader should have a basic 
understanding of how a B"-tree works, its performance characteristics, how it compares to 
other key-value stores, and how to design applications to gain the most performance from a 
B"-tree.

B"-trees
B"-trees were proposed by Brodal and Fagerberg [1] as a way to demonstrate an asymptotic 
performance tradeoff curve between B-trees [2] and buffered repository trees [3]. Both data 
structures support the same operations, but a B-tree favors queries, whereas a buffered 
repository tree favors inserts.

Researchers, including the authors of this article, have recognized the practical utility of a 
B"-tree when configured to occupy the “middle ground” of this curve—realizing query per-
formance comparable to a B-tree but insert performance orders of magnitude faster than a 
B-tree. The B"-tree has since been used by both the high-performance, commercial TokuDB 
database [4] and the BetrFS research file system [5]. For the interested reader, we have cre-
ated a simple, reference implementation of a B"-tree, available at https://github.com/oscarlab 
/Be-Tree.

We first explain how the basic operations on a B"-tree work. We then give the motivation 
behind these design choices and illustrate how these choices affect the asymptotic analysis.

API and basic structure. A B"-tree is a B-tree-like search tree for organizing on-disk data, 
as illustrated in Figure 1. Both B-trees and B"-trees export a key-value store API:

◆◆ insert(k, v)

◆◆ delete(k)

◆◆ v = query(k)

◆◆ [v1, v2,…] = range-query(k1, k2)

Like a B-tree, the node size in a B"-tree is chosen to be a multiple of the underlying storage 
device’s block size. Typical B"-tree node sizes range from a few hundred kilobytes to a few 
megabytes. In both B-trees and B"-trees, internal nodes store pivot keys and child pointers, 
and leaves store key-value pairs, sorted by key. For simplicity, one can think of each key-value 
or pivot-pointer pair as being unit size; both B-trees and B"-trees can store keys and values  
of different sizes in practice. Thus, a leaf of size B holds B key-value pairs, which we call 
items below.

The distinguishing feature of a B"-tree is that internal nodes also allocate some space 
for a buffer, as shown in Figure 1. The buffer in each internal node is used to store messages, 
which encode updates that will eventually be applied to items in leaves under this node. This 
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buffer is not an in-memory data structure; it is part of the node and is written to disk, evicted 
from memory, etc., whenever the node is. The value of ", which must be between 0 and 1, is a 
tuning parameter that selects how much space internal nodes use for pivots ( ≈ B" ) and how 
much space is used as a buffer ( ≈ B − B" ).

Inserts and deletes. Insertions are encoded as “insert messages,” addressed to a particular 
key and added to the buffer of the root node of the tree. When enough messages have been 
added to a node to fill the node’s buffer, a batch of messages are flushed to one of the node’s 
children. Generally, the child with the most pending messages is selected. Over the course of 
flushing, each message is ultimately delivered to the appropriate leaf node, and the new key 
and value are added to the leaf. When a leaf node becomes too full, it splits, just as in a B-tree. 
Similar to a B-tree, when an interior node gets too many children, it splits and the messages 
in its buffer are distributed between the two new nodes.

Moving messages down the tree in batches is the key to the B"-tree’s insert performance. 
By storing newly inserted messages in a buffer near the root, a B"-tree can avoid seeking all 
over the disk to put elements in their target locations. The B"-tree only moves messages to a 
subtree when enough messages have accumulated for that subtree to amortize the I/O cost. 
Although this involves rewriting the same data multiple times, this can improve performance 
for smaller, random inserts, as our analysis in the next section shows.

B"-trees delete items by inserting “tombstone messages” into the tree. These tombstone 
messages are flushed down the tree until they reach a leaf. When a tombstone message is 
f lushed to a leaf, the B"-tree discards both the deleted item and the tombstone message. 
Thus, a deleted item, or even entire leaf node, can continue to exist until a tombstone mes-
sage reaches the leaf. Because deletes are encoded as messages, deletions are algorithmically 
very similar to insertions.

A high-performance B"-tree should detect and optimize the case where a large series of mes-
sages all go to one leaf. Suppose a series of keys are inserted that will completely fill one leaf. 
Rather than write these messages to an internal node only to immediately rewrite them to 
each node on the path from root to leaf, these messages should flush directly to the leaf, along 
with any other pending messages for that leaf. The B"-tree implementation in TokuDB and 
BetrFS includes some heuristics to avoid writing to intermediate nodes when a batch of mes-
sages are all going to a single child.

Point and range queries. Messages addressed to a key k are guaranteed to be applied to k’s 
leaf or in some buffer along the root-to-leaf path towards key k. This invariant ensures that 

Rob Johnson is a Research 
Professor at Stony Brook 
University and conducts 
research on security, big data 
algorithms, and cryptography. 

He does theoretical work with an impact on 
the real world. rob@cs.stonybrook.edu

Bradley C. Kuszmaul is a 
Research Scientist in the 
Computer Science and Artificial 
Intelligence Laboratory at the 
Massachusetts Institute of 

Technology (MIT CSAIL). His research focuses 
on performance engineering of multicore 
software as well as on data structures and 
algorithms that optimize cache and disk I/O. 
bradley@mit.edu

Donald E. Porter is an Assistant 
Professor of Computer Science 
at Stony Brook University in 
Stony Brook, New York. His 
research aims to improve 

computer system efficiency and security. In 
addition to recent work on write optimization 
in file systems, recent projects have developed 
lightweight guest operating systems for virtual 
environments, system security abstractions, 
and efficient data structures for caching. 
porter@cs.stonybrook.edu

Jun Yuan is a PhD student  
in computer science at Stony 
Brook University in Stony 
Brook, New York. Her research 
interest primarily lies in 

compiler and system security. In addition to 
write-optimized file systems, she has recently 
studied access control on the Android OS.  
junyuan@cs.stonybrook.edu

Yang Zhan is a PhD student  
in the Department of Computer 
Science at Stony Brook 
University. His research 
interests include file system 

and system performance. 
yazhan@cs.stonybrook.edu

Figure 1: A B"-tree. Each node is roughly of size B, and  controls how much of an internal node’s space 
is used for pivots (B") and how much is used for buffering pending updates (B − B"). As in a B-tree, items 
are stored in leaves, and the height of the tree is logarithmic in the total number of items (N), based on the 
branching factor (here B").
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point and range queries in a B"-tree have a similar I/O cost to a 
B-tree.

In both a B-tree and a B"-tree, a point query visits each node 
from the root to the correct leaf. However, in a B"-tree, answer-
ing a query also means checking the buffers in nodes on this path 
for messages, and applying relevant messages before returning 
the results of the query. For example, if a query for key k finds an 
entry (k,v) in a leaf and a tombstone message for k in the buffer 
of an internal node, then the query will return “NOT FOUND”, 
since the entry for key k has been logically deleted from the tree. 
Note that the query need not update the leaf in this case—it will 
eventually be updated when the tombstone message is flushed 
to the leaf. A range query is similar to a point query, except 
that messages for the entire range of keys must be checked and 
applied as the appropriate subtree is traversed.

In order to make searching and inserting into buffers efficient, 
the message buffers within each node are typically organized 
into a balanced binary search tree, such as a red-black tree. 
Messages in the buffer are sorted by their target key, followed by 
timestamp. The timestamp ensures that messages are applied 
in the correct order. Thus, inserting a message into a buffer, 
searching within a buffer, and f lushing from one buffer to 
another are all fast.

Performance Analysis
We analyze the behavior of B-trees, B"-trees, and LSM-trees in 
this article in terms of I/Os. Our primary interest is in data sets 
too large to fit into RAM. Thus, the first-order performance 
impact is how many I/O requests must be issued to complete 
each operation. In the algorithms literature, this is known as 
the disk-access-machine (DAM) model, the external-memory 
model, or the I/O model [6].

Performance model. In order to compare B-trees and B"-trees in 
a single framework, we make a few simplifying assumptions. We 
assume that all key-value pairs are the same size and that each 
node in the tree can hold B key-value pairs. The entire tree 
stores N key-value pairs. We also assume that each node  
can be accessed with a single I/O transaction—i.e., on a rotat-
ing disk, the node is stored contiguously and requires only one 
random seek.

This model focuses on the principal performance characteris-
tics of a block storage device, such as a hard drive or SSD. For 
instance, on a hard drive, this model captures the latency of a 
random seek to read a node. In the case of an SSD, the model 
captures the I/O bandwidth costs, i.e., the number of blocks that 
must be read or written from the device per operation. Regard-
less of whether the device is bandwidth or latency bound, for a 
given node size B, minimizing the number of nodes accessed 
minimizes both bandwidth and latency costs.

B"-tree I/O performance. Table 1 lists the asymptotic 
complexities of each operation in a B-tree and B"-tree. We will 
explain upserts and epsilon ("), as well as how they affect per-
formance, later in the article. For this discussion, note that " is 
a tuning parameter between 0 and 1; " is generally set at design 
time and becomes a constant in the analysis.

The point-query complexities of a B-tree and a B"-tree are both 
logarithmic in the number of items (O(logB  N)); a B"-tree adds 
a constant overhead of 1/". Compared to a B-tree with the same 
node size, a B"-tree reduces the fanout from B to B", making the 
tree taller by a factor of 1/". Thus, for example, querying a B"-tree 
where " = 1/2 will require, at most, twice as many I/Os.

Range queries incur a logarithmic search cost for the first key, as 
well as a cost that is proportional to the size of the range and how 
many disk blocks the range is distributed across. The scan cost is 
roughly the number of keys read (k) divided by the block size (B). 
The total cost of a range query is O(k/B + logB  N) I/Os. 

Compared to a B-tree, batching messages divides the insertion 
cost by the batch size (B1−"). For example, if B = 1024 and " = 1/2, a 
B"-tree can perform inserts = 16 times faster 
than a B-tree.

Write optimization. Batching small, random inserts is an 
essential feature of write-optimized data structures (WODS), 
such as a B"-tree or LSM-tree. Although a WODS may issue a 
small write multiple times as a message moves down the tree, 
once the I/O cost is divided among a large batch, the cost per 
insert or delete is much smaller than one I/O per operation. In 
contrast, a workload of random inserts to a B-tree requires a 
minimum of one I/O per insert—to write the new element to its 
target leaf.

The B"-tree flushing strategy is designed to ensure that it can 
always move elements in large batches. Messages are only 
flushed to a child when the buffer of a node is full, containing 
B − B" ≈ B messages. When a buffer is flushed, not all messages 
are necessarily flushed—messages are only flushed to children 
with enough pending messages to offset the cost of rewriting the 
parent and child nodes. Specifically, at least (B − B")/B" ≈ B1−" 
messages are moved from the parent’s buffer to the child’s on 
each flush. Consequently, any node in a B"-tree is only rewritten 
if a sufficiently large portion of the node will change.

Caching. Most systems cache a subset of the tree in RAM. With 
an LRU replacement policy, accesses to the top of the tree are 
likely to hit in the cache, whereas accesses to leaves and “lower 
nodes” will more commonly miss. Thus, when the cache is warm, 
the actual cost of a search may be much less than O(logB N) I/Os. 
For both B-trees and B"-trees, if only the leaves are out-of-cache, 
point queries and updates require a single I/O, whereas a range 
query has an I/O cost that is linear in the number of leaves read.
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The Impact of Node Size (B) on Performance
B-trees have small nodes to balance the cost of insertions 
and range queries. B-tree implementations face a tradeoff 
between update and range-query performance. A larger node size 
B favors range queries, and a smaller node size favors inserts and 
deletes. Larger nodes help range-query performance because 
the I/O costs, such as seeks, can be amortized over more data. 
However, larger nodes make updates more expensive because a 
leaf node and possibly internal nodes must be completely rewrit-
ten each time a new item is added to the index, and larger nodes 
mean more to rewrite.

Thus, many B-tree implementations use small nodes (tens to 
hundreds of KB), resulting in sub-optimal range-query perfor-
mance. As free space on disk becomes fragmented, B-tree nodes 
may also become scattered on disk; this is sometimes called 
aging. Now a range query must seek for each leaf in the scan, 
resulting in poor bandwidth utilization.

For example, with 4 KB nodes stored on a disk with a 5 ms seek 
time and 100 MB/s bandwidth, updating a single key only 
rewrites 4 KB. Range queries, however, must perform a seek for 
each 4 KB leaf node, resulting in a net bandwidth of 800 KB/s, 
less than 1% of the disk’s potential bandwidth.

B"-trees have efficient updates and range queries even 
when nodes are large. In contrast, batching in a B"-tree allows 
B to be much larger in a B"-tree than in a B-tree. In a B"-tree the 
bandwidth cost per insert is , which grows much more 
slowly as B increases. As a result, B"-trees use node sizes of a few 
hundred kilobytes to a few megabytes.

By using large B, B"-trees can perform range queries at near 
disk bandwidth. For example, a B"-tree using 4 MB nodes need 
perform only one seek for every 4 MB of data it returns, yielding 
a net bandwidth of over 88 MB/s on the same disk as above.

In the comparison of insert complexities above, we stated that a 
B"-tree with " = 1/2 would be twice as deep as a B-tree, as some 

fanout is sacrificed for buffer space. This is only true when the 
node size is the same. Because a B"-tree can use larger nodes in 
practice, a B"-tree can still have close to the same fanout and 
height as a B-tree.

The Role of "
The parameter " in a B"-tree was originally designed to show 
that there is an optimal tradeoff curve between insert and point 
query performance. Parameter " ranges between 0 and 1. As  
we explain in the rest of this section, making " an exponent 
simplifies the asymptotic analysis and creates an interesting 
tradeoff curve.

Intuitively, the tradeoff with parameter " is how much space 
in the node is used for storing pivots and child pointers ( ≈ B") 
and how much space is used for message buffers ( ≈ B − B"). As " 
increases, so does the branching factor (B"), causing the depth of 
the tree to decrease and searches to run faster. As " decreases, 
the buffers get larger, batching more inserts for every flush and 
improving overall insert performance.

At one extreme, when " = 1, a B"-tree is just a B-tree, since interior 
nodes contain only pivot keys and child pointers. At the other 
extreme, when " = 0, a B"-tree is a binary search tree with a large 
buffer at each node, called a buffered repository tree [3].

The most interesting configurations place " strictly between 
0 and 1, such as " = 1/2. For such configurations, a B"-tree has 
the same asymptotic point query performance as a B-tree, but 
asymptotically better insert performance.

For inserts, setting " = 1/2 divides the cost by the square root of 
node size. Formally, the cost then becomes:  
Since the insert cost is divided by  selecting larger nodes 
(increasing B) can dramatically improve insert performance.

Assuming all other parameters are the same, decreasing " slows 
down point queries by a constant 1/". To see the query per-
formance for " = 1/2, evaluate the point query cost in Table 1: 

 doubling the 
number of I/Os. Changing " from 1/2 to 1/4 would 
make this a factor of 4. This cost can be offset by 
increasing B, which, as pointed out above, also 
improves insert performance.

The above analysis assumes all keys have unit size 
and that nodes can hold B keys; real systems must 
deal with variable-sized keys, so B, and hence ", 
are not fixed or known a priori. Nonetheless, the 
main insight of B"-trees—that we can speed up 
insertions by buffering items in internal nodes 
and flushing them down the tree in batches—still 
applies in this setting.

Table 1: Asymptotic I/O costs of important operations. B"-trees simultaneously support 
efficient inserts, point queries (even in the presence of upserts), and range queries. These 
complexities apply for 0  "  1. Note that " is a design-time constant. We show the com-
plexity for general " and evaluate the complexity when " is set to a typical value of 1/2. The 
1/" factor evaluates to a constant that disappears in the asymptotic analysis.
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In practice, B"-tree implementations select a fixed physical node 
size and fanout (B"). For the implementation in TokuDB and 
BetrFS, nodes are approximately 4 MB, and the branching factor 
ranges from 4 to 16. As a result, the B"-tree can always flush data 
in batches of at least 256 KB.

How to Speed up Applications by Using a B"-tree
A practical consequence of the analysis above is that a B"-tree 
can perform updates orders of magnitude faster than point 
queries. This search-insert asymmetry has two implications for 
designing applications on B"-trees.

Performance rule. Avoid query-before-update whenever 
possible.

Because of the search-insert asymmetry, the common read-mod-
ify-write (or query-modify-insert) pattern will be bound to the 
speed of a query, which is no faster in a B"-tree than in a B-tree.

Upserts. B"-trees support a new upsert operation, to help 
applications bridge this performance asymmetry. An upsert is a 
type of message that encodes an update with a callback function 
which does not require first knowing the value of the key.

Upserts can encode any modification that is asynchronous and 
depends only on the key, the old value, and some auxiliary data 
that can be stored with the upsert message. Tombstones are a 
special case of upserts. Upserts can also be used to increment a 
counter, update the access time on a file, update a user’s account 
balance after a withdrawal, and many other operations.

With upserts, an application can update the value associated 
with key k in the B"-tree by inserting an “upsert message” 
(k, ( f, ∆)) into the tree, where f is a call-back function and ∆ 
is auxiliary data specifying the update to be performed. This 
upsert message is semantically equivalent to performing a 
query followed by an insert: 

v      ! query(k); insert(k, f (v, ∆)).

However, the upsert does not perform these operations. Rather, 
the message (k, ( f, ∆)) is inserted into the tree like an insert or 
tombstone message.

When an upsert message (k, ( f, ∆)) is flushed to a leaf, the value v 
associated with k in the leaf is replaced by f (v, ∆) and the upsert 
message is discarded. If the application queries k before the 
upsert message reaches a leaf, then the upsert message is applied 
to v before the query returns.

As with any insert or delete message, multiple upserts can be 
buffered for the same key between the root and leaf. If a key is 
queried with multiple upserts pending, each upsert must be col-
lected on the path from root to leaf and applied to the key in the 
order they were inserted into the tree.

The upsert mechanism does not interfere with I/O performance 
of searches, because the upsert messages for a key k always lie on 
the search path from the root of the B"-tree to the leaf containing 
k. Thus, the upsert mechanism can accelerate updates by one to 
two orders of magnitude without slowing down queries.

Performance rule. Use insert performance to improve query 
performance by maintaining appropriate indices.

Secondary indices. In a database, secondary indices can 
greatly speed up queries. For example, consider a database 
table with three columns, k1, k2, and k3, and an application that 
sometimes performs queries using k1 and sometimes using k2. 
If the table is implemented as a B-tree sorted on k1, then queries 
using k1 are fast, but queries using k2 are extremely slow—they 
may have to scan essentially the entire database. To solve this 
problem, the table can be configured to maintain two indices—
one sorted by k1 and one sorted by k2. Queries can then use the 
appropriate index based on the type of the query.

When multiple indices are maintained with B-trees, each index 
update requires an additional insert. Because inserts are as 
expensive as a point query, maintaining an index on each column 
is often impractical. Thus, the table designer must carefully ana-
lyze factors such as the expected type of queries and distribution 
of keys in deciding which columns to index, in order to ensure 
good overall performance.

B"-trees turn these issues upside down. Indices are cheap to 
maintain. Point queries are fundamentally expensive—B"-tree 
point queries are no faster than in a B-tree. Thus, B"-tree appli-
cations should maintain whatever indices are needed to perform 
queries efficiently.

There are three rules for designing good B"-tree indices.

First, maintain indices sorted by the keys used to query the data-
base. For example, in the above example, the database should 
maintain two B"-trees—one sorted by k1 and one sorted by k2.

Second, ensure that each index has all the information required 
to answer the intended queries. For example, if the application 
looks up the k3 value using key k2, then the index sorted by k2 
should store the corresponding k3 value for each entry. In many 
databases, the secondary index contains only keys into the 
primary index. Thus, for example, a query on k2 would return 
the primary key value, k1. To obtain k3, the application has to 
perform another query in the primary index using the k1 value 
obtained from the secondary index. An index that contains all 
the information relevant to a query is called a covering index for 
that query.

Finally, design indices to enable applications to perform range 
queries whenever possible. For example, if the application wants 
to look up all entries (k1, k2, k3) for which a  k1  b, and k2 satisfies 
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some predicate, then the application should maintain a second-
ary index sorted by k1 that only contains entries for which k2 
matches the predicate.

Log-Structured Merge-Trees
Log-structured merge trees (LSM-trees) [7] are a WODS with 
many variants [8, 9]. An LSM-tree typically consists of a loga-
rithmic number of B-trees of exponentially increasing size. Once 
an index at one level fills up, it is emptied by merging it into the 
index at the next level. The factor by which each level grows is a 
tunable parameter comparable to the branching factor (B") in a 
B"-tree. For ease of comparison, Table 1 gives the I/O complexi-
ties of operations in an LSM-tree with growth factor B".

LSM-trees can be tuned to have the same insertion complexity 
as a B"-tree, but queries in a naïvely implemented LSM-tree can 
require  I/Os because the query must be repeated in 
O(logB N) B-trees. Most LSM-tree implementations use Bloom 
filters to avoid queries in all but one of the B-trees, improving 
point query performance to  I/Os.

One problem for LSM-trees is that the benefits of Bloom filters 
do not extend to range queries. Bloom filters are only designed to 
improve point queries and do not support range queries. Thus, a 
range query must be done on every level of the LSM-tree—squar-
ing the search overhead in Table 1 and yielding strictly worse 
asymptotic performance than a B"-tree or a B-tree.

A second advantage of a B"-tree over an LSM-tree is that B"-
trees can effectively use upserts, whereas upserts in an LSM-
tree will ruin the performance advantage of adding Bloom 
filters. As discussed above, upserts address a search-insert 
asymmetry common to any WODS, including LSM-trees. When 
an application uses upserts, it is possible for a message for that 
key to be present in every level of the tree containing a pending 
message for the key. Thus, a subsequent point query will still 
have to query every level of the tree, defeating the purpose of 
adding Bloom filters. Note that querying every level of an LSM-
tree also squares the overhead compared to a B"-tree or B-tree, 
and is more expensive than walking the path from root-to-leaf  
in a B"-tree.

In summary, Bloom-filter-enhanced LSM-trees can match the 
performance of B"-trees for some but not all workloads. B"-trees 
asymptotically dominate LSM-tree performance. In particular, 
B"-trees are asymptotically faster than LSM-trees for small 
range queries and point queries in upsert-intensive workloads.

Performance Comparison
To give a sense of how B"-trees perform in practice, we present 
some data from BetrFS, an in-kernel, research file system based 
on B"-trees. We compare BetrFS to other file systems, including 

Btrfs, which is built with B-trees. A more thorough evaluation 
appears in our recent FAST paper [5].

All experimental results were collected on a Dell Optiplex 790 
with a four-core 3.40 GHz Intel Core i7 CPU, 4 GB RAM, and a 
250 GB, 7200 RPM ATA disk. Each file system used a 4096-byte 
block size. The system ran Ubuntu 13.10, 64-bit, with Linux ker-
nel version 3.11.10. Each experiment compared several general-
purpose file systems, including Btrfs, ext4, XFS, and ZFS. Error 
bars and ± ranges denote 95% confidence intervals. Unless 
otherwise noted, benchmarks are cold-cache tests.

Small writes. We used the TokuBench benchmark [10] to 
create 3 million 200-byte files in a balanced directory tree 
with fanout of 128, using four threads (one per CPU). In BetrFS, 
file creations are implemented as B"-tree inserts, and small 
file writes are implemented using upserts, so this benchmark 
demonstrates the B"-tree’s performance on these two operations. 
Figure 2 shows the sustained rate of file creation in each file sys-
tem (note the log scale). In the case of ZFS, the file system crashed 
before completing the benchmark, so we reran the experiment 
five times and used data from the longest-running iteration. 
BetrFS is initially among the fastest file systems, and continues 
to perform well for the duration of the experiment. The steady-
state performance of BetrFS is an order of magnitude faster than 
the other file systems.

This performance distinction is attributable to both fewer total 
writes and fewer seeks per byte written—i.e., better aggregation 
of small writes. Based on profiling from blktrace, one major 
distinction is total bytes written: BetrFS writes 4–10x fewer 
total MB to disk, with an order of magnitude fewer total write 
requests. Among the other file systems, ext4, XFS, and ZFS 
wrote roughly the same amount of data, but realized widely 
varying underlying write throughput.

Figure 2: Sustained rate of file creation for 3 million 200-byte files, using 
four threads. Higher is better.
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Locality and directory operations. In BetrFS, fast range 
queries translate to fast large directory scans. Table 2 reports 
the time taken to run “find” and “grep -r” on the Linux 3.11.10 
source tree, starting from a cold cache. The grep test recursively 
searches the file contents for the string “cpu_to_be64”, and the 
find test searches for files named “wait.c”.

Both the find and grep benchmarks do well because file system 
data and metadata are stored in large nodes and sorted lexi-
cographically by full path. Thus, related files are stored near 
each other on disk. BetrFS also maintains a second index that 
contains only metadata, so that metadata scans can be imple-
mented as range queries. As a result, BetrFS can search direc-
tory metadata and file data one or two orders of magnitude 
faster than the other file systems.

Limitations. It is important to note that BetrFS is a still a 
research prototype and currently has three primary cases where it 
performs considerably worse than other file systems: large direc-
tory renames, large deletes, and large sequential writes (more 

details in [5]). Renames and deletes are slow because BetrFS 
does not map them directly onto B"-tree operations. Sequential 
writes are slow largely because the underlying B"-tree appends 
all data to a log before inserting it into the tree, so everything 
is written to disk at least twice. We believe these issues can be 
addressed in ongoing research and development efforts; our goal, 
supported by the asymptotic analysis, is for BetrFS to match or 
exceed the performance of other file systems on all workloads.

Conclusion
B"-tree implementations can match the search performance of 
B-trees, perform inserts and delete orders of magnitude faster, 
and execute range queries at near disk bandwidth. The design 
and implementation of B"-trees converts a tradeoff between 
update and range query costs into a mutually beneficial synergy 
between batching small updates and large nodes. Our results 
with BetrFS demonstrate that the asymptotic improvements 
of B"-trees can yield practical performance improvements 
for applications that are designed for B"-tree’s performance 
characteristics.
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R A Y M A N  P R E E T  S I N G H ,  C H E N G U A N G  S H E N ,  A M A R  P H A N I S H A Y E E ,  
A M A N  K A N S A L ,  A N D  R A T U L  M A H A J A N

The proliferation of connected sensing devices (or Internet of Things) 
can in theory enable a range of “smart” applications that make 
rich inferences about users and their environment. But in practice, 

developing such applications today is arduous because they are constructed 
as monolithic silos, tightly coupled to sensing devices, and must implement 
all data sensing and inference logic, even as devices move or are temporarily 
disconnected. We present Beam, a framework and runtime for distributed 
inference-driven applications that breaks down application silos by decou-
pling their inference logic from other functionality. It simplifies applications 
by letting them specify “what should be sensed or inferred,” without worry-
ing about “how it is sensed or inferred.” We discuss the challenges and oppor-
tunities in building such an inference framework.

Connected sensing devices such as cameras, thermostats, and in-home motion, door-window, 
energy, and water sensors, collectively dubbed the Internet of Things (IoT), are rapidly per-
meating our living environments, with an estimated 50 billion such devices projected for use 
by 2020 [2]. They enable a wide variety of applications spanning security, efficiency, health-
care, and others. Typically, these applications collect data using sensing devices to draw 
inferences about the environment or the user, and use these inferences to perform certain 
actions. For example, Nest uses motion sensor data to infer and predict home occupancy and 
adjusts the thermostat accordingly.

Most IoT applications today are being built in a monolithic way. That is, applications are 
tightly coupled to the hardware. For instance, Nest’s occupancy prediction can only be used 
with the Nest device. Applications need to implement all the data collection, inferencing, and 
user functionality-related logic. For application developers, this increases the complexity of 
development, and hinders broad distribution of their applications because the cost of deploy-
ing their specific hardware limits user adoption. For end users, each sensing device they 
install is limited to a small set of applications, even though the hardware capabilities may be 
useful for a broader set of applications. How do we break free from this monolithic and restric-
tive setting? Can we enable applications to be programmed to work seamlessly in heteroge-
neous environments with different types of connected sensors and devices, while leveraging 
devices that may only be available opportunistically, such as smartphones and tablets?

To address this problem, we start from the insight that many inferences required by applica-
tions can be drawn using multiple types of connected devices. For instance, home occupancy 
can be inferred using motion sensors (e.g., those in security systems or in Nest), cameras 
(e.g., Dropcam), microphone, smartphone GPS, or using a combination of these, since each 
may have different sources of errors. Therefore, we posit that inference logic, traditionally 
left up to applications, ought to be abstracted out as a system service. Such a service will 
relieve application developers of the burden of implementing and training commonly used 
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inferences. More importantly, it will enable applications to work using any of the sensing 
devices that the shared inference logic supports.

We surveyed and analyzed two popular application classes in detail, one that infers environ-
mental attributes and another that senses an individual user.

◆◆ Rules: A large class of applications is based on the If This Then That (IFTTT) pattern [1, 8]. 
IFTTT enables users to create their own rules that map sensed attributes to desired actions. 
We consider a particular rules application that alerts a user if a high-power appliance, e.g., 
electric oven, is left on when the home is unoccupied. This application uses the appliance-
state and home occupancy inferences.

◆◆ Quantified Self (QS) captures a popular class of applications that disaggregate a user’s daily 
routine by tracking her physical activity (walking, running, etc.), social interactions (loneli-
ness), mood (bored, focused), computer use, and more.

In analyzing these two popular classes of applications, we identify the following three key 
challenges for the proposed inference service:

1. Decouple applications, inference algorithms, and devices: Data-driven inferences 
can often be derived using data from multiple devices. Combining inputs from multiple 
devices, when available, generally leads to improved inference accuracy (often overlooked by 
developers). Figure 1 illustrates the improvement in inference accuracy for the occupancy 
and physical activity inferences, used in the Rules and Quantified Self applications, respec-
tively; 100% accuracy maps to manually logged ground truth over 28 hours.

Hence, applications should not be restricted to using a single sensor or a single inference 
algorithm. At the same time, applications should not be required to incorporate device 
discovery, handle the challenges of potentially using devices over the wide area (e.g., remote 
I/O and tolerating disconnections), use disparate device APIs, and instantiate and combine 
multiple inferences depending on available devices. Therefore, an inference framework must 
decouple (1) “what is sensed” from “how it is sensed” and (2) “what is inferred” from “how it is 
inferred.” It should require an application to only specify the desired inference, e.g., occu-
pancy (in addition to inference parameters like sampling rate and coverage), while handling 
the complexity of configuring the right devices and inference algorithms.

2. Handle environmental dynamics: Applications are often interested in tracking user 
and device mobility, and adapting their processing accordingly. For instance, the QS appli-
cation needs to track which locations a user frequents (e.g., home, office, car, gym, meeting 
room, etc.), handle intermittent connectivity, and more. Application development stands 
to be greatly simplified if the framework were to seamlessly handle such environmental 
dynamics, e.g., automatically update the selection of devices used for drawing inferences 
based on user location. Hence the QS application, potentially running on a cloud server, 
could simply subscribe to the activity inference, which would be dynamically composed of 
sub-inferences from various devices tracking a user. 

3. Optimize resource usage: Applications often involve continuous sensing and inferring, 
and hence consume varying amounts of system resources across multiple devices over time. 
Such an application must structure its sensing and inference processing across multiple 
devices, in keeping with the devices’ resource constraints. This adds undue burden on devel-
opers. For instance, in the QS application, wide area bandwidth constraints may prevent 
backhauling of high rate sensor data. Moreover, whenever possible, inferences should be 
shared across multiple applications to prevent redundant resource consumption. Therefore, 
an inference framework must not only facilitate sharing of inferences, but in doing so must 
optimize for efficient resource use (e.g., network, battery, CPU, memory, etc.) while meeting 
resource constraints.
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Beam Inference Framework
To explore the above challenges concretely, we propose Beam, an 
application framework and associated runtime for data-driven 
inference-based applications. Beam provides applications with 
inference-based programming abstractions. Applications sub-
scribe to high-level inferences, and Beam dynamically identifies 
the required sensors in the given deployment and constructs an 
appropriate inference graph. The inference graph is made up of 
modules, which are processing units that encapsulate infer-
ence algorithms; modules can use the output of other modules 
for their processing logic. The Beam runtime instantiates the 
inference graph to initiate data processing on suitable devices. 
Beam’s user-tracking service and optimizer mutate this graph 
at runtime for handling environment dynamics and for efficient 
resource usage, respectively.

Beam introduces three simple abstractions that are key to 
constructing and maintaining the inference graph. First, 
typed inference data units (IDUs) guide module composability. 

Modules can be linked to accept IDUs from other modules and 
generate IDUs. Second, channels abstract all inter-module inter-
action, allowing Beam to seamlessly migrate modules and mask 
transient disconnections when interacting modules are not col-
located. Third, coverage tags provide a flexible and low-overhead 
way to connect sensors with the right coverage characteristics 
(e.g., location, users) to applications. We describe these key 
abstractions in detail next.

Inference graphs: Inference graphs are directed acyclic 
graphs that connect sensors to applications. The nodes in this 
graph correspond to inference modules and edges correspond  
to channels that facilitate the transmission of IDUs between 
modules. Figure 2 shows an example inference graph for the 
Quantified Self application that uses eight different devices 
spread across the user’s home and office and includes mobile  
and wearable devices.

Composing an inference as a directed graph enables sharing of 
data-processing modules across applications and across modules 
that require the same input. In Beam, each compute device asso-
ciated with a user, such as a tablet, phone, PC, or home hub, has 
a part of the runtime, called the engine. Engines host inference 
graphs and interface with other engines. Figure 3 shows two 
engines, one on the user’s home hub and another on his phone; 
the inference graph for QS shown earlier is split across these 
engines, with the QS application itself running on a cloud server. 
For simplicity, we do not show other engines such as one running 
on the user’s work PC.

IDU: An inference data unit (IDU) is a typed inference, and in its 
general form is a tuple <t,s,e>, which denotes any inference with 
state information s, generated by an inference algorithm at time 
t and error e. The types of the inference state s and error e, are 
specific to the inference at hand. An example IDU is (09/23/2015 
10:10:00, occupied, 90%). Inference state s may be of a numerical 

Figure 1: Improvement in occupancy and activity inference accuracy 
by combining multiple devices. For occupancy, sensor set 1 = {camera, 
microphone} in one room and set 2 = {PC interactivity detection} in a 
second room. For physical activity, set 1 = {phone accelerometer} and set 
2 = {wrist worn FitBit}.

Figure 2: Inference graph for Quantified Self app
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type such as a double (e.g., inferred energy consumption); an 
enumerated type such as high, medium, low; or numerical types. 
Similarly, error e may specify a confidence measure (e.g., stan-
dard deviation), probability distribution, or error margin (e.g., 
radius). IDUs abstract away “what is inferred” from “how it is 
inferred.” The latter is handled by inference modules, described 
next.

Inference modules: Beam encapsulates inference algorithms 
into typed modules. Inference modules consume IDUs from 
one or more modules, perform certain computations using IDU 
data and pertinent in-memory state, and output IDUs. Special 
modules called adapters interface with underlying sensors and 
output sensor data as IDUs. Adapters decouple “what is sensed” 
from “how it is sensed.” Module developers specify the IDU 
types a module consumes, the IDU type it generates, and the 
module’s input dependency (e.g., {PIR} OR {camera AND mic}). 
Modules have complete autonomy over how and when to output 
an IDU and can maintain arbitrary internal state. For instance, 
an occupancy inference module may (1) specify input IDUs from 
microphone, camera, and motion sensor adapters, (2) allow 
multiple microphones as input, and (3) maintain internal state to 
model ambient noise.

Channels: To ease inference composition, channels link mod-
ules to each other and to applications. They encapsulate the 
complexities of connecting modules across different devices, 
including dealing with device disconnections and allowing for 
optimizations such as batching IDU transfers for efficiency. 
Every channel has a single writer and a single reader module. 
Modules can have multiple input and output channels. Channels 
connecting modules on the same engine are local. Channels con-
necting modules on two different engines, across a local or wide 
area network, are remote channels. They enable applications and 

inference modules to seamlessly use remote devices or remote 
inference modules.

Coverage tags: Coverage tags help manage sensor coverage. 
Each adapter is associated with a set of coverage tags that 
describe what the sensor is sensing. For example, a location 
string tag can indicate a coverage area such as “home,” and a 
remote monitoring application can use this tag to request an 
occupancy inference for this coverage area. Coverage tags are 
strongly typed. Beam uses tag types only to differentiate tags 
and does not dictate tag semantics. This allows applications 
complete flexibility in defining new tag types. Tags are assigned 
to adapters at setup time using inputs from the user, and are 
updated at runtime to handle dynamics.

Beam’s runtime also consists of a coordinator, which interfaces 
with all engines in a deployment and runs on a server that is 
reachable from all engines. The coordinator maintains remote 
channel buffers to support reader or writer disconnections (typi-
cal for mobile devices). It also provides a place to reliably store 
state of inference graphs at runtime while being resistant to 
engine crashes and disconnections. The coordinator is also used 
to maintain reference time across all engines. Engines interface 
with the coordinator using a persistent Web-socket connection, 
and instantiate and manage local parts of an inference graph(s).

Beam Runtime
Beam creates or updates inference graphs when applications 
request inferences, mutates the inference graphs appropriately 
to handle environmental dynamics, and optimizes resource 
usage. 

Inference graph creation: An application may run on any user 
device, and the sensors required for a requested inference may 
be spread across devices. Applications request their local Beam 

Figure 3: An overview of different components in an example Beam deployment with two engines
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engine for all inferences they require. All application requests 
are forwarded to the coordinator, which uses the requested 
inference to look up the required module. It recursively resolves 
all required inputs of that module (as per its specification) and 
reuses matching modules that are already running. The coordi-
nator maintains a set of such inference graphs as an incarnation. 
The coordinator determines where each module in the inference 
graph should run and formulates the new incarnation. The coor-
dinator initializes buffers for remote channels, and partitions 
the inference graphs into engine-specific subgraphs, which are 
sent to the engines.

Engines receive their respective subgraphs, compare each 
received subgraph to existing ones, and update them by termi-
nating deleted channels and modules, initializing new ones, and 
changing channel delivery modes and module sampling rates 
as needed. Engines ensure that exactly one inference module of 
each type with a given coverage tag is created.

Inference delivery and guarantees: For each inference 
request, Beam returns a channel to the application. The infer-
ence request consists of (1) required inference type or module, 
(2) delivery mode, (3) coverage tags, and (4) sampling require-
ments (optional).

Delivery mode is a channel property that captures data trans-
port optimizations. For instance, in the fresh push mode, an IDU 
is delivered as soon as the writer-module generates it, while 
in the lazy push mode, the reader chooses to receive IDUs in 

batches, thus amortizing network transfer costs from battery-
limited devices. Remote channels provide IDU delivery in the 
face of device disconnections by using buffers at the coordina-
tor and the writer engine. Channel readers are guaranteed (1) 
no duplicate IDU delivery and (2) FIFO delivery based on IDU 
timestamps. Currently, remote channels use the drop-tail policy 
to minimize wide-area data transfers in the event of a discon-
nected/lazy reader. This means that when a reader reconnects 
after a long disconnection, it first receives old inference values 
followed by more recent ones. A drop-head policy may be adopted 
to circumvent this, at the cost of increased data transfers.

When requesting inferences, applications use tags to specify 
coverage requirements. Furthermore, an application may specify 
sampling requirements as a latency value that it can tolerate in 
detecting the change of state for an inference (e.g., walking peri-
ods of more than one minute). This allows adapters and modules 
to temporarily halt sensing and data processing to reduce bat-
tery, network, CPU, or other resources.

Channels and modules do not persist data. Applications and 
modules may use a temporal datastore, such as Bolt [5], to make 
inferences durable.

Optimizing resource use: The Beam coordinator uses infer-
ence graphs as the basis for optimizing resource usage. The coor-
dinator reconfigures inference graphs by remapping the engine 
on which each inference module runs. Optimizations are either 
performed reactively (i.e., when an application issues/cancels an 

Function Application Description

APIs: 
Request(InferenceModule, List<Tag>, Mode, [SamplingRate])  
Request(InferenceType, List<Tag>, Mode, [SamplingRate])  
CancelRequest(InferenceModule) 

Returns a channel to specified module or to a module that outputs 
specified inference (and instantiates the inference graph) 
Delete channel to specified module, and terminate its inference 
graph

Channel APIs:  
DeliverCallback(Channel, List<IDU>) 
Start(), Stop()  

 
Receive a list of IDUs (invoked on channel reader) 
Start or stop a channel (invoked by channel reader)

Inference Module APIs:  
Initialize(ModuleSpec, [SamplingRate])  
PushToOutputChannels(IDU)  
AllOutputChannelsStopped()  
OutputChannelRestarted(Channel) 

 
Initialize the module with given specification and reporting rate 
Push inference data unit (IDU) to all output channels 
Stop sensing/processing because all output channels stopped 
Restart sensing/processing because an output channel is 
restarted

Optimizer APIs: 
UpdateGraphs(List<Graph>, List<Engine>, App, Req/Cancel, 
Module, [Mode])  
ReevaluateGraphs(List<Graph>, List<Engine>) 

 
Incorporates module request and returns updated list of infer-
ence graphs 
Returns updated list of inference graphs (new incarnation) after 
reevaluation

Table 1: Key Beam APIs: Beam offers APIs for application, inference module, and optimizer developers. Applications and inference modules use channels for 
communication. [] denotes an optional parameter.
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inference request) or proactively at periodic intervals. Beam’s 
default reactive optimization minimizes the number of remote 
channels, and proactive optimization minimizes the amount of 
data transferred over remote channels. Other potential optimi-
zations can minimize battery, CPU, and/or memory consump-
tion at engines.

When handling an inference request, the coordinator first 
incorporates the requested inference graph into the incarnation, 
reusing already running modules, and merging inference graphs 
if needed. For new modules, the coordinator decides on which 
engines they should run (by minimizing the number of remote 
channels).

Engines profile their subgraphs and report profiling data (e.g., per-
channel data rate) to the coordinator periodically. The coordinator 
annotates the incarnation using this data and periodically reeval-
uates the mapping of inference modules to engines. Beam’s default 
proactive optimization minimizes wide area data transfers.

Handling dynamics: Movement of users and devices can 
change the set of sensors that satisfy application requirements. 
For instance, consider an application that requires camera input 
from the device currently facing the user at any time, such as 
the camera on her home PC, office PC, smartphone, etc. In such 
scenarios, the inference graph needs to be updated dynami-
cally. Beam updates the coverage tags to handle such dynamics. 
Certain tags such as those of location type (e.g., “home”) can be 
assumed to be static (edited only by the user), while for certain 
other types, e.g., user, the sensed subject is mobile and hence the 
sensors that cover it may change.

The coordinator’s tracking service manages the coverage tags 
associated with adapters on various engines. The engine’s track-
ing service updates the user coverage tags as the user moves. For 
example, when the user leaves her office and arrives home, the 
tracking service removes the user tag from device adapters in 
the office, and adds them to adapters of devices deployed in the 
home. The tracking service relies on device interactions to track 
users. When a user interacts with a device, the tracking service 
appends the user’s tag to the tags of all adapters on the device.

When coverage tags change (e.g., due to user movement and 
change in sensor coverage), the coordinator recomputes the infer-
ence graphs and sends updated subgraphs to the affected engines.

Current Prototype
Our Beam prototype is implemented as a cross-platform por-
table service that supports .NET v4.5, Windows Store 8.1, and 
Windows Phone 8.1 applications. Module binaries are currently 
wrapped within the service, but may also be downloaded from 
the coordinator on demand.

APIs: Table 1 shows the APIs that Beam exposes to applica-
tion, inference module, and optimizer developers. Applica-
tions use the inference API to issue and cancel requests. Both 
inference modules and applications use the channel APIs to 
receive IDUs, and may Stop a channel to cease receiving IDUs. 
Each inference module is first initialized and provided with its 
specification and a sampling rate. It then begins its process-
ing and pushes IDUs to all its output channels. If every output 
channel of a module is stopped, Beam informs the module (via 
AllOutputChannelsStopped), allowing it to stop its sensing/
processing, thus saving resources until an output channel is 
restarted. Moreover, Beam abstracts optimization logic out of 
the coordinator, which allows modular replacement of proac-
tive and reactive optimizers. Table 1 shows the inference graph 
management APIs that optimizers should implement to inter-
face with Beam.

Inferences: We have implemented eight inference modules 
(mic-occupancy, camera-occupancy, appliance-use [3], occu-
pancy, PC activity [6], fitness activity [7], semantic location, and 
social-interaction) and nine adapters (tablet and PC mic, power-
meter, FitBit, GPS, accelerometer, PC interaction, PC event, and 
a HomeOS [4] adapter) to access all its device drivers.

Sample applications: We have implemented the two sample 
applications, Rules and QS, discussed earlier. Applications run 
on a cloud VM; Beam hosts the respective inference modules 
across the user’s home PC, work PC, and phone.

Figure 4 compares the source lines of application code (SLoC) 
used in building these applications when using Beam and other 
development approaches. A monolithic approach where all sen-
sor data is backhauled to a cloud-hosted application is denoted 
by M-AC. M-CD denotes an approach where a developer divides 
inference processing into fixed components that run on a cloud 
VM and end devices. M-Lib is similar to M-CD, except that an 
inference algorithm library is used. M-Hub denotes application 
development using device abstractions provided by the OS, e.g., 

Figure 4: SLoC for different application components in the various devel-
opment approaches
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HomeOS [4]. Moreover, we categorize the measured SLoC into 
the following different categories: (1) sensor drivers (one per 
sensor type); (2) inference algorithms, feature extraction, and 
learning models; (3) any required cloud-hosted services (as per 
the development approach) such as a storage, authentication, or 
access-control service; (4) mechanisms to handle device discon-
nections; and (5) user interface components, e.g., for display-
ing results or configuring devices. Using Beam results in up to 
12x lower SLoC. Moreover, Beam’s handling of environmental 
dynamics results in up to 3x higher inference accuracy, and 
its dynamic optimizations match hand-optimized versions for 
network resource usage.

Future Directions
Our experience in building the current Beam prototype has 
raised interesting questions and helped us identify various 
directions for future work.

Beam’s current tracking service only supports tracking of users 
(through device interactions) and mobile devices. We aim to 
extend tracking support to generic objects using passive tags 
such as RFID or QR codes.

Similarly, we aim to enrich Beam’s optimizers to include optimi-
zations for battery, CPU, and memory. The key challenge in doing 
so lies in dynamically identifying the appropriate optimization 
objective (e.g., network, battery), issuing reconfigurations of 
inference graphs, while preventing hysteresis in the system.

Many in-home devices possess actuation capabilities, such as 
locks, switches, cameras, and thermostats. Applications and 
inference modules in Beam may want to use such devices. If the 
inference graph for these applications is geo-distributed, timely 
propagation and delivery of such actuation commands to the 
devices becomes important and raises interesting questions of 
what is the safe thing to do if an actuation arrives “late.”

Lastly, by virtue of its inference-driven interface, Beam enables 
better information control. A user can, in theory, directly control 
the inferences a given application can access. In contrast, exist-
ing device abstractions only allow the user to control the flow 
of device data to applications, with little understanding of what 
information is being handed over to applications. We hope to 
investigate the implications of this new capability in future work.

Conclusion
Applications today are developed as monolithic silos, tightly 
coupled to sensing devices, and need to implement extensive 
data sensing and inference logic, even as devices move or have 
intermittent connectivity. Beam presents applications with 
inference-based abstractions and (1) decouples applications, 
inference algorithms, and devices; (2) handles environmental 
dynamics; and (3) optimizes resource use for data processing 
across devices. This approach simplifies application develop-
ment, and also maximizes the utility of user-owned devices, 
thus surpassing current monolithic siloed approaches to build-
ing apps that use connected devices.
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Container cluster managers are used by many Web-scale Internet  
companies, including Google’s Borg and Omega, Facebook’s Tupper-
ware, Twitter’s Aurora, and many others. At their core, these 

container orchestration systems schedule and manage (“orchestrate”) 
collections of Linux application containers. In this article, I will explain the 
Kubernetes project.

Recently, interest in the Docker open source project has caused a significant growth in inter-
est in Linux application containers in the general developer and operations community. Due 
to this growth in interest, Google launched the Kubernetes project, which makes Google’s 
years of experience in running container clusters available to the larger world in a commu-
nity-driven, open source project. The development of these internal container cluster manag-
ers was driven by real operational needs of operating software at “Google scale,” but we have 
seen recently that their benefits apply even at a more modest scope and scale.

I illustrate how container orchestration systems change the operations tasks associated 
with running, maintaining, and upgrading highly scalable and reliable applications. At the 
heart of this change are two fundamental shifts. First, container orchestration systems 
provide and enforce significant decoupling between the layers of the serving stack: machine, 
operating system, application manager, and application code. This decoupling enables the 
development of specialized teams with agility and freedom to operate on their parts of the 
stack, thanks to separation of concerns. Second, container cluster APIs are inherently more 
application-oriented than traditional IaaS machine-centric APIs. This shift towards appli-
cation-oriented primitives makes it easy to perform operation and maintenance tasks that 
were previously complicated, brittle, or both. In this article, I show how the formal boundar-
ies introduced by containers and container cluster management enable the segmentation of 
traditional operations into multiple discrete roles.

In addition to a general discussion of container orchestration and operations, I also describe 
the Google Kubernetes container orchestrator, including the core resources in the Kuber-
netes system, and how they produce an inherently more stable, agile, and reliable foundation 
for application deployment.

Decoupling Operations Roles
Anyone who has tried to back up a trailer on a car knows that coupled, multi-component 
systems are hard to predict and control. Actions taken in one part of the system often cause 
unpredictable, user-visible problems in some other component of the system. A classic 
example might be upgrading a Web server, which includes updating the libc library, caus-
ing a database on the same machine to fail because the libc change introduces a bug that the 
database triggers.

Coupling increases the knowledge and skill set required to be a high-performing applica-
tion administrator and requires operators to fully understand their entire application stack, 
including all dependencies, in comprehensive detail. In turn, this reduces the ability of 
operations teams to specialize, prevents the acquisition of true expertise, and reduces oppor-
tunities to introduce economies of scale.
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As an example of this, in companies where every development 
team is responsible for their choice of operating system distribu-
tion (e.g., Debian or Red Hat), the operating systems in the fleet 
will inevitably be heterogeneous. Another example involves 
choosing to use SysV init vs. the systemd daemon. The result-
ing heterogeneity makes it difficult (if not impossible) to have a 
single team of administrators manage all of the machines in the 
fleet. It is also difficult to build a common set of tools and/or pro-
cesses for performing maintenance and monitoring across all of 
the operating systems in the fleet. Being unable to share tooling 
and expertise means that fleet maintenance is more expensive 
and less reliable than if a single team and set of tools could man-
age the entire fleet of machines. 

Container cluster management software makes it easier to avoid 
tight coupling, and the corresponding problems of heterogeneous 
environments, by introducing crisp boundaries and manage-
ment APIs that decouple operations into discrete roles: hard-
ware operations, kernel/OS operations, cluster operations, and 
application operations. The decoupling of these roles means that 
it is possible for each of the first three roles (hardware, kernel/
OS, and cluster) to have a single team handle operations and 
administration, which enables lower costs and higher reliability. 
For application operations, it also enables the building of special-
ized, application-specific operations teams that can be deeply 
involved in the specifics of their application. The net result is a 
complete system that makes highly reliable applications cheaper 
to build and maintain.

Hardware Operations
The hardware operations role is responsible for racking and 
stacking machines, connecting network cables between racks 
and switches, and repairing or retiring machines. In modern 
public cloud providers, these roles have been wholly outsourced 
to the cloud provider, who can provide significantly greater 
expertise and economies of scale than the average user.

Kernel/OS Operations
The interface between a Docker container image and the under-
lying operating system is the Linux kernel syscall interface. 
Because each Docker container carries with it all of its depen-
dencies (application binary, libraries, configuration files, etc.), 
it is wholly decoupled from the files that make up the machine 
image. An application developer can rely on two things from the 
kernel and operating system:

◆◆ Stability in the syscall API and operational characteristics

◆◆ A working Docker daemon

These requirements form an explicit contract between the 
kernel/OS and the applications that run on top of it. This means 
that the operations team responsible for the machine image 
(kernel, operating system able to boot the Docker daemon) can 

focus on qualifying those two generic requirements without 
understanding the details of any particular application. This 
decoupling enables release qualification, rollout, and manage-
ment of a single, homogeneous kernel/OS across an entire 
fleet of machines. In managed container services like Google 
Container Engine, this kernel/operating system qualification 
and upgrading is outsourced to the cloud provider, enabling the 
application operations team (described below) to focus entirely 
on their application. The cluster management boundary imposes 
a discipline about the APIs available to application developers, as 
well as a single, shared implementation of this API. Because the 
implementation is shared between multiple, different applica-
tions, the discipline enforced by this API also acts as a counter-
weight to the natural tendency towards entropy and differences 
between the software stack supporting different applications.

Cluster Operations
If cluster users are allowed to deploy their container applica-
tions onto specific machines, then the resulting systems will 
be too tightly coupled because the applications will inevitably 
begin to rely on the specific characteristics of the machines 
on which they run. For example, if an application is coupled to 
the machine’s network identity (hostname and IP address), the 
decoupling between application, hardware, and kernel has been 
broken. That machine cannot just be sent to repairs when the 
hardware operator determines it is failing. Nor can it be rebooted 
for an OS installation any time the OS operator decides one is 
needed. It is the container cluster manager’s goal to decouple 
containerized applications from the specifics of any particular 
machine. For example, in Kubernetes, we give each pod an IP 
address that is independent of the IP address of the machine that 
it is running on. The pod does not have access to the machine’s 
network identity. Furthermore, Kubernetes can restrict the set 
of file systems that can be mounted into a pod from the host file 
system, restricting access to things like raw block devices and 
other machine-specific hardware.

Additionally, container cluster managers, like Kubernetes, pro-
vide a declarative, programmable API that is the primary one by 
which developers schedule and deploy users’ applications onto a 
fleet of machines. Consequently, developers are decoupled from 
the details of physical machines, because their mode of interac-
tion is container and application-centric. The particular details 
of the machine that ends up running the application developer’s 
containers become an implementation detail of the underlying 
cluster manager.

Indeed, many users forget that their applications are running on 
physical (or virtual) machines at all and, instead, deal solely with 
the logical compute substrate provided by the container cluster 
API. They ask that API for a certain set of application resource 
requirements (say, two cores and 100 GB of RAM), and it is the 
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container cluster manager’s responsibility to find sufficient 
resources somewhere in the cluster and deploy the application 
onto those resources. The job of a container cluster administra-
tor is to ensure that the services that provide the container clus-
ter management API stay available and operationally healthy at 
all times.

Application Operations
Closest to the end user in these decoupled operations roles are 
application operators. These administrators are focused on man-
aging and deploying applications: for example, the Google search 
backend or Gmail frontend. These administrators develop deep 
specialized knowledge of their applications, and rely on cluster, 
kernel, and hardware operations teams to provide them the 
infrastructure they need to do their job. Transferring work that 
is unrelated to their application (e.g., kernel and OS upgrades) 
onto specialized kernel operation teams allows the application 
operation teams to develop application-specific tooling for more 
reliable management of their application. The specialization 
of application administrators on a particular application also 
means that they can develop deep technical understanding of 
the specific application software, and form significant partner-
ships with the development teams to improve the reliability and 
performance of that software.

The Kubernetes Cluster Manager
Having described how containers and cluster management 
APIs enable the decoupling of operations roles, I will now dis-
cuss some specifics of the Kubernetes API to provide a deeper 
understanding of the functionality that Kubernetes provides. 
Beginning with a description of pods, the atomic unit of schedul-
ing in the Kubernetes system and the basic building block for 
running containers in a Kubernetes cluster, I will go on to cover 
generic software patterns for building applications with pods. 
I’ll show how Kubernetes resources are organized into dynamic 
sets with labels and how those labels are used to automatically 
manage replicated microservices using Replication Controllers 
and Services.

Pods
Pods are the most fundamental API object in Kubernetes. A 
pod is a group of containers that is scheduled together onto one 
machine. All of the containers within a pod share the same 
network namespace, so the containers within a pod can easily 
find each other on “localhost.” This eliminates the need for a 
complicated discovery service (more on that later). The contain-
ers in a pod also share the same IPC namespace, which means 
that they can use traditional UNIX IPC, such as pipes. As Kuber-
netes matures, we expect that pods will come to share all of the 
available kernel namespaces, including group ID namespaces, 
process ID namespaces, and more.

Pods also encapsulate node-level health checking and reliability 
for their constituent containers. In Kubernetes, there are two 
different types of checks: 

First, each container has a liveness check. By default, this is a 
simple process-based one (“is the process running”), but it can 
be extended to include several other application-specific health 
checks: HTTP (healthy if the container endpoint returns an 
HTTP 200), TCP (healthy if a TCP socket can be opened), or exec 
(healthy if a user-supplied binary executed in the context of the 
container returns an exit code of zero). If any liveness test fails, 
the container is automatically restarted by Kubernetes.

The second check is a readiness check, which is applied to an 
entire pod. Readiness checks indicate whether the pod is ready 
to serve end-user traffic. In many situations, a pod may take 
some time to start up, due to network downloads, migrations, or 
other long, computational initialization steps. During this time, 
the pod is alive: it should not be restarted by Kubernetes. How-
ever, it is not ready: it should not serve traffic. Readiness checks 
are used to implement service load balancers, described below.

Pod Patterns
When you start using pods, some general patterns naturally 
start to recur. The three common ones are sidecar containers, 
ambassador containers, and adapter containers.

SIDECAR CONTAINERS
Sidecar containers extend and enhance the “main” container; 
they take existing containers and make them better.

As an example, consider a container that runs the Nginx Web 
server. Add a different container that syncs a directory with a Git 
repository, share the file system between the containers, and you 
have built a non-atomic, push-to-deploy Git. But you’ve done it 
in a modular manner where the Git synchronizer can be built by 
a different team and reused across many different Web servers 
(Apache, Python, Tomcat, etc.). Because of this modularity, you 
only have to write and test your Git synchronizer once to reuse it 
across numerous apps. If someone else writes it, you don’t even 
need to do that.

Figure 1: Example of a sidecar container: a pod where an Nginx Web 
server is being augmented by a Git synchronizing container
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AMBASSADOR CONTAINERS
Ambassador containers proxy the outside world via a local con-
nection in the same pod.

As an example, consider a Redis cluster with read replicas and a 
single write master. You can create a pod that groups your Redis 
client with a Redis ambassador container. The ambassador is a 
proxy; it is responsible for splitting reads and writes to Redis and 
sending them on to the appropriate Redis servers. Because these 
two containers share a network namespace, they share an IP 
address, and your application can open a connection on “local-
host” and find the proxy without any service discovery. Note that 
this is “localhost” for the network of the pod, not “localhost” on 
the host machine. 

ADAPTER CONTAINERS
Adapter containers standardize and normalize output.

In any real-world application, the application’s software comes 
from a heterogeneous set of sources (open source, off-the-shelf 
software, home brew), and monitoring system developers cannot 
be expected to understand, build, maintain, and deploy for all 
of them. Consequently, you often need to wrap applications to 
enable communication with auditing or monitoring services.

Using a modular adapter container co-located in the same pod 
as your application gives you a simple unit of deployment that 
combines both application and adapter. Using adapters enables 
each application developer to supply a common interface. The 
modularity of using two different containers (the application 
and the adapter) means that despite making the adapter the 
application owner’s responsibility, adapters can be reused (e.g., a 
Java JMX adapter).

The adapter pattern creates pods that group the application 
containers with adapters that know how to do the transforma-
tion. Again, because these pods share namespaces and file 
systems, the coordination of these two containers is simple and 
straightforward.

Labels
Experience operating large, complicated systems has taught us 
that requiring applications and their parts to be grouped into 
fixed, disjoint sets is overly restrictive.

As an example of this, consider the canonical search stack. 
There is a set of replicas that are responsible for serving end-
user requests {frontend, middleware, backend servers}, and 
then there are the jobs that are responsible for building, push-
ing, and loading a new search index {crawler, index-builder, 
backend servers}. The presence of “backend servers” in both of 
these organizations reflects the problem with fixed sets. We 
need an organizational mechanism that can flexibly represent 
both of these organizational sets (and any other useful sets). 
If the cluster management infrastructure can’t represent the 
overlapping sets of organizations that are present in the cluster, 
then additional tooling, which is opaque to the cluster manager, 
will get built to represent these organizations. The additional 
complexity required to make these systems interact well with 
the cluster management software makes the system harder to 
maintain and extend. 

Additionally, we need a representation that is dynamic. For 
example, at different times, pods may be added or removed from 
sets; during a rolling update of a service to a new version of its 
software, pods are dynamically added and removed from the set 
of backends of a load balancer. We need a representation that can 
easily capture this dynamism without requiring constant action 
from the user to maintain these sets.

In Kubernetes, labels and label queries provide flexible, dynamic 
sets of resources. Rather than encode any specific group-
ing primitive into the Kubernetes API, every resource in the 
Kubernetes API can have labels attached to that resource. These 
labels are arbitrary, key-value pairs that help define the object. 
For example, a production Web server might have the labels 
{role=frontend, stage=production, version=v1, machine=m1, 

rack=r2}, and a production backend might have the labels 
{role=backend, stage=production, version=v1, machine=m2, 

rack=r1}.

Figure 2: Example ambassador container: a pod where a Redis proxy 
ambassador is used to proxy connections from a PHP application to a set 
of Redis shards

Figure 3: Example of an adapter container: a pod where the Redis 
key-value store is adapted to provide a consistent monitoring interface 
(e.g., https://github.com/oliver006/redis_exporter)
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A label query dynamically organizes objects into a group by con-
structing a set of objects that match its conditions. For example, 
we might query “stage=production” to see all production pods, 
“rack=r2” to see all containers on a particular rack, or even 
conjugate queries like “stage=production, machine=m1” for all 
production jobs on a particular machine. Label queries are used 
to list particular RESTful resources in the Kubernetes API. A 
label query for a resource of a particular type (e.g., pods) will only 
return the pods whose labels match the query.

Reconciliation
The third key concept in Kubernetes, after pods and labels, is 
reconciliation loops. 

The basic premise is that there are three states of the world: an 
idealized desired state, which is a declarative statement of what 
the world should be like; a current state, which approximates 
the actual state, and might be noisy, incomplete, or out of date; 
and an actual state. Unfortunately, the actual state isn’t directly 
observable, thanks to the vagaries of distributed systems, delays, 
and failures, so we must make do with the observed state.

The role of the reconciliation loop is to repeatedly compare the 
current state against the desired state, and take action to drive 
the actual state to match the desired state. This is just a control 
loop, like the one in your thermostat. It is what transforms Kuber-
netes into a self-healing, dynamic system, by automatically caus-
ing it to restore the system to the desired state without needing 
operator intervention. Only if this fails does the system need to 
invoke help from an administrator, e.g., by triggering an alert.

Replication Controllers
In any real production system, replicating the components in the 
system is the only way to achieve reliable operation. Each replica 
is an independent unit of failure, and thus, multiple replicas 
reduce the probability of a total failure. They also allow a service 
to be scaled up as traffic grows. However, the complexity of 
managing a replicated system must not be linear in the number 
of replicas, or else the system is not truly scalable.

In Kubernetes, replication controllers provide an API for manag-
ing replicated sets of pods. Replication controllers use a pod 
template, a label query, and a desired number of replicas to create 
a replicated set of pods. The operation is as follows:

Repeat forever

   1. Select pods matching Label Query.

   2. Subtract number of pods found from the desired number of 

replicas.

   3. If this difference is negative, destroy a pod.

   4. If this difference is positive, create a pod using the pod 

Template.

Note that this is a reconciliation loop. No matter why a pod 
disappears—whether due to node failure, accidental deletion, or 
network partition—the replication controller attempts to ensure 
that the correct number of replicas exists. Likewise, if a user or 
automated process resizes the number of replicas up or down, 
these adjustments to the number of replicas are also material-
ized by this simple reconciliation loop.

Services
A recent, popular trend in distributed systems is microservice 
architectures, which decouple different pieces of a distributed 
system into independently managed and scaled microservices. 
This decoupling helps microservice architectures to be reliable 
and scalable.

In Kubernetes, the Service API object represents a load balancer 
for a microservice. Like replication controllers, services are 
based on a dynamic label query that identifies the set of back-
ends that the service connects to.

To enable service discovery, a service is assigned a static virtual 
IP address (VIP). This address is constant, and has the same 
lifespan as the service. Consequently, the VIP can be popu-
lated into DNS for service discovery. Because the VIP is not the 
address of any particular pod, the VIP can be kept constant, even 
as pods are scaled up or down behind the service.

Kubernetes itself ships with a simple, default load-balancer 
implementation, but the Kubernetes API also makes Endpoint 
objects available. These endpoints are the current members of 
the service’s load balancing group—i.e., the pod IP addresses 
across which it spreads incoming requests. Advanced users can 
use these endpoints to populate a third-party load balancer (e.g., 
Nginx, HAProxy) or even to implement thick clients that do 
balancing without a proxy.

The maintenance of the service’s endpoints is another example 
of a reconciliation loop. In this case, the loop looks like:

Repeat forever

   1. Select pods matching Service Selector Label Query

   2. For each matching pod

      a. If the pod is Ready (see ‘Readiness Checks’ above)

          i. Add the pod to the Endpoint set for this Service

Figure 4. A replicated set of pods with a misbehaving replica (pod within 
rectangle). Solid boxes are pods; circles indicate labels attached to them.
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Operations in Kubernetes
It is easier to operate systems that are deployed into a Kuber-
netes cluster than systems deployed into traditional virtual 
machines. This section describes two operations scenarios that 
demonstrate this.

Quarantining a Replica
One of the common tasks that occur in operations is quarantin-
ing a misbehaving replica of an application. Oftentimes, sadly, 
this means simply killing the misbehaving replica, collecting 
logs for retrospective analysis, and restarting the process. While 
this restores the service to health quickly, it is much harder to 
debug a problem from (possibly incomplete) logs than it is with a 
running server. It would be better to remove a misbehaving rep-
lica from the service but maintain it as a running server so that it 
can be debugged. This is precisely what Kubernetes services and 
labels allow. This is illustrated in the following example.

We start with an existing Kubernetes replicated service that 
shares load across three pods. The pod in the middle is deter-
mined to be misbehaving.

The operator removes the “production” label from the misbe-
having pod. Because Kubernetes dynamically queries label 
selectors, the pod is now removed from the corresponding Repli-
cationController and the service.

The reconciliation loop in ReplicationController detects that a 
pod is missing from the replica set and creates a new pod, restor-
ing the service to full health. The misbehaving pod is retained 
for future debugging.

Rolling Update
Another common operation is rolling out new software. Kuber-
netes achieves this through manipulating replication controllers 
and labels.

At the start of the update, there is a single replication controller. 
It has three replicas, and is using version 1 (v1) of the application. 
There is also a Kubernetes Service that is defined to serve traffic 
to pods with the “frontend” and “production” labels. To perform 
a rolling update, a second replication controller is created. This 
replication controller is identical to the first replication control-
ler in all ways, except the image in its template has been updated 
to version 2 (v2). Initially, the desired replica count for this 
controller is set to zero (Figure 7).

Figure 5. After the “production” label is removed from the misbehaving 
replica, the replica is now quarantined.

Figure 6. The replication controller replaces the misbehaving pod with a 
new replica.

Figure 7. The initial state of the rolling update. A second replica controller 
has been created but has no replicas yet.

Figure 8. The first “canarying” step of a rolling update: replica count for 
the original controller is set to two, and to one for the second controller.
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To perform the rolling update, the desired number of replicas on 
the v1 replication controller is dialed down by one (in this case, 
to two replicas), and the desired replicas for the v2 replication 
controller is increased by one (to one replica, Figure 8).

This process of one up, one down proceeds until the desired 
number of replicas for v1 is zero and the desired number of rep-
licas for v2 is three. Because the Kubernetes Service is defined 
by the label query {role=frontend, stage=production}, which 
ignores the version, the load balancer seamlessly spreads traffic 
across version 1 and version 2 as the rollout proceeds. If failures 
occur during the rollout, and a rollback is necessary, it is simple 
to reverse the roles of the replication controllers and restore the 
number of replicas for v1 to be three.

Conclusion
Containers have grown in popularity because they decouple user 
applications from the underlying operating system/kernel, and 
allow the development of kernel/OS-specific operations teams. 
Container cluster orchestration systems, like Kubernetes, 
further allow the decoupling of operations into hardware opera-
tions, kernel operations, cluster operations, and application oper-
ations. This decoupling enables specialization and focus, which 
increases the reliability and scalability of those operations 
teams. Furthermore, Kubernetes provides a set of objects that 
makes it easier for application developers to design and develop 
services that are easier to operate and scale. Container cluster 
management systems are the backbone of most large-scale Web 
service companies, and with the advent of open source solutions 
like Docker and Kubernetes, we believe there is an industry-wide 
shift underway to this new style of decoupled infrastructure.
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Being an On-Call Engineer
A Google SRE Perspective

A N D R E A  S P A D A C C I N I  A N D  K A V I T A  G U L I A N I

Being on-call is a critical duty that many operations and engineering 
teams must undertake in order to keep their services reliable and 
available. However, there are several pitfalls in the organization of on-

call rotations and responsibilities that can lead to serious consequences for 
the services and for the teams if not avoided. We provide the primary tenets 
of the approach to on-call that Google’s Site Reliability Engineers have devel-
oped over years, and explain how that approach has led to reliable services 
and sustainable workload over time.

Several professions require employees to perform some sort of on-call duty, which entails 
being available for calls during both working and non-working hours. In the IT context, on-
call activities have historically been performed by dedicated Ops teams tasked with the pri-
mary responsibility of keeping the service(s) for which they are responsible in good health.

Many important services in Google, e.g., Search, Ads, and Gmail, have dedicated teams of 
Site Reliability Engineers (SREs) [1] responsible for the performance and reliability of these 
services. As such, SREs are on-call for the services they support. The SRE teams are quite 
different from purely operational teams in that they place heavy emphasis on the use of 
engineering to approach problems. These problems, which typically fall in the operational 
domain, exist at a scale that would be intractable without software engineering solutions.

To enforce this type of problem-solving, Google hires people with a diverse background in 
systems and software engineering into SRE teams. We cap the amount of time SREs spend 
on purely operational work at 50%; at minimum, 50% of an SRE’s time should be allocated to 
engineering projects that further scale the impact of the team through automation, in addi-
tion to improving the service.

We present an informed view of how Google SRE teams organize the on-call aspect of their jobs, 
and how Google’s strong focus on engineering determines numerous aspects of this organization. 

We do not describe all the possible ways of organizing on-call rotations in detail. For detailed 
analysis, refer to the “Oncall” chapter of The Practice of Cloud System Administration [2].

Life of an On-Call Engineer
As the guardian of production systems, the on-call engineer takes care of his or her assigned 
operations by managing outages that affect the team and performing and/or vetting produc-
tion changes.

When on-call, an engineer is available to perform operations on production systems within 
minutes, according to the paging response Service Level Objectives (SLOs) agreed to by the 
team and the business system owners. Typical SLO values are five minutes for user-facing or 
otherwise highly time-critical services, and 30 minutes for less time-sensitive systems. The 
company provides the page-receiving device, which is typically a phone. Google has flexible 
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alert delivery systems that dispatch pages via multiple mecha-
nisms (email, SMS, robot call, app) across multiple devices.

This page-to-work-towards-resolution SLO is distinct from the 
service SLOs themselves (e.g., user-facing latency, processing 
delay, and so on). There is a relationship between the two types 
of SLOs: the service SLOs imply upper bounds for the page-to-
work-towards-resolution SLO. For example, if a user-facing 
system must obtain 4 nines of availability in a given quarter 
(99.99%), the allowed quarterly downtime is around 13 min-
utes. This constraint implies that the reaction time of on-call 
engineers has to be on the order of minutes. For systems with 
more relaxed SLOs, the reaction time can be on the order of tens 
of minutes.

As soon as a page is received and acknowledged, the on-call 
engineer is expected to triage the problem and work towards its 
resolution, possibly involving other team members and escalat-
ing as needed.

Non-paging production events, such as lower priority alerts 
or software releases, can also be handled and/or vetted by the 
on-call engineer during business hours. These activities are less 
urgent than paging events, which take priority over almost every 
other task, including project work.

Many teams have both a primary and a secondary on-call rota-
tion. The distribution of duties between the primary and the 
secondary varies from team to team and ranges from the second-
ary acting as a fall-through for the pages missed by the primary 
on-call to an arrangement in which the primary on-call handles 
only pages and the secondary handles all other non-urgent pro-
duction activities.

In teams for which a secondary rotation is not strictly required 
for duty distribution, it is common for two related teams to serve 
as secondary on-call for each other, with fall-through handling 
duties. This setup eliminates the need for an exclusive secondary 
on-call rotation.

Balanced On-Call
SRE teams have specific constraints on the quantity and quality 
of on-call shifts. The quantity of on-call can be calculated by 
the percentage of time spent by engineers on on-call duties. The 
quality of on-call can be calculated by the number of incidents 
that occur during an on-call shift.

SRE managers are responsible for keeping the on-call workload 
balanced and sustainable across these two axes.

Balance in Quantity
SREs can spend no more than 25% of their time on-call, and 
another 25% of their time on other types of operational, non-
project work. We strongly believe that the “E” in “SRE” is a 
defining characteristic of our organization, so we strive to invest 
at least 50% of SRE time in engineering.

Using the 25% rule, we can derive the minimum number of SREs 
required to sustain a 24/7 on-call rotation. Assuming that there 
are always two people on-call (primary and secondary, with 
different duties), the minimum number of engineers needed for 
on-call duty from a single-site team is eight: assuming week-long 
shifts, each engineer is on-call (primary or secondary) for one 
week every month. For dual-site teams, a reasonable minimum 
size of each team is six, both to honor the 25% rule and to ensure 
a substantial and critical mass of engineers for the team.

If a service implies enough work to justify growing a single-site 
team, we can create a multi-site team. A multi-site team can be 
advantageous for two reasons: 

◆◆ Night shifts have detrimental effects on people’s health [3], and 
multi-site rotation allows teams to avoid night shifts altogether. 

◆◆ Limiting the number of engineers in the on-call rotation ensures 
that engineers do not lose touch with the production systems 
(see “A Treacherous Enemy: Operation Underload,” below). 

However, multi-site teams incur communication and coor-
dination overhead. Therefore, the decision to go multi-site or 
single-site should be based on the tradeoffs each option entails, 
the importance of the system, and the workload each system 
generates. 

Balance in Quality
For each on-call shift, an engineer should have sufficient time 
to deal with incidents and follow-up activities such as writing 
postmortems [4]. Assuming that on-call incidents, on average, 
require six hours of work between investigation, root cause 
analysis, remediation, and follow-up activities such as writing a 
postmortem, it follows that the maximum number of incidents 
per day is two. In order to stay within this upper bound, the 
distribution of paging events should be very flat over time, with 
a likely median value of 0: if a given component or issue causes 
pages every day (median incidents/day 1), it is likely that some-
thing else will break at some point, thus causing more incidents 
than should be permitted. 

If this limit is temporarily exceeded, e.g., for a quarter, corrective 
measures should be put in place to make sure that the opera-
tional load returns to a sustainable state (see “Avoiding Opera-
tional Overload,” below).
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Compensation
Adequate compensation needs to be considered for out-of-hours 
support. Different organizations handle on-call compensation 
in different ways; Google offers time-off-in-lieu or straight cash 
compensation, capped at some proportion of overall salary. The 
compensation cap represents, in practice, a limit on the amount 
of on-call work that will be taken on by any individual. This 
compensation structure ensures incentivization to be involved 
in on-call duties as required by the team, but also promotes a bal-
anced on-call work distribution and limits potential drawbacks 
of excessive on-call work, such as burnout or inadequate time for 
project work.

Feeling Safe
As mentioned earlier, SRE teams support Google’s most criti-
cal systems. Being an SRE on-call typically means assuming 
responsibility for user-facing, revenue-critical systems, or for 
the infrastructure required to keep these systems up and run-
ning. SRE methodology for thinking about and tackling prob-
lems is vital for the appropriate operation of services.

Modern research identifies two distinct ways of thinking that 
an individual may choose, consciously or subconsciously, when 
faced with challenges: 

◆◆ Intuitive, automatic, and rapid action

◆◆ Rational, focused, and deliberate cognitive functions [5] 

When dealing with the outages related to complex systems, the 
second of these options is more likely to produce better results 
and lead to well-planned incident handling.

To make sure that the engineers are in the appropriate frame of 
mind to leverage the latter mindset, it’s important to reduce the 
stress related to being on-call. The importance and the impact of 
the services and the consequences of potential outages can cre-
ate significant pressure on the on-call engineers, damaging the 
well-being of individual team members and possibly prompting 
SREs to make incorrect choices that can endanger the avail-
ability of the service. Stress hormones like cortisol and CRH are 
known to cause behavioral consequences—including fear—that 
can impair cognitive functions and cause suboptimal decision-
making [6].

Under the influence of these stress hormones, the more deliber-
ate cognitive approach is typically subsumed by unreflective and 
unconsidered (but immediate) action, leading to potential abuse 
of heuristics. Heuristics are very tempting behaviors when on-
call. For example, when the same alert pages for the fourth time 
in the week, and the previous three pages were initiated by an 
external infrastructure system, it is extremely tempting to exer-
cise confirmation bias by automatically associating this fourth 
occurrence of the problem with the previous cause.

While intuition and quick reactions can seem like desirable 
traits in the middle of incident management, they have down-
sides. Intuition can be wrong and is often less supportable by 
obvious data. Thus, following intuition can lead an engineer to 
waste time pursuing a line of reasoning that is incorrect from 
the start. Quick reactions are deep-rooted in habit, and habitual 
responses are unconsidered, which means they can be disas-
trous. The ideal methodology in incident management strikes 
the perfect balance between taking steps at the desired pace 
when enough data is available to make a reasonable decision and 
simultaneously critically examining your assumptions.

It’s important that on-call SREs understand that they can rely 
on several resources that make the experience of being on-call 
less daunting than it may seem. The most important on-call 
resources are: 

◆◆ Clear escalation paths

◆◆ Well-defined incident-management procedures

◆◆ A blameless postmortem culture [4]

The developer teams of SRE-supported systems usually par-
ticipate in a 24/7 on-call rotation, and it is always possible to 
escalate to these partner teams when necessary. The appropri-
ate escalation of outages is generally a principled way to react to 
serious outages with significant unknown dimensions.  

When handling incidents, if the issue is complex enough to 
involve multiple teams, or if, after some investigation, it is not yet 
possible to estimate an upper bound for the incident’s time span, 
it can be useful to adopt a formal incident-management protocol. 
Google SRE uses the protocol described in “Managing Incidents” 
[7], which offers an easy to follow and well-defined set of steps 
that aid an on-call engineer in rationally pursuing a satisfactory 
incident resolution with all the required help. This protocol is 
internally supported by a Web-based tool that automates most of 
the incident management actions, such as handing off roles and 
recording and communicating status updates. This tool allows 
incident managers to focus on dealing with the incident, rather 
than spending time and cognitive effort on mundane actions 
such as formatting emails or updating several communication 
channels at once.

Finally, when an incident occurs, it’s important to evaluate 
what went wrong, recognize what went well, and take action to 
prevent the same errors from recurring in the future. SRE teams 
must write postmortems after significant incidents, and detail 
a full timeline of the events that occurred. By focusing on events 
rather than the people, these postmortems provide significant 
value. Rather than placing blame on individuals, value is derived 
from the systematic analysis of production incidents. Mistakes 
happen, and software should make sure that we make as few 
mistakes as possible. Recognizing automation opportunities is 
one of the best ways to prevent human errors [4].
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Avoiding Inappropriate Operational Load
Operational Overload
As mentioned in the “Balanced On-Call” section above, SREs 
spend at most 50% of their time on operational work. What hap-
pens if operational activities exceed this limit? The SRE team 
and leadership are responsible for including concrete objectives 
in quarterly work planning in order to make sure that the work-
load returns to sustainable levels.

Ideally, symptoms of operational overload should be measurable, 
so that goals can be quantified (e.g., number of daily tickets < 5, 
paging events per shift < 2).

Monitoring misconfiguration is a common cause of operational 
overload. Paging alerts should be aligned with the symptoms 
that threaten a service’s SLOs. All paging alerts should also be 
actionable. Low-priority alerts that bother the on-call engineer 
every hour (or more frequently) disrupt productivity, and the 
fatigue such alerts induce can also cause serious alerts to be 
treated with less attention than necessary.

It is also important to control the number of alerts that the on-
call engineers receive for a single incident. Sometimes a single 
abnormal condition can generate several alerts, so it’s important 
to regulate the alert fanout by ensuring that related alerts are 
grouped together by the monitoring or alerting system. If, for any 
reason, duplicate or uninformative alerts are generated during 
an incident, silencing those alerts can provide the necessary 
quiet for the on-call engineer to focus on the incident itself. 
Noisy alerts that systematically generate more than one alert per 
incident should be tweaked to approach a 1:1 alert/incident ratio. 
Doing so allows the on-call engineer to focus on the incident 
instead of triaging duplicate alerts.

Sometimes the changes that cause operational overload are not 
under the control of the SRE teams. For example, the application 
developers might introduce changes that cause the system to be 
more noisy, less reliable, or both. In this case, it is appropriate 
to work together with the application developers to set common 
goals to improve the system.

In extreme cases, SRE teams may have the option to “give back 
the pager”—SRE can ask the developer team to be exclusively 
on-call for the system until it meets the standards of the SRE 
team in question. Giving back the pager doesn’t happen very 
frequently, as it’s almost always possible to work with the 
developer team to reduce the operational load and make a given 
system more reliable. In some cases, though, complex or archi-
tectural changes spanning multiple quarters might be required 
to make a system sustainable from an operational point of view. 
In such cases, the SRE team should not be subject to an exces-
sive operational load. Instead, it is appropriate to negotiate the 
reorganization of on-call responsibilities with the development 

team, possibly routing some or all paging alerts to the developer 
on-call. Such a solution is typically a temporary measure, during 
which time the SRE and developer teams work together to get 
the service in shape to be onboarded by the SRE team again.

The possibility of renegotiating on-call responsibilities between 
SRE and developer teams attests to the balance of powers 
between the teams. This working relationship also exemplifies 
how the healthy tension between these two teams and the values 
that they represent—reliability vs. feature velocity—is typically 
resolved by greatly benefitting the service and, by extension, the 
company as a whole.

A Treacherous Enemy: Operation Underload
Being on-call for a quiet system is blissful, but what happens 
if the system is too quiet or when SREs are not on-call often 
enough? An operation underload is undesirable for an SRE team. 
Being out of touch with production for long periods of time can 
lead to confidence issues, both in terms of overconfidence and 
underconfidence, while knowledge gaps are discovered only 
when an incident occurs. 

To counteract this eventuality, SRE teams should be sized to 
allow every engineer to be on-call once or twice a month, thus 
ensuring that each team member is sufficiently exposed to 
production. 

Some teams also run so-called “Wheel of Misfortune” exer-
cises, in which theoretical (or practical) incident scenarios are 
presented to the team by a dungeon master, much in the style 
of traditional role-playing games. This exercise is also a useful 
team activity that can help to hone and improve troubleshooting 
skills and knowledge of the service.  

Google also has a company-wide annual disaster recovery 
event called DiRT (Disaster Recovery Training) that combines 
theoretical and practical drills to perform multi-day testing of 
infrastructure systems and individual services.

Onboarding New Systems
It is common for SRE teams to become responsible for new 
systems, a process that typically culminates in handing off pager 
responsibilities, also called onboarding.

The SRE team needs to engage with the new system well before 
the onboarding process starts. Ideally, the SREs are involved 
from the early design phase of the new system, as their knowl-
edge and experience with the production infrastructure can 
offer an important perspective on the architecture of the new 
systems. Direct involvement by SREs during the development 
phase might be necessary as the system approaches its launch, 
in preparation for a Production Readiness Review (PRR) or 
Launch Review.
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After the new system launches, the application developers may 
remain on-call for the system until the ownership is transitioned 
to SRE. A system must meet specific requirements with regards 
to reliability, Service Level Objectives (SLOs), alerting, and the 
on-call load before it is onboarded by SRE. The on-call training 
can begin towards the end of the onboarding process. Generally, 
the application developers train SREs on the internals of the new 
systems, explaining the most likely or common failure modes 
and how to react to these failures. To demonstrate debugging 
techniques, developers may fake troubleshooting scenarios and 
demonstrate their resolution to SREs.  

All alerts are expected to have corresponding documentation 
that enables the on-call engineer to take appropriate actions 
when paged. Upon service handoff, documentation ownership is 
transitioned to SREs, who are expected to keep the docs up-to-
date in collaboration with the application developers.

Conclusion
The approach to on-call we described serves as a guideline for 
all SRE teams in Google and is key to fostering a sustainable 
and safe work environment. Google’s approach to on-call has 
enabled us to use engineering work as the primary means to 
scale production responsibilities and maintain high reliability 
and availability despite the increasing complexity and number of 
systems and services for which SREs are responsible.
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/var/log/manager
How Technical Managers Tell Time

A N D Y  S E E L Y

Time management for sysadmins is a largely solved equation thanks 
to Mr. Limoncelli [1]. I would like to offer a humble extension to his 
work and talk about time management for the technical manager.

Normal and Interrupt for the Sysadmin
The sysadmin has recurring tasks. Flush logs. Check backups. Monitor loads. Look up 
Simpsons quotes to use in the next change control meeting. Answer email from the manager. 
Probably in that order. Managers know they rate below looking up pop culture references.

The sysadmin has interrupt-driven tasks that trump all the recurring, normal tasks. The 
prioritization is now whatever the interrupt signal is. The datacenter is on fire. The SAN 
just crashed. The boss’s printer is out of paper. The public-facing e-commerce site certifi-
cate expired. You know, the critical break-fix things that are instantly more important than 
anything that may have been planned out in advance.

Normal and Interrupt for the Technical Manager
The technical manager has recurring tasks. Read and answer email. Listen to and answer 
voice mail. Check and update calendars. Attend scheduled meetings. Meet weekly dead-
lines like time card queues. Prepare reports and briefings. Take any administrative actions 
required, like approving expenses, denying training requests (don’t be disappointed, you may 
resubmit again in 30 days for further denial!), and responding to requests for information 
from the VP.

The technical manager has interrupt-driven events that just move the recurring tasks to 
later in the day. The VP overheard something in the board meeting and wants an explana-
tion. Another VP wants to talk about his golf swing and you’re the first person he sees. 
Another manager wants to complain about your people doing something wrong. A customer 
wants to know when a project will be delivered, with a full review of schedule, today. HR has 
to have a meeting immediately to discuss a complaint someone filed. An employee is in a bind 
and needs top-cover.

Taking Control of the Manager’s Information Flow
It’s all true, and it all has to get done. There are some practical tips and tricks I can offer to 
help a busy technical manager never forget a promise (or a threat) and always have the right 
answers. There are two things you need above everything else, even above a vacation where 
you take your laptop and work anyway: discipline and a system. I’m going to tell you about my 
system. 

First, you have to baseline. Understand your own inputs. For me, my inputs span multiple 
inject points that I cannot coalesce any further for a variety of reasons:
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1.	 Multiple calendars

2.	 Multiple inboxes

3.	 Two telephones with voice mail

4.	 Drive-by tasks and requests for information from my peers and 
leadership

5.	 Drive-by information updates and status reports from my team

6.	 Drive-by requests for close air support when one of my team 
needs me to help them

7.	 Scheduled meetings

8.	 Unscheduled meetings

9.	 The hallway, which is where a surprising amount of coordina-
tion seems to get done 

My durable repositories of information:

1.	 My active inboxes

2.	 My email archives

3.	 SharePoint portal “wiki” file

4.	 My analog, handwritten, completely illegible notebook

After you’ve articulated what your inputs and repositories are, 
you need to have a system for processing flow. My system owes a 
debt to the Getting Things Done approach [2].

First, own your inbox and make it work for you. Create at least 
seven folders in your inbox. Label them Monday, Tuesday, 
Wednesday, Thursday, Friday, Sooner, and Later. By the end of 
every day, do this “Four-D” process on everything in your inbox: 
If you can “do” it, do it on the spot. If you can “delegate” it, make 
it an assignment for someone else and CC yourself, then file the 
message in a future day’s folder for follow-up. If you can or must 
wait on something, “defer” it by filing it in the appropriate day’s 
folder and worry about it then. If it can’t be done, delegated, or 
deferred, then just “delete” it. In my case, I delete to an archive 
for future reference. At the start of each day, process all the 
items in the “sooner” folder and all the items in that day’s box. On 
Friday, review everything in the “later” folder. Doing this every 
day, you never lose email, you never miss something important. 
You never miss anything.

Second, ignore your telephone and practice the concept of “one 
conversation at a time,” which is a lesson of the “Fierce Con-
versations” school of thought [3]. If you are talking to a live 
person who took the time to walk to your desk, give that person 
your attention and don’t even look to see who is calling on the 
telephone. If a second person comes to talk to you while you’re 
talking to the first, don’t put the first person in sleep status to 

process the new interrupt first. Finish the first conversation and 
move to the second. Check voice messages several times per day 
and return calls, and in general treat the telephone like it’s just 
a voice-activated email system. Don’t work for your telephone, 
make it work for you.

Third, keep a running tab on everything you have to do, that 
you’ve asked others to do, and that you want to track. Carry a 
notebook and write things down. If you don’t have a notebook, 
write things down on your hand (I’m well-known for my “palm 
pilot” that has a tendency to reboot when I wash my hands). Don’t 
trust your brain. Move everything from your notebook (or hand) 
to your wiki. The wiki should be something only you see, and 
should lay out the same way as your email inbox folders, but with 
more range. Days of the week, sooner and later, but also months 
and years out. Keep track of ideas you have that might be worth 
exploring next year. Take special note of anything you have to do 
in the morning to prevent getting fired. Consult and update this 
wiki when you start your day and when you end it, so you know 
what you’ve done and what you have to do next, while never los-
ing sight of what your long-term issues are.

Finally, understand your own priorities. My priorities are, in 
order: people on my team, my customers, my managers, human 
resources and finance, other people in my organization, and 
external entities like vendors. My golden rule: if one of my own 
people needs me, they are my priority. Their job is sysadmin. My 
job is taking care of them.

Using the System
I’ve been using this system for three years with great success, 
and I’m pleased to share it with you. My goal is to understand 
the things that are really important and to be able to absorb and 
process all the relevant information flows in my organization. In 
the modern digital age, information is both faster and has more 
volume than the average person can handle. A reliable system is 
like a fulcrum, it helps me to lift more than I’m actually capable 
of doing. This system helps me to understand what’s important 
and to focus where my efforts matter most, which is usually in 
support of my team. I’m the manager, and this is how I do my job.

[1] T. Limoncelli, Time Management for System Administrators, 
O’Reilly Media, 2005.

[2] D. Allen, Getting Things Done, Penguin, 2002.

[3] S. Scott, Fierce Conversations: Achieving Success at Work 
and in Life One Conversation at a Time, The Berkley Publishing 
Group, 2002.
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Daemon, the Gnu and the Penguin 
(2008). peter@pedant.com

A lthough I mentioned the first graphics workshop a few months ago, 
after 1985 both the number of workshops and the number of publica-
tions increased dramatically over the next decade. And not all of the 

publications were on paper. Here’s the tale.

UNIX NEWS may have been the first UNIX publication outside of AT&T, but only by a bit. 
On April 30, 1976, it was announced that Lew Law of the Harvard Science Center would 
“undertake the task of duplicating and distributing the manuals for UNIX.” That was “Sixth 
edition,” or v6. It was the beginning of external publication.

The same issue of UNIX NEWS carried an article by Bill Mayhew (of the Children’s Museum 
in Boston) on “How to fix your PDP-11/40’s static electricity problems for 49 cents (plus 
tax).” And the next issue (May-June 1976) announced “the first mailing from the software 
exchange.” Software exchange?

Lew Law supplied software from Harvard, and Mike O’Brien did the duplication and mail-
ing of tapes. Freely redistributed software in 1976! And there was a second distribution in 
November 1976, containing software from the RAND Corporation, the Naval Postgraduate 
School, UCSD, Yale, and UIUC. There was a third distribution in May 1977, and contributed 
software was assembled and distributed on tape until 1989.

Conferences and Workshops
For the decade following the June 1975 meeting in New York, there were two USENIX 
conferences each year, one in the east (New York, Cambridge, Chicago, Urbana, Newark 
(DE), Toronto, Austin) and one in the west (Monterey, Berkeley, Menlo Park, Santa Monica, 
Boulder, San Francisco). Some years there were three.

The first separately published Proceedings was for Toronto (July 13–15, 1983), and the second 
was for Salt Lake City (June 13–15, 1984). There were also proceedings for the “Unicom” con-
ferences—USENIX and /usr/group co-located—San Diego, January 1983, and Washington, 
DC, January 1984. Proceedings appeared for nearly 20 years. I miss them, although I realize 
that bits have superseded paper.

In 1984 the (newly elected) USENIX Board announced three “limited enrollment” work-
shops: Distributed Systems, Communications and Networking, and Graphics. For organiza-
tional reasons, the Communications and Networking Workshop was cancelled. Distributed 
Systems was held in what proved to be an unsatisfactory venue in Newport, RI, although 
nearly all of the 100 attendees regarded it as “clearly worthwhile” and “should be repeated.” 
The “UNIX and Computer Graphics Workshop,” held in Monterey, CA, was a great success.

The report on “Distributed UNIX” by Veigh S. Meer (a transparent pseudonym) appeared in 
;login: 9.5 (November 1984), pp. 5–9.

A Digression on ;login: and on Manuals
The May–June 1977 issue of UNIX NEWS was its last. As of July 1977, the publication was 
;login:. Mel Ferentz had been phoned by an AT&T lawyer and told that the group (it still had 
no name) could not use “UNIX” without permission from Western Electric. At a meeting 
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at Columbia’s College of Physicians and Surgeons (May 24–27, 
1978) a committee was set up to propose bylaws for an organiza-
tion. Margaret Law, then at Harvard and Radcliffe, coined the 
name USENIX.

UNIX NEWS was succeeded by ;login:. As Dennis Ritchie 
explained, “The ; was utilitarian. During most of the early ’70s 
the most popular terminal was the Teletype model 37. The 
sequence <esc>; put it in full-duplex mode so the terminal didn’t 
print characters locally, but let the system echo them. So this 
sequence was put into the greeting message.”

Through the 1970s, AT&T UNIX came with next to no docu-
mentation; hence Lew Law’s offer of 1976. By the time Berkeley 
UNIX (BSD) was developed, diverging from AT&T UNIX, manu-
als were in real demand. The Computer Systems Research Group 
(CSRG) had no way of coming to grips with the demand, so the 
USENIX office, now in El Cerrito, just north of Berkeley, took on 
the printing and distribution. Thus, in April 1984, ;login: featured 
an announcement of the availability of the 4.2BSD manuals in 
five volumes. They sold out quickly. In February 1985, a new 
printing was announced. A third and a fourth printing ensued in 
late 1985 and early 1986. In late 1986, 4.3BSD followed with an 
index volume (thanks to Mark Seiden) added. (The 4.4BSD set 
was published by O’Reilly.)

As these were CSRG documents, printed and sold by USENIX, 
I’ve never been certain whether to consider them USENIX 
publications.

Back to Workshops
Six papers from the 1984 Graphics Workshop appeared in ;login: 
10.4, October-November 1985 (pp. 22–83), along with a CFP 
for the Second Workshop, to be held in December in Monterey. 
Embarrassingly, there were only four issues of ;login: in 1985. 
One of the consequences of this was the replacement of the 
Executive Director (who served for less than a year) by the pres-
ent writer.

One of the things the Board asked of me in the spring of 1986 
was an increase in the number of workshops and of publications. 
Among the items on my desk was a manila envelope containing 
the papers from the 1985 Graphics Workshop.

I consulted with Tom Strong and he had sheets with headers 
and footers printed. I hired Steven Katz to paste up the articles, 
and we sent the bundle off to be printed: the Association’s first 
workshop proceedings appeared in late summer 1986.

With that, and the third Graphics Workshop under way, Rob 
Kolstad suggested a Large Installation Systems Administra-
tors’ Workshop, and Kirk McKusick and John S. Quarterman 
suggested a POSIX Workshop as well as one on C++ and a fourth 
Graphics Workshop for 1987.

Just over 50 people attended the first LISA in Philadelphia 
(April 9–10); about 30 were admitted to the POSIX event in 
Berkeley (October 22–23), where several thousand comments 
and corrections were appended to the P1003.1 draft. The Fourth 
Graphics Workshop was held in Cambridge, MA, October 8–9, 
and C++ was held in Santa Fe, November 9–10, rounding off a 
busy 1987.

Over the past decades, there have been a number of major 
changes where “gatherings” are concerned: first, the USENIX 
Association dropped down to a single annual meeting; parallel 
to that, the number of small- or medium-sized workshops has 
blossomed. I personally think this is less than wonderful. At a 
large semiannual meeting in the late 1980s or the 1990s, one 
might wander into a session on a new OS or a bizarre language or 
on networking hundreds of small CPUs. You might not have had 
colorful acronyms, like SOUPS or WOOT or CSET or JETS or 
HOTSEC, but you had a very large number of interesting people 
in one place.

And you never knew whom you might meet in a corridor or at the 
Scotch BoF.

The last big change was moving from print on paper to bits.

R.I.P. COMPUTING SYSTEMS
One of the things the USENIX Board wanted in 1986-87 was a 
journal that concerned software more than hardware. Think of 
CACM and that “M” for Machinery. So I spoke to folks at several 
academic publishers and came in with a proposal for a quarterly 
journal. It was announced in ;login: 12.6 (November-December 
1987). It first appeared (Mike O’Dell, Editor in Chief) the next 
year, published by University of California Press.

I was Managing Editor for its whole nine-year lifespan. Mike 
was superseded by Dave Presotto after a brilliant seven years. 
MIT Press took over as publisher. Computing Systems: I could 
wax nostalgic and itemize authors and articles, but I’ll refrain 
from doing so.

However, let me note that in 1988, CS published an article by 
Mike Lesk, “Can UNIX Survive Secret Source Code?” In 1990 
an entire issue (accompanied by a CD) was devoted to music. In 
1992 there was an entire issue on Internet search mechanisms. 
And in 1996, a final issue on distributed objects.

I wish it were still being published.

Everything changes: the things we like and those we don’t.

http://www.usenix.org
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Interview with Dr. Dan Geer
R I C H A R D  T H I E M E

Dr. Dan Geer was at the time of this interview [Fall 2000] the Chief 
Technical Officer of @stake, a digital security consulting firm, and 
had recently been elected President of the USENIX Association. 

USENIX is a 10,000-member organization comprising engineers, system 
administrators, scientists, and technicians working on the cutting edge of 
the computing world. Geer, who holds a ScD from Harvard University, was a 
professor at the Harvard School of Public Health and participated in MIT’s 
Project Athena and the development of the X Window System and Kerberos. 
He held executive positions at Open Market, Inc., OpenVision Technologies 
(now Veritas), and CertCo, the leading online risk assurance authority. Geer 
has testified before the House Science Committee and Subcommittee on 
Technology regarding public policy in the age of electronic commerce. He is 
currently (2015) the CISO of In-Q-Tel, a research and development arm of 
the CIA. 

RT: Dan, you were just chosen President of USENIX. What’s the significance of that for you? 
What’s your vision for USENIX? 

DG: I think the best way to thank somebody is to help them out. I got a lot out of that place, 
and I am trying to put something back. That may sound corny, but it’s a fact. I guess my 
momma raised me right.

In lots of ways, USENIX made me what I am. USENIX has kept me from getting too satisfied. 
People who get satisfied stop growing. People who are never satisfied are always curious. 
They keep growing. 

When I try to hire new people, I put a checkmark on the page when I realize that the person 
I’m interviewing is never satisfied with what they know or can do. The smartest people feel 
as if they know the least. Over and over again, USENIX told me things I didn’t know I didn’t 
know. 

I highly recommend that any young person starting out, or even someone not so young, 
should work with program committees for conferences, editorial boards for journals, any-
thing where the interesting traffic is concentrated in your direction. It’s almost impossible 
to lose if you’re serious about putting in the effort. Otherwise you have to search for the best 
work and it’s rarely in one place or conveniently indexed. It’s much more difficult to learn to 
swim if you’re not in the water. 

That’s what I’ve gotten out of it. What I am trying to put back in—maybe it’s my heritage, that 
I’m a security guy—but I’m a professional paranoid. If you think that good times are perma-
nent, you guarantee that they won’t be. USENIX, like everyone else, must be aware of what’s 
changing, what old opportunities are being eclipsed and what new ones are showing up. As 
President I intend to push us pretty hard to obsolete our products before someone else does, 
just as Andy Grove and Jack Welch try to do. 

Richard Thieme  
(www.thiemeworks.com, 
neuralcowboy@gmail.com) 
is an author and professional 
speaker focused on the deeper 

implications of technology, religion, and 
science for twenty-first-century life. He has 
published hundreds of articles, dozens of 
short stories, three books, and has delivered 
hundreds of speeches. A novel, FOAM, is now 
available, and “A Richard Thieme Reader,” 
collecting selected fiction and non-fiction, will 
be published soon. rthieme@thiemeworks.com
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Even for a nonprofit in very good shape like USENIX, it’s 
essential to obsolete our product or someone else will. We need 
to bring on new conferences. The established conferences in 
our game more than pay for themselves, while the brand new 
ones don’t even come close. So there is a cross-subsidy: what you 
already do well allows you to take risks in things you don’t do so 
well. I am pushing pretty hard in that direction.

In the venture capital arena, investors want to invest in compa-
nies that go straight down or straight up. They don’t want a 2% 
grower that makes it impossible to get your money out yet you 
can’t write it off. In some sense, intellectual capital has the same 
characteristics—I want prompt failure or prompt success. I don’t 
want to spend ten years on something that finally struggles to its 
feet. As a wise person said, the cost of anything is a foregone alter-
native. That’s the kind of paranoia I am trying to bring to the job. 

I have always tried to pick jobs where my colleagues would chal-
lenge me. The best jobs I have had, I knew I would be embar-
rassed from day one. 

RT: It’s critical to keep moving out of your comfort zone, to keep 
yourself on the edge.

DG: Yes. I am not an adrenaline sports guy, but maybe it’s the 
same urge applied in a way that has greater long-term value.  

[Editor’s note: There was a lot more in this interview, which will 
someday appear in a collection of Richard Thieme’s interviews. 
We include an exchange near the end of the interview, as we found 
it quite prescient.]

RT:… and anomaly detection and misuse detection. So maybe 
in some gray area we must compromise, and that’s where risk 
management comes in. We may never achieve a stasis at the level 
of totalitarian control, but we are moving in that direction.

DG: Yes. It is unlikely that someone will come to you personally 
and take your privacy away, but children do not have an expecta-
tion of privacy. They only develop it later. So if you don’t know 
that you never had it, how much of a fight will you put up when 
you don’t get it? 

I don’t think it’s possible to go much further in our technological 
world on a “small is beautiful”/egalitarian basis. To continue to 
rail that way is to give away the lead time we have to modify the 
coming culture rather than allow it to wash over us like a wave. 

Source: Richard Thieme, “All Geered Up,” Information Security, 
October 2000, vol. 3, no. 10, pp. 86–92.
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UNIX News
Volume 2, Number 10, May–June 1977

Third Software Distribution
The Third Software Distribution is now being prepared for 
release. We expect to start mailing it out in late July. The 
Software Distribution Center has been moved from Chicago 
Circle to the City University of New York. We all owe Mike 
O’Brien a debt of gratitude for the work he as done in setting 
up the software distribution service. Mike is leaving Chicago 
for the West Coast soon. He prepared the Third Distribution 
and has passed on to me (Mel Ferentz) all of the tapes people 
sent him as well as the entire correspondence file.

The distributions will be prepared on the City University’s 
370/168, which we view as a suitable back-end for a UNIX 
system. Complete details on the distribution will be continued 
in the next Unix News. Those of you who have already sent 
tapes to Chicago will receive your tapes mailed from New 
York. No further tapes should be mailed to Chicago. The 
CUNY Computer Center sells tapes over-the-counter and 
while we will continue to write onto your tape if you send one, 
the preferred medium for us is to write your distribution on 
a virgin 2400 foot tape. An order form will be included in the 
next newsletter.

Urbana Meeting
The Urbana Meeting was attended by over 150 people and  
was a great success. The attendance list will be published  
as soon as we get a tape from Steve Holmgren to replace the 
one he send us that was folded and spindled by our favorite 
postal service.

We have been promised minutes of the meeting which will 
also appear as soon as received.

Children’s Museum Information System
The Children’s Museum has announced the availability of 

its “Information System—Version 3.” A four page product description was distributed at the 
Urbana Meeting. For a copy of the description, more details, or licensing information, contact 
Bill Mayhew.

Future Software Releases
At the Urbana Meeting it was said (announced is too strong a verb) that Bell is preparing 
Programmer’s Work Bench for release this summer with Version 7 of Unix soon thereafter. 
Mini-Unix has been released and LSI-Unix and Mert will probably follow along at some  
later date.

UNIX News, volume 2, number 5, published in June 1977 by Professor Melvin 
Ferentz of Brooklyn College of CUNY, was the last issue of the newsletter under 
that title. In July 1977, the first issue of ;login: The UNIX Newsletter, appeared. 
These excerpts from UNIX News have been reproduced as they appeared in the 
original, including any typographic errors. Note: We have not included the mailing 
list and other addresses and telephone numbers that appeared in the original issue.
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Vrije Universiteit, Amsterdam
From E.G. Keizer

We are using UNIX on our PDP 11/45 for almost a year now and 
are very enthusiastic about it. Our system is somewhat over-
loaded but we hope that the disk drives we ordered will help to 
solve the problem.

Lately we found a “bug” in the UNIX kernel. One of our users was 
having troubles with his program that was switching back and 
forth between single and double precision Floating Point node. 
We discovered that the F.P. registers are saved in the node the 
F.P. processor has at the moment the program is stopped. This 
means that the low order 32 bits of the users double precision 
registers were not saved whenever his program was stopped in 
single mode. By adding setd instructions in m45.s just before 
the lines where the F.P. registers are moved to and from _u, we 
solved the problem. Consequently the F.P. registers are always 
stored in double mode. The programs db and cdb will have to be 
changed to reflect the new situation.

A few months ago somebody noticed that the times stated by 
the time command were somewhat off. Time expects that the 
system command times returns process and system times in 
60ths of seconds. But since we have a 50 Hz power supply, times 
returned those times in 50ths of seconds. He changed time.s 
according to our situation.

We had some problems with the pipe mechanism. When several 
processes were writing simultaneously on one pipe their mes-
sages got intermixed if the pipe pointers reached the end of the 
pipe buffer.

In case somebody is interested in a driver for the old DEC DM11 
multiplexer, we would be glad to send a copy of our driver.

Katholieke Universiteit Nijmegen
From George Rolf

If no one else wrote you about the matter before, here is our fix to 
the ttyn(III) problem mentioned in the February issue of UNIX 
News. I found the bug about 3 months ago.

After the line at reads:	 mov	 buf+2,(sp) 

I inserted	 mov	 buf,r1

	 sys	 stat;dev;buf

	 bes	 er1

	 cmp	 buf,r1

	 bne	 cr1

A similar change has to be made to nroff(I), file: s7/nroff1.s. This 
file contains a slightly different version of ttyn. The following 
commands may be considered candidates for recompilation: em, 
goto, pr, rn, login, mail, mesg, ps, who.

Problems with creat system call on Unix version 6
From George Goble, Purdue University

We have discovered two problems with  the “creat” system call. 
The following sequence of commands will cause “orphaned” files 
(files that are not in any directory) to be created:

chdir /tmp

mkdir a

chdir a

rmdir /tmp/a

ls -l / >orphan

chdir /

The rmdir causes the link count for the /tmp/a inode to goto zero, 
however the inode is not deallocated because it is the shell’s cur-
rent directory. As this point one can create files in the current 
directory. One (except super user) cannot create directories in 
the current directory because mkdir does a stat on “..” which does 
not exist. Upon doing a chdir /, the reference count for the old 
current directory goes to 0, causing deallocation of its inode and 
stranding the newly created files.

The second problem occurs when the maknode call in creat() 
fails due to no inodes on the device. Namei leaves the last direc-
tory inode in the pathname locked because a return is executed 
after the maknode failure. The next process to reference the 
locked inode will go to sleep (and hang!) with PINOD (-90) 
priority.

The fix for the first problem consists of adding an error return 
if the current directory inode has a link count of zero. Below 
is a copy of the existing creat() in /usr/sys/ken/sys2.c and the 
revised one.

Existing creat() in /usr/sys/ken/sys2.c
creat()

{

     register *ip;

     extern uchar;

     ip = namei (&uchar, 1) ;

     if(ip == NULL) {

              if(u.u_error)

                        return;

              ip = maknode(u.u_arg[1]&07777&(-ISVTX) ) ;

              if = (ip==NULL)

                        return;

              open1(ip, FWRITE, 2);

     ] else

              open1(ip, FWRITE, 1);

}
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Modified create() in /usr/sys/ken/sys2.c
create()

{

     register *ip;

     extern uchar;

     ip = namei (&uchar, 1) ;

     if(ip == NULL) {

              if(u.u_error)

                        return;

              if((u.u_cdir->i_nlink == 0) && (fubyte(u.u_arg[0])!= ‘/’)) {

                        u.u_error = ENOENT;

err:                   iput(u.u_pdir); /* namei left parent dir locked */

                        return;

              }

              ip = maknode(u.u_arg[1]&07777&(-ISVTX) ) ;

              if = (ip==NULL)

                        goto err;

              open1(ip, FWRITE, 2);

     } else

              open1(ip, FWRITE, 1);

}

 University of Glasgow
From Alistair C. Kilgour

I am writing to let you know of the formation of a U.K. Unix 
Users Group. The first meeting took the form of a Colloquium 
at Glasgow University on Friday 27th May, attended by about 
40 people. Short Talks were presented on aspects of the kernel 
including the scheduler and the buffer cache system, the struc-
ture of CAC “Network Unix”, the features of the Carnegie Mellon 
INGRES relational database system, and some early experience 
with the Toronto graphics software. During the afternoon session 
the User Group was formally constituted. Two officials were 
elected, myself as chairman and Peter Gray of Aberdeen Univer-
sity as Secretary and Newsletter Editor. It was not felt necessary 
at the present time to elect any form of executive committee.

It was agreed that an attempt should be made to constitute the 
group as a Special Interest Group under the umbrella of DECUS 
U.K. We are seeking approval of this move both from Bell and 
from the DECUS Executive Board. DECUS have agreed to handle 
distribution of the U.K. Unix Newsletter, and will undertake to 
send it only to accredited Unix license-holders, so we don’t foresee 
any problems with Bell. General information about meetings etc., 
will be published in the DECUS U.K. Newsletter, but all system-
specific material will be restricted to the SIG publication.

On the question of languages the appearance in the U.K. of the 
Princeton RT11 FORTRAN implementation was generally 
welcomed, at least by the “engineering” interests. The avail-
ability (subject, of course, to having purchased appropriate DEC 
licenses) of a good FORTRAN which can be configured for the 
full range of hardware is bound to enhance the appeal of Unix in 
non-computer-science departments.

Software Standards
Concern was expressed on several points in the area of system 
standards, particularly in distributed software. Among the 
points raised were the following:

(i) �User group standard software: since it is increasingly difficult 
for U.K. users to attend personally any of the U.S. meetings, 
it would be nice if the views of users outside the U.S. could be 
sought before a piece of software or a system mod. is adopted 
as a standard. In the case of the Yale Shell, we are all delighted 
with it, but future proposals could be more controversial.

(ii) �Assumed hardware: wherever possible distributed soft-
ware should be configured for a “standard” system, with 
instructions for modifications required for other hardware. 
Assumed conventions about pathnames, etc., should be made 
explicit.

(iii) �Documentation: manual pages should be in ‘nroff’ form, 
using the standard ‘tmac.naa’ macro definitions, and have 
extension ‘1’ or ‘6’. Other documentation should include any 
required nroff macro definitions.

(iv) �System calls: the adoption of the ‘terms’ system call as a 
standard was suggested. The group from 56 to 63 should be 
reserved for locally added system calls, and no distributed 
software should make any assumptions about the system 
calls in this range.

Software Distribution
The meeting agreed that Glasgow University Computing 
Science Department should enter negotiations with a view 
to becoming a software distribution centre for the U.K. We 
have three exchangeable HK05 drives, and by the end of July 
should have an 800/1600 bpi magnetic tape drive. We will 
also act as a collection centre for software which U.K. users 
with to contribute to the U.S. distribution centre.

If any U.S. Unix addicts are visiting the U.K. this summer, 
please drop in and see us. (I’m sure that goes for all of the U.K. 
Unix sites).
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A s you read this, Python 3.5 should be hitting the streets with a wide 

assortment of new features and even some new syntax. “New syn-
tax?” you ask. Why yes. Even though Python has been around for 

more than 25 years now, it continues to evolve and sprout surprising new 
features from time to time. In this month’s installment, I’m going to look at a 
seemingly minor part of Python that turns out to be fairly useful—the use of * 

and ** in function arguments, function argument passing, and data handling.

You Want an Argument?
Traditionally, * and ** have been used to write functions that accept any number of posi-
tional or keyword arguments. For example, this function accepts any number of positional 
arguments, which are passed as a tuple to args:

>>> def f(*args):

...     print(args)

...

>>> f(1,2,3)

(1, 2, 3)

>>> f(1)

(1,)

>>> f(4,5)

(4, 5)

>>>

This function accepts any number of keyword arguments, which are passed to kwargs as a 
dictionary:

>>> def g(**kwargs):

...     print(kwargs)

...

>>> g(color=’red’, size=’huge’)

{‘color’: ‘red’, ‘size’: ‘huge’}

>>> g(xmin=0, xmax=-10, title=’Plot’)

{‘xmin’: 0, ‘xmax’: -10, ‘title’: ‘Plot’}

>>>

The *args and **kwargs can be combined with other arguments and even used together as 
long as they go at the end of the argument list and the keyword arguments appear last. For 
example:

def h(x, y, *args, **kwargs):

    ...

A common use of *args and **kwargs is in writing code that’s meant to be very general 
purpose. For example, consider this class definition that makes it easy for someone to define 
simple data structures:
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Seeing Stars
D A V I D  B E A Z L E Y 
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class Structure(object):

    _fields = ()

    def __init__(self, *args):

        if len(args) != len(self._fields):

            raise TypeError(‘Expected %d arguments’ % len(self._

fields))

        for name, val in zip(self._fields, args):

            setattr(self, name, val)

# Examples

class Date(Structure):

    _fields = (‘year’, ‘month’, ‘day’)

class Address(Structure):

    _fields = (‘hostname’, ‘port’)

Sometimes **kwargs is used to write functions that take a large 
number of options that you want specified by keyword only. For 
example:

def config(**options):

    outfile = options[‘outfile’]     # Required argument

    level = options.get(‘level’, 0)  # Optional argument

    ...

config(outfile=’output.txt’, level=20)    # Ok

config(‘output.txt’, 20)                  # Error. 

Passing Argument
The * and ** syntax are also used to pass data as arguments to 
functions. For example, suppose you have this function:

def f(x, y, z):

    ...

If you already have a sequence of arguments or a dictionary of 
keywords, you can pass them as follows:

a = (1, 2, 3)

b = { ‘x’: 1, ‘y’: 2, ‘z’: 3}

f(*a)      # Same as f(1, 2, 3)

f(**b)     # Same as f(x=1, y=2, y=3)

Both of these conventions can be especially useful when working 
with data that you have already obtained somehow but that you 
want transformed into another form. For example, suppose you 
have a list of tuples and a class definition like this:

stocks = [ 

   (‘IBM’, 50, 91.25),

   (‘HPQ’, 75, 37.23),

   (‘MSFT’, 100, 47.80)

]

class Stock(object):

    def __init__(self, name, shares, price):

        self.name = name

        self.shares = shares

        self.price = price

You can easily convert the list into instances using a statement 
like this:

stocks = [Stock(*s) for s in stocks]

The use of * also enables some unusual tricks. For example, 
consider this example of “unzipping” data:

>>> a = [‘name’, ‘shares’, ‘price’]

>>> b = [‘IBM’, 50, 91.25]

>>> # Zip the two sequences into a list of tuples

>>> c = list(zip(a,b))

>>> c = [(‘name’, ‘IBM’), (‘shares’,50), (‘price’, 91.25)]

>>> # Unzip a list of tuples into separate sequences

>>> d, e = zip(*c)

>>> d

(‘name’, ‘shares’, ‘price’)

>>> e

(‘IBM’, 50, 91.25)

>>>

Needless to say, that last step with zip(*c) might require a bit 
more study (left as an exercise).

Keyword-Only Arguments
Python 3 introduced an extension to the * syntax that makes 
it easier to have keyword-only arguments. Specifically, named 
arguments are allowed to appear after an argument with *. For 
example:

def receive(maxsize, *, block=True):

    ...

msg = receive(1024)                  	 # OK

msg = receive(1024, block=False)  	 # OK

msg = receive(1024, False)        	 # Error

def total(*items, initial=0):

    total = initial

    for it in items:

        total += it

    return total

a = total(1,2,3, initial=100)     # a <- 106
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This ability to have named keyword-only arguments can be a 
useful way to clean up library code that might otherwise depend 
on **kwargs. For example, the config() function from earlier 
could be rewritten as follows:

def config(*, outfile, level=0):

    ...

This version will produce better error messages, have a more 
useful help screen, and involve much less code related to han-
dling the arguments. Keyword-only arguments are good.

Wildcard Unpacking
If you have a tuple, it is easy to unpack into separate variables. 
For example:

address = (‘www.python.org’, 80)

hostname, port = address        # Unpack

This all works well as long as the number of items in the tuple 
exactly matches the number of variables specified—if not, you 
get an error. Python 3 allows you to use the * as a wildcard in 
unpacking. For example:

>>> row = (‘Elwood’, ‘Blues’, ‘1060 W Addison’, ‘Chicago’, ‘IL’, 

‘60613’)

>>> first, last, *rest = row

>>> first

‘Elwood’

>>> last

‘Blues’

>>> rest

[‘1060 W Addison’, ‘Chicago’, ‘IL’, ‘60613’]

>>> first, last, *rest, zipcode = row

>>> first

‘Elwood’

>>> last

‘Blues’

>>> zipcode

‘60613’

>>> rest

[‘1060 W Addison’, ‘Chicago’, ‘IL’]

>>> 

Notice how all of the extra values are simply placed in a list. 
Wildcard unpacking can be particularly useful if you’re work-
ing with rows of data of varying length but are only interested in 
some of the values. For example:

rows = [

    (1, 2),

    (3, 4),

    (5, 6, ‘x’),

    (7, 8, ‘x’, ‘y’),

    (9, 10)

]

for x, y, *extra in rows:

    ...

Unpacking and Argument-Passing Extensions
Python 3.5 extends the capabilities of * and ** in some new and 
interesting directions. First, you can use both operations more 
than once when making function calls. For example:

def f(a, b, c, d):

    ...

x = (1, 2)

y = (3, 4)

f(*x, *y)        #  Same as f(1, 2, 3, 4)

x = { ‘a’: 1, ‘b’: 2}

y = { ‘c’: 3, ‘d’: 4}

f(**x, **y)      #  Same as f(a=1, b=2, c=3, d=4)

These extensions simplify code that previously had to assemble 
the arguments by hand. For example, in previous versions of 
Python, you would have had to write the following:

f(*(x+y))

f(*(tuple(x)+tuple(y)))   	� # Safer version to make sure types 

# match in +

kwargs = dict(x)          	 # Make a copy of x

kwargs.update(y)          	 # Merge in values from y

f(**kwargs)

You can also perform unpacking when creating list, tuple, set, 
and dictionary literals. For example:

a = [1, 2]

b = [ *a, 3, 4]       	 # b = [1, 2, 3, 4]

c = [3, *a, 4]        	 # c = [3, 1, 2, 4]

d = [3, *a, *a, 4]    	 # d = [3, 1, 2, 1, 2, 4]

m = { ‘x’: 1, ‘y’: 2 }

n = { **m, ‘z’: 3 }   	 # n = {‘x’:1, ‘y’:2, ‘z’:3 }

In such unpacking, later elements will silently replace earlier 
elements if there happen to be any duplicates. For example:

a = { ‘x’: 1, ‘y’: 2 }

b = { ‘x’: 3, ‘z’: 4 }

c = { **a, **b }        # c = { ‘x’:3, ‘y’:2, ‘z’:4 }
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Although these enhancements look minor, they do enable certain 
kinds of new operations. It is now easy to merge dictionaries as a 
single expression as shown above. This can extend naturally into 
operations involving lists of dictionaries and other structures. 
For example:

s1 = [

    {‘x’: 1, ‘y’: 2},

    {‘x’: 3, ‘y’: 4},

    {‘x’: 5, ‘y’: 6}

]

s2 = [

    {‘z’: 10, ‘w’: 11 },

    {‘z’: 12, ‘w’: 13 },

    {‘z’: 14, ‘w’: 15 }

]

merged = [ { **i1, **i2 } for i1, i2 in zip(s1, s2) ]

# merged = [

#     { ‘x’: 1, ‘y’: 2, ‘z’: 10, ‘w’: 11},

#     { ‘x’: 3, ‘y’: 4, ‘z’: 12, ‘w’: 13},

#     { ‘x’: 5, ‘y’: 6, ‘z’: 14, ‘w’: 15}

# ]

This change also enables a common dictionary type transfor-
mation that I find myself performing with some regularity. For 
example, suppose you have some raw dictionary data read from a 
file such as this:

rows = [

 {‘name’: ‘AA’, ‘price’: ‘32.20’, ‘shares’: ‘100’},

 {‘name’: ‘IBM’, ‘price’: ‘91.10’, ‘shares’: ‘50’},

 {‘name’: ‘CAT’, ‘price’: ‘83.44’, ‘shares’: ‘150’},

 {‘name’: ‘MSFT’, ‘price’: ‘51.23’, ‘shares’: ‘200’},

 {‘name’: ‘GE’, ‘price’: ‘40.37’, ‘shares’: ‘95’},

 {‘name’: ‘MSFT’, ‘price’: ‘65.10’, ‘shares’: ‘50’},

 {‘name’: ‘IBM’, ‘price’: ‘70.44’, ‘shares’: ‘100’}

}

Now suppose you wanted to apply a conversion to some of the 
values (e.g., convert shares to an integer and price to a float). You 
can do this:

conversions = [ (‘shares’, int), (‘price’, float) ]

converted = [ {**row, **{name:func(row[name]) for name, func 

in conversions}}

              for row in rows ]

This does exactly what you want, although I’m willing to con-
cede that it might be too clever for its own good. The alternative 
is to unwind it to this:

converted = []

for row in rows:

    newrow = dict(row)

    for name, func in conversions:

        newrow[name] = func(row[name])

    converted.append(newrow)

Needless to say, that’s not nearly as clever nor preserving of one’s 
future job security.

More Information
If you’re intrigued by some of the new uses of * and **kwargs, 
more information can be found in various PEPs. For example, 
PEP 448 describes the generalized unpacking features added to 
Python 3.5 [1]; PEP 3102 describes keyword-only arguments [2]; 
and PEP 3132 describes the wildcard unpacking of sequences [3].

These are not the only syntax changes to Python 3.5. In future 
installments, we’ll look at some of the new features added to the 
language. In the meantime, you might take a look at the “What’s 
New in Python 3.5” document [4].
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[4] https://docs.python.org/dev/whatsnew/3.5.html.
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D A V I D  N .  B L A N K - E D E L M A N

A ccording to some figures (those at http://w3techs.com/technologies 
/details/cm-wordpress/all/all to be precise), WordPress powers 
24.2% of the sites on the Internet. I don’t have any reason to doubt 

that number. WordPress (WP) has lots of great things going for it when you 
are looking to bring up a Web site containing dynamic content. Beginners 
can grasp it fairly quickly, it has a huge and vibrant ecosystem, a strong 
development effort, oh, and it’s free. It’s my “goto” tool when someone comes 
to me and needs my help building a Web site for their aardvark repair com-
pany or whatnot. It may have started as blogging software, but it has evolved 
far beyond that over the years into a reasonable Web development platform.

So why am I giving you a sales pitch for WP in a Perl column? In addition to making my bias 
clear, I figure if it powers close to a third of the Web sites on the planet, it could be a good 
idea to learn to interact with it via Perl. Why would you want to do this? For me, the best 
reasons center around being able to easily extract information posted on a WordPress site or, 
even better, the ability to post external sources of information right to a WordPress site. For 
example, let’s say you had a process for generating sales reports that took hours of heavy-duty 
computation on a massive data warehouse. It might be very handy to post the results to an 
internal WordPress site every day for people to be able to easily access.

The good news is we are going to be able to draw strongly on past columns and knowledge for 
this effort. One quick prerequisite: I’m going to make the assumption that you have at least a 
passing familiarity with WordPress (you know it has posts, pages, and users, and you know 
how to install plugins) and administrative access to a working up-to-date WP site.

Here’s What We Are Not Going to Do
There are lots of inelegant ways we could interact with WP (some of which we’ve explored in 
this column). For example, we could use something like WWW::Mechanize or Selenium to pre-
tend to be Web browsers to screenscrape the pants off the site or fake like we are typing/click-
ing. I could make you more nauseous by noting that WordPress has a MySQL backend (plus 
access to a file system) so we could just whip out DBI and go to town. Nope, not going to do it.

A much more reasonable approach might be to use the closest thing WordPress has had to 
an external API: the XML-RPC interface it provides via the xmlrpc.php file. And, indeed, 
there have been modules written in days of yore like WordPress::XMLRPC that use this API. 
Even though XML-RPC has been around for quite a while, it doesn’t seem to get much love 
or respect from the WordPress community these days. Part of this could be because XML-
RPC isn’t the simplest of protocols: at the very least you need to understand and know how 
to manipulate XML. But another large part is likely how incomplete the API support is. It 
exposes certain WordPress operations, but it omits whole classes of things you might want to 
do remotely over an API. So what’s a better option if we want to stick with the magical three 
letters “API”?

David Blank-Edelman is 
the Technical Evangelist at 
Apcera (the comments/
views here are David’s alone 
and do not represent Apcera/

Ericsson). He has spent close to 30 years 
in the system administration/DevOps/SRE 
field in large multiplatform environments, 
including Brandeis University, Cambridge 
Technology Group, MIT Media Laboratory, 
and Northeastern University. He is the author 
of the O’Reilly Otter book Automating System 
Administration with Perl and is a frequent invited 
speaker/organizer for conferences in the field. 
David is honored to serve on the USENIX 
Board of Directors. He prefers to pronounce 
Evangelist with a hard “g.” 
dnblankedelman@gmail.com

http://www.usenix.org
http://w3techs.com/technologies/details/cm-wordpress/all/all
mailto:dnblankedelman@gmail.com
http://w3techs.com/technologies/details/cm-wordpress/all/all


62    O C TO B ER 20 1 5   VO L .  4 0,  N O.  5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

There are two choices. Once upon a time, Automattic, the com-
mercial entity that runs the WordPress hosting at wordpress.
com, made available a JSON-based REST service their custom-
ers could use. This was available for wordpress.com, but self-
hosted WordPress sites couldn’t use it. Later this functionality 
was added to their kitchen-sink plugin Jetpack (http://jetpack 
.me), which “supercharges your self-hosted WordPress site with 
cool functionality from WordPress.com.” I’ve not used Jetpack 
on any site I’ve set up, largely because it always seemed a bit 
heavyweight to me even if it does do a ton of cool stuff simulta-
neously out of the box. Plus it introduces some dependencies on 
the wordpress.com backend infrastructure I didn’t really want. 
That takes this option out of the running for me.

The second choice, better in some ways (worse in others, more 
on that in a moment), is a plugin that provides a similar JSON-
based REST API. The later version of the plugin (v2, in beta) is 
meant to be a reference implementation merged into WordPress 
core in short order. This means the functionality will eventually 
be available out of the box without having to install a plugin. I’m 
not entirely sure if this is still the plan for WordPress roadmap, 
but the intent to add this to core is a pretty strong indicator 
of support. That’s the good part of this option. There are two 
aspects that I am less enamored of: v2 of this plugin’s imple-
mentation is relatively new, so information about installing and 
using it is much less mature than what is available for v1 (e.g., the 
API documentation at http://v2.wp-api.org is more a collection 
of section headings than actual documentation). This leads to 
lots of peeking back and forth between v1 and v2 docs and more 
hunting down of arcana/reading of the source than I would 
prefer. In this column, I will largely try to cut through all of that 
and provide some more direct instruction. There is, however, one 
place I’m going to punt on how to do things (my second negative); 
we’ll come to that a little later on.

WP-API Install
Assuming again that you have a functioning and up-to-date 
WordPress install to work with, let’s see how to get the WP-API 
stuff functional. There are 3–4 steps; let’s start with the first 
two and bring the others in when we need them. 

First off, you will want to install and activate the “WordPress 
REST API (Version 2)” plugin. You can either do this by entering 
that phrase into the search box in Plugins -> Add New (be sure 
to get the Version 2 one), or if you want to flex your dev chops, 
you can change to the wp-content/plugins directory of your WP 
installation and clone the plugin from its GitHub repo right into 
place:

git clone git://github.com/WP-API/WP-API.git

(Be sure to activate the plugin once you’ve installed it.)

The second step is to confirm you have a compatible permalinks 
scheme selected (Settings -> Permalinks in the dashboard). Any 
scheme except for the one listed as “Default” will work. Switch it 
away from Default to something else and save the change if this 
is not the case.

To confirm that the installation works, the v1 Getting Started 
guide (http://wp-api.org/guides/getting-started.html) suggests 
you can type the following:

curl -I {URL of your WP site}

The -I tells cURL to make a HEAD request because all we really 
need to see is the headers this returns. If everything is hunky-
dory, you should see something like this:

$ curl -I http://local.wordpress.dev

HTTP/1.1 200 OK

Server: nginx

Date: Thu, 30 Jul 2015 03:17:23 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

X-Powered-By: PHP/5.5.9-1ubuntu4.11

X-Pingback: http://local.wordpress.dev/xmlrpc.php

Link: <http://local.wordpress.dev/>; rel=shortlink

Link: <http://local.wordpress.dev/wp-json>; rel=”https:// 

github.com/WP-API/WP-API”

The second Link: header we get back above is the key: it shows 
that WP-API is installed and ready to take requests at the wp-
json endpoint. As a quick aside, the examples in this column will 
all be using a local WordPress install I have on my laptop pro-
vided by the Varying Vagrant Vagrants package (https://github 
.com/Varying-Vagrant-Vagrants/VVV). If you use Vagrant, be 
sure to check VVV out because it is quite well done.

Now That It’s Installed, What Can We Do?
Now that we know it is working, what can we do with it? Let’s 
actually ask it:

$ curl http://local.wordpress.dev/wp-json/

{“name”:”Local WordPress Dev”,”description”:”Just  

another WordPress site”,”url”:”http:\/\/local.wordpress 

.dev”,”namespaces”:[“wp\/v2”],”authentication”:[],”routes”:{“ 

\/”:{“namespace”:””,”methods”:[“GET”],”_links”:{“self”:”http: 

\/\/local.wordpress.dev\/wp-json\/”}},”\/wp\/v2”:{“namespace”: 

”wp\/v2”,”methods”:[“GET”],”_links”:{“self”:”http:\/\/local 

.wordpress.dev\/wp-json\/wp\/v2”}},”\/wp\/v2\/posts”: 

{“namespace”:”wp\/v2”,”methods”:[“GET”,”POST”],”_links”: 

{“self”:”http:\/\/local.wordpress.dev\/wp-json\/wp\/v2\/

posts”}},”\/wp\/v2\/posts\/{id}”:{“namespace”:”wp\/v2” 

,”methods”:[“GET”,”POST”,”PUT”,”PATCH”,”DELETE”]},”\/wp\/v2\/

posts\/schema”:{“namespace”:”wp\/v2”,”methods”:[“GET”],” 

_links”:{“self”:”http:\/\/local.wordpress.dev\/wp-json\/
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wp\/v2\/posts\/schema”}},”\/wp\/v2\/posts\/{parent_id}\/

meta”:{“namespace”:”wp\/v2”,”methods”:[“GET”,”POST”]},”\/

wp\/v2\/posts\/{parent_id}\/meta\/{id}”:{“namespace”:”wp\/

v2”,”methods”:[“GET”,”POST”,”PUT”,”PATCH”,”DELETE”]},”\/

wp\/v2\/posts\/meta\/schema”:{“namespace”:”wp\/

v2”,”methods”:[“GET”],”_links”:{“self”:”http:\/\/local 

.wordpress.dev\/wp-json\/wp\/v2\/posts\/meta\/schema”}},

...

Note: I could have made this request via Perl (perhaps used GET 
from the LWP::Simple package, HTTP::Tiny, or any of the mod-
ules we’ve discussed in the past for this sort of thing) but cURL 
was already in my shell history.

Egads, that’s one big blob of JSON we get back (I cut it off at an 
arbitrary point; the whole thing is 6443 characters total). It is 
kind of hard to read, so let’s run it through a JSON pretty-printer 
to make it more legible. Again, we could write some Perl code 
to parse and pretty print, but in command-line cases like this, I 
tend to use one of two really great JSON tools: underscore- 
cli (https://github.com/ddopson/underscore-cli) or jq (http:// 
stedolan.github.io/jq/). Both are excellent, so if you haven’t 
encountered them before, I highly recommend you go check them 
out. Let’s run that last request through jq (and show an excerpt 
from the reply):

$ curl -s http://local.wordpress.dev/wp-json/|jq .

{

  “name”: “Local WordPress Dev”,

  “description”: “Just another WordPress site”,

  “url”: “http://local.wordpress.dev”,

  “namespaces”: [

    “wp/v2”

  ],

  “authentication”: [],

  “routes”: {

    “/”: {

      “namespace”: “”,

      “methods”: [

        “GET”

      ],

      “_links”: {

        “self”: “http://local.wordpress.dev/wp-json/”

      }

    },

    “/wp/v2”: {

      “namespace”: “wp/v2”,

      “methods”: [

        “GET”

      ],

      “_links”: {

        “self”: “http://local.wordpress.dev/wp-json/wp/v2”

      }

    },

    “/wp/v2/posts”: {

      “namespace”: “wp/v2”,

      “methods”: [

        “GET”,

        “POST”

      ],

      “_links”: {

        “self”: “http://local.wordpress.dev/wp-json/wp/v2/posts”

      }

    },

    “/wp/v2/posts/{id}”: {

      “namespace”: “wp/v2”,

      “methods”: [

        “GET”,

        “POST”,

        “PUT”,

        “PATCH”,

        “DELETE”

      ]

    },

...

   “/wp/v2/users”: {

      “namespace”: “wp/v2”,

      “methods”: [

        “GET”,

        “POST”

      ],

      “_links”: {

        “self”: “http://local.wordpress.dev/wp-json/wp/v2/users”

      }

    },

    “/wp/v2/users/{id}”: {

      “namespace”: “wp/v2”,

      “methods”: [

        “GET”,

        “POST”,

        “PUT”,

        “PATCH”,

        “DELETE”

      ]

    },

...
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Let’s take a closer look at some of this output. Specifically, I want 
to draw your attention first to the info it printed regarding the 
route available to query post info:

    “/wp/v2/posts”: {

      “namespace”: “wp/v2”,

      “methods”: [

        “GET”,

        “POST”

      ],

      “_links”: {

        “self”: “http://local.wordpress.dev/wp-json/wp/v2/posts”

      }

    },

    “/wp/v2/posts/{id}”: {

      “namespace”: “wp/v2”,

      “methods”: [

        “GET”,

        “POST”,

        “PUT”,

        “PATCH”,

        “DELETE”

      ]

    },

This says I can either make a GET or a POST request for 
http://local.wordpress.dev/wp-json/wp/v2/posts to read or 
change the list of posts on the site. If I want to address an indi-
vidual post (to GET, submit a new one with POST, DELETE it, 
and so on), I can do so at the same URL with the ID for that post 
tacked on to the path. This pattern repeats itself in the previ-
ous output for users, so we now know how to with users of the 
system. Let’s try to get the list of users on the site:

$ curl -s http://local.wordpress.dev/wp-json/wp/v2/users|jq .

[

  {

    “code”: “rest_forbidden”,

    “message”: “You don’t have permission to do this.”,

    “data”: {

      “status”: 403

    }

  }

]

Whoops, that didn’t work—and good thing too! We really don’t 
want anyone with cURL to be able to pull a list of users. That 
leads to the second part of the WP-API install/setup and a bit of 
a screed.

WP-API Authentication
In order for authentication of any type to work, there has to be 
an existing user defined on your site that you will authenticate 
to do the work. If you plan to query information that only an 
admin-level user should have access to (e.g., a list of site users), 
this user will have to be created as an admin. If you don’t need 
that level of access from the API, I encourage you to create a user 
at a lower role or just send unauthenticated requests for publicly 
viewable information. New users for WP-API are created using 
the normal WordPress process (Users -> Add New). For this col-
umn, I created an admin user with the user name “api” and the 
password “api” (yup, security by alliteration, yay!) on my local 
test site.

WP-API has two contexts it operates in, one I’ll call “internal,” 
where code running on the site (e.g., a PHP-based WordPress 
theme), the other “external” (some outside code calls the API 
remotely). We’re going to totally ignore the former and only look 
at the external context. In this context, there are two, maybe 
three mechanisms for authentication.

The first is the least secure one and is only recommended for 
development and testing. This is using the HTTP Basic Authen-
tication found in RFC 2617. To use this, you need to git clone the 
Basic Authentication plugin into place as we did earlier:

$ cd wp-content/plugins

$ git clone git://github.com/WP-API/Basic-Auth.git

and then activate the plugin in the dashboard.

The second and third options are to use OAuth. OAuth is a mildly 
complicated protocol that comes in two incompatible versions 
(1.0a and 2.0) and that is designed to allow a third-party client 
to be given permissions to act on the behalf of a user. So, for 
example, if you install a new Twitter or Gmail client, it is likely 
that the first thing it will do is ask you to authenticate to those 
services and then permit that client to act on your behalf to 
perform certain operations (post tweets, manipulate your mail, 
etc.). This is OAuth in action.

Here’s where it starts to get tricky and we quickly descend down 
a rabbit hole. The WP-API docs suggest that you install an 
OAuth 1.0a plugin from GitHub (“git clone git@github.com 
:WP-API/OAuth1.git content/plugins/oauth-server”; see https:// 
github.com/WP-API/OAuth1) and use that for authentication. It 
is suggested that this plugin will also eventually be incorporated 
into WP core. Ordinarily at this point in the column, we’d go off 
and talk about how OAuth works and how to work with it in Perl. 
I won’t be doing that here for two reasons:
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1.	 The protocol/framework is a wee bit complicated and needs a 
little bit of explanation before you can dive into using it, and I 
don’t have the space.

2.	 I’m annoyed that WP-API’s suggested plugin implements 1.0a 
of OAuth and not 2.0. As far as I can tell, there isn’t a major 
service provider using 1.0a instead of 2.0, so the value of going 
deeper into a barely used protocol is unclear to me. Some say 
that the older version was a stronger protocol, but I’m not sure 
that pragmatically justifies the column space.

Now let me make things even more interesting. There exists 
a commercial plugin (or at least one that would like to charge 
licensing fees) that implements OAuth2. It can be found at 
https://wp-oauth.com. It claims to support WP-API (at least in 
part of the doc, while in another part it claims it doesn’t, sigh). 
I’m also not clear whether it supports the 2.0 WP-API beta ver-
sion either. Because OAuth2 leans on SSL/TLS for some of its 
security, you would want that set up on your site before truly 
using it. I have yet to test it.

Given these complications, I’m going to punt on the more secure 
methods (even though I know it means that somewhere an angel 
isn’t going to get its wings) and just go with Basic Authentication 
in our examples. Just so you don’t feel I’m hanging you out to dry, 
I will mention that the Net::OAuth and Net::OAuth2 modules 
(plus a couple others like OAuth::Lite) do exist, so you can defi-
nitely perform OAuth operations (from both protocol versions) 
from Perl. If you’d like to see another column about just OAuth, 
please drop me a line and I will see about writing one.

To review as we leave the rabbit hole: to use WP-API operations 
of a certain level, you need a suitably empowered WordPress 
user and a way to authenticate as that user installed. We’ll be 
using the Basic Authentication plugin for the latter (boo hiss).

Perl Time
In a previous column about using REST interfaces from Perl, we 
tiptoed up to using Perl modules that provided lots of “do what I 
mean” syntactical sugar. In this column, I’m just going to put the 
pedal to the metal and go right for using that kind of module. 

Let’s start off with getting the list of pages on a site. Our first 
attempt to write code to this would probably look a bit like this:

use WebService::CRUST;

my $w = new WebService::CRUST(

    base        	=> ‘http://local.wordpress.dev/wp-json/wp/v2/’,

    format      	=> [ ‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’ ],

);

# this is the equivalent of

# $w->get(‘pages’);

# we could also write $w->pages;

# yummy syntactic sugar!

my $result = $w->get_pages;

print “Total items: “ . 

  $result->crust->{response}->{_headers}->{‘x-wp-total’},

  “\n”;

foreach my $page ( @{ $result->result } ) {

        print 	$page->{‘id’} . ‘:’ .

              	 $page->{‘title’}->{‘rendered’} . 

              	 “ (“ . $page->{‘link’} . “)\n”;

}

The code creates a WebService::CRUST object and tells it that 
all of our requests are going to start with that URL. It also speci-
fies that we will want to use JSON::XS (the faster JSON parser) 
to decode the responses we get back. The next step is to query for 
all of the pages on the system. As you can see in the comments, 
WebService::CRUST allows us to write code that makes it look 
like pages() or get_pages() is a real method call. This is one of 
the things I like about this module: it makes for very readable 
code, even if it is doing a bit of autoload magic behind the scenes.

For fun (or actually, for foreshadowing), we reach deep into 
the WebService::CRUST::Response object using the crust 
method to pull out one of the headers WordPress sends us in 
response to our query (X-WordPress-Total, which gets down-
cased when stored in the object). This header provides the 
number of items we should expect back from our query. Then 
we proceed to iterate over the response we got back in that 
WebService::CRUST::Response object (via the result method) to 
print out the ID, title, and the URL for each page on the system. 
Here are the results on my local test instance (which I’ve pre-
loaded with a bunch of example pages):

Total items: 248

2:Sample Page (http://local.wordpress.dev/sample-page/)

5434:2008 Festival (http://local.wordpress.dev/archive 

/2008-festival/)

5433:2007 Festival (http://local.wordpress.dev/archive 

/2007-festival/)

5432:2006 Festival (http://local.wordpress.dev/archive 

/2006-festival/)

5409:2012 Festival (http://local.wordpress.dev/archive 

/2012-festival/)

5407:2011 Festival (http://local.wordpress.dev/archive 

/2011-festival/)

5405:2010 Festival (http://local.wordpress.dev/archive 

/2010-festival/)

5403:2009 Festival (http://local.wordpress.dev/archive 

/2009-festival/)
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5305:Pick-Up Band 2014 (http://local.wordpress.dev/archive 

/2014-festival/pick-up-band-2014/)

5280:Saturday Schedule by Location (2014) (http://local 

.wordpress.dev/archive/2014-festival/saturday-in-davis-square 

/saturday-schedule-by-location-2014/)

Hey, wait a second, something is wrong. WordPress says there 
are 248 pages on the system, but it has only returned 10. Wel-
come to the world of pagination. Perhaps showing its blogging 
roots, WordPress wants to hand back the reply one “page” at a 
time. This isn’t entirely out of the ordinary because other servers 
(e.g., LDAP servers) often have a max size for data returned that 
you can only deal with by requesting a chunk at a time. We could 
try to get around this pagination by asking WordPress to create 
pages that are big enough to hold all of the items or even turn off 
pagination, but I think it is better to work within the system than 
try to hack around it.

So how do we get more pages past the first one? If we were 
to peek more closely at what was returned from our request, 
we would notice that WordPress has sent us a “link” header 
(remember that from the beginning of the column?). Here’s what 
it looks like from the request above (it is all one long line):

‘http://local.wordpress.dev/wp-json/wp/v2/pages?page= 

2>; rel=”next”’

That is the URL we will have to request to get the next set of 
results (i.e., the next page). We’ll need to write code that parses 
this header and extracts the next page number, then repeats the 
request. Here’s what that code looks like:

use WebService::CRUST;

my $w = new WebService::CRUST(

    base      	=> ‘http://local.wordpress.dev/wp-json/wp/v2/’,

    format    	=> [ ‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’ ],

);

my $nextpage = 1;

my $result = $w->get_pages( ‘page’ => $nextpage, );

print “Total items: “ . 

      $result->crust->{response}->{_headers}->{‘x-wp-total’},

      “\n”;

print	“Total pages of content: “ .

    	 $result->crust->{response}->{_headers}->{‘x-wp-totalpages’},

    	 “\n”;

while ( defined $result and $nextpage ) {

    foreach my $page ( @{ $result->result } ) {

        print $page->{‘id’} . ‘:’ .

              $page->{‘title’}->{‘rendered’} . 

              “ (“ . $page->{‘link’} . “)\n”;

    }

    ($nextpage) =

      $result->crust->{response}->{_headers}->{‘link’} =~

      /\?page=(\d+)>; rel=”next”/;

    last unless ( defined $nextpage );

    $result = $w->get_pages( ‘page’ => $nextpage, );

}

Let’s focus for a moment on how this differs from the previous 
code. WordPress is willing to tell us how many pages it will take 
to provide the entire result set, so I print that for informational 
purposes. For the real work, our get_pages requests now take an 
argument that is the parameter and the value to be sent with that 
request. Adding this argument means we’ll be requesting:

http://local.wordpress.dev/wp-json/wp/v2/pages?page=N

where N is the value of $nextpage. We print the information 
returned for that page, determine if there are more pages (as 
specified in the link header), and if so, we perform another 
request for the next page. As a quick aside, we could have taken 
the number of pages returned in the X-WP-TotalPages header 
and iterate from page 1 to that value, but I believe it is less likely 
to cause a race condition if we work from the “here’s the next 
page” info we get back on each query instead.

This is the basic pattern for most things we can pull back from 
the API. For example, if we wanted a list of users:

use WebService::CRUST;

my $w = new WebService::CRUST(

    base      => ‘http://local.wordpress.dev/wp-json/wp/v2/’,

    basic_username => ‘api’,

    basic_password => ‘api’,

    format    => [ ‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’ ],

);

my $nextpage = 1;

my $result = $w->get_users( ‘page’ => $nextpage, );

while ( defined $result and $nextpage ) {

    foreach my $user ( @{ $result->result } ) {

        print $user->{‘id’} . ‘:’ . $user->{‘name’} . “\n”;

    }

    ($nextpage) =

      $result->crust->{response}->{_headers}->{‘link’} =~

      /\?page=(\d+)>; rel=”next”/;

    last unless ( defined $nextpage );

    $result = $w->get_users( ‘page’ => $nextpage, );

}
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Almost identical, yes? The only differences are that we add 
some initial parameters to send along authentication with every 
request (in an insecure manner, don’t rub it in) and later on pull 
out different fields from the returned information.

Where Do We Go from Here?
We’re almost out of room, but there are a few important things 
to mention. First off, the examples we’ve seen here all pull a col-
lection of items (pages, users, etc.). If we want to retrieve a single 
item, we can reference that item as a part of the path we request 
by appending the ID we need—for example:

$result = $w->get( “pages/$id” );

Second, we’ve only seen examples that retrieve content. If we 
want to create or modify content on the site, we use the REST 
idea of using other HTTP operations as verbs. Want to create a 
new page or edit a page? Perform a PUT request (details found 
in the v1 documentation) with the right parameters specified as 
arguments to the put() method. 

And lastly, one more advanced topic we didn’t discuss is how to 
use more of the power of WordPress in our interactions. v1 of 
the API had a working “filter” parameter which allowed you to 
pass in a specification the WordPress WP_Query class could 
work with. This means that you could say to WordPress “return 
all of the posts by this author” or “only return a list of publicly 
published posts.” I had difficulty using this facility with the v2 
API because I believe it is still very much a work in progress as 
of this writing. Hopefully, this facility will be up to snuff by the 
time you read this.

In the meantime, enjoy, and I’ll see you next time.
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I’ve been working at home for over a year now, and I can’t help but feel 
that I’m somehow doing it incorrectly. I’m wearing pants for one thing, 
and my hygiene habits have not changed whatsoever (although admit-

tedly I never was a hygiene Olympian). In fact I seem to be experiencing 
very few of the great benefits one hears about, like drinking at inappropri-
ate times, playing video games, not interacting with people, and, well, not 
working.

In their place I’m experiencing a whole slew of not very awesome side effects of having these 
large, luxurious blocks of uninterrupted time to dig in and work on stuff. These include fail-
ing to stop working ever and starting too many side-projects because of all the “extra time” I 
feel like I have (that I don’t actually have). I even have meetings. Oh crap, in fact I have meet-
ings right now; I’ll be right back.

Okay sorry, that’s another problem: meetings sneak up on me now, and nearly always coincide 
with one meal or another that I’m supposed to be eating. An unlucky consequence, I sup-
pose, of the dissonance between the people in my life who make meetings and live two hours 
ago, in California, and the people in my life who make lunch and dinner and who live now, 
in Texas. It also has begun to seem weird that we have times for these things at all, eating, 
meeting, and working, that is.

When I applied for this job, my first several interviews were undertaken by way of Google 
Hangouts. This was a very real logistical concern for me at the time because I was running 
a snowflake everything-compiled-from-scratch Linux laptop, and, well, you know how that 
goes with cameras, soundcards, printers, and etc. I got it all sorted out in time, and experi-
enced my first few video-chats as job interviews, which, by the way, is not a very good idea. It 
was extremely awkward and I kept spacing out. It felt like I was watching a job interview on 
TV, so I kept forgetting to answer.

Anyway, I spend an inordinate amount of time on Hangouts, appear.in, and various other 
hosted impromptu meeting services these days, and I’ve noticed that whenever Hangouts 
is going, my CPU fans kick on. This is pretty noticeable on my MacBook, but downright dis-
tracting on my ThinkPads. My poor little ThinkPad x120 gasps and wheezes like it’s sprint-
ing the last 30 feet of an ultra-marathon when I try to run Hangouts on it.

Being a monitoring sort of person, I got curious about this behavior, and brought some tools 
to bear to help me visualize the overhead, but I pretty quickly got myself entangled in the 
question of whether I was comparing apples to apples. I mean literally. Is it the same thing to 
measure CPU utilization on an Apple vs. a Linux box?

At this point I should point out that not only am I lazy by nature, but I also really don’t have 
the time to put any actual effort into this, so I figured the shortest path was probably to get 
my hands on a cross-platform monitoring agent. That would at least make me feel like I was 
measuring both systems with the same ruler, and that’d probably help me to brute-force 
ignore the screams of protest from my inner engineer.
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Because I spend my time these days thinking about and working 
with telemetry processing systems, I haven’t really looked at the 
state of client-side data collection tools lately (especially tools 
that might work on a Mac). There aren’t many cross-platform 
monitoring agents that include support for OS X. The most 
robust solution is probably DataDog, but that was overkill for my 
purposes. I wanted something I could use for a few days and then 
get rid of, and setting up DataDog would entail … artifacts like 
emails, and passwords on Web sites, and well-intentioned pre-
sales, and support representatives.

Really, I just wanted something like good-old GKrellM, so I spent 
a few minutes trying to get GKrellM to build on my Mac, which 
was fun but fruitless. I was also a little surprised to find there 
was no homebrew recipe for GKrellM; “brew install X” so rarely 
fails me nowadays. Then I remembered NCPA.

NCPA, or the “Nagios Cross-Platform Agent,” is a monitoring 
agent built and maintained by the folks at Nagios Enterprises. 
It’s a cross-platform Python script that is distributed in binary 
form (via cx_Freeze). In many ways, it’s exactly what you’d 

expect if you asked Nagios Enterprises for an agent. It’s small, 
easy to work with, and, out of the box, it doesn’t really know how 
to monitor very much of anything. It can enumerate the run-
ning processes and measure CPU, Memory, Disk, and Network 
utilization. And it does a great job of detecting all of these things 
(it sees all of my vmnet network interfaces, for example), but like 
its big brother it depends on plugins to do the heavy lifting, and 
that’s a good thing IMO.

I’d never tried NCPA, so I thought this would be a great opportu-
nity. It, along with Nagios Core and the rest of the open source 
software made by Nagios Enterprises, is on GitHub. I must be 
getting old, though, because I just went and grabbed the official 
binary distributions of NCPA for OS X and Debian from [1]. The 
Linux install was pretty much what you’d imagine: one dpkg-i 
and it was up and running.

The Mac put up a little more resistance. NCPA came packaged 
in a disk-image (.dmg file), which contained an installer shell 
script called install.sh. I could not chmod the script to make it 
executable because .dmg’s are a read-only file system. All of my 

Figure 1. NCPA’s spartan but functional built-in Web interface
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attempts to remount it as R/W were mockingly rejected by OS X. 
Giving up on that, my first few attempts to indirectly execute the 
script with, for example, “sh -c” were also rebuffed, but…

/bin/sh < /Volumes/NCPA-1.8.1/install.sh

…worked for me.

Like Nagios, NCPA installs itself to /usr/local/ncpa by default. 
Inside this directory is an “etc” where you will find an ncpa.cfg file 
that controls NCPA’s behavior. I left most of this alone, changing 
only the “community_string” attribute, which specifies the auth 
token you use to interact with NCPA.

Compared to the other agents, like Check_MK, commonly used 
in the Nagios solar system, NCPA is a lot easier to install and 
reason about. It eschews custom protocols and provides a Web-
API that responds in JSON over HTTPS on tcp/5693 by default 
(change this along with everything else in the config file). This 
is pretty great. You can interact with NCPA using cURL or any-
thing else that can speak HTTPS, and you can parse its output 
with jq, or anything else that groks JSON.

It even comes with a Web UI that draws graphs!

Granted, it’s missing some fundamental features that I look for 
in a metrics analysis tool. Its y-axis handling leaves a lot to be 
desired, for example, but the UI is fine for ad hoc checking out 
individual boxes, and obviously it was more than sufficient for 
my current purposes. Anyway, NCPA really isn’t here to be an 
analysis tool; it’s a lightweight, easy-to-run data collection agent. 
One that, if I were in the market for an agent, is actually a quite 
compelling choice.

I mean look at this API! There are eight top-level URIs: memory, 
interface, agent, CPU, disk, agent, process, and services. I can, 
for example, get a JSON dump of the running processes on my 
MacBook at

https://localhost:5693/api/processes/

I can get the free memory with

https://localhost:5693/api/memory/virtual/available

I’m oversimplifying just a tad there. If you’re doing this outside 
of a browser, you’ll need to pass in the token by setting it as an 
attribute in the URL like so:

https://localhost:5693/api/memory/virtual 

/available?token=zomgsecret

There are a slew of other attributes we can set: for example, get 
Nagios-style output by setting threshold attributes like so:

https://localhost:5693/api/memory/virtual/available?token 

=zomgsecret&warning=1&critical=2&check=true

If you copy or symlink some standard Nagios plugins into /usr/
local/ncpa, you can even run them from the API from the agent 
tree like so:

https://localhost:5693/api/agent/plugin/check_thing 

/”First Arg”/”Second Arg”/?token=zomgsecret

You’ll get back a JSON blob of the plugin’s output that looks like 
this:

{ “value”: { “returncode”: 0, “stdout”: “Thingy looks ok! First 

Arg, Second Arg\n” } }

If you aren’t already using check_mk and especially if you’re 
running NRPE/NRDP, then you might want to consider running 
NCPA as a replacement for your current remote plugin-execu-
tion framework. In my admittedly teensy experience, it’s been 
simple and painless, and has a slew of features built in for emit-
ting to preexisting NRDP daemons and otherwise cohabitating 
with your existing Nagios toolchain.

It certainly scratched my itch for comparing the utilization char-
acteristics of the various video conferencing tools I use every 
day (for the moment, it looks like appear.in on my MacBook is the 
best option). The next time I’m helping someone design and/or 
build out their Nagios infrastructure, NCPA will definitely play 
a role.

Take it easy.

Resources
[1] NCPA agent: https://assets.nagios.com/downloads/ncpa 
/download.php.
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Let’s start with a recent paper that is very much worth your time to 
read: “Global Cyberspace Is Safer than You Think: Real Trends in 
Cybercrime” by Eric Jardine and released by Chatham House this 

past July [1]. Its message is exactly that given by its title: that cyberspace is 
getting better—not getting worse, that cyberspace is getting more safe—not 
getting more dangerous. The argument for that message is that thinking 
cyberspace is ever worse, ever more dangerous comes from failing to properly 
normalize whatever measures of safety you’ve heretofore been paying atten-
tion to. It is only fair to quote its front matter directly:

Information technology (IT) security firms such as Norton Symantec and 
Kaspersky Labs publish yearly reports that generally show the security of 
cyberspace to be poor and often getting worse. This paper argues that the level 
of security in cyberspace is actually far better than the picture described by 
media accounts and IT security reports. Currently, numbers on the occurrence of 
cybercrime are almost always depicted in either absolute (1,000 attacks per year) 
or as year-over-year percentage change terms (50 percent more attacks in 2014 
than in 2013). To get an accurate picture of the security of cyberspace, cybercrime 
statistics need to be expressed as a proportion of the growing size of the Internet 
(similar to the routine practice of expressing crime as a proportion of a population, 
i.e., 15 murders per 1,000 people per year).…In particular, the absolute numbers tend 
to lead to one of three misrepresentations: first, the absolute numbers say things are 
getting worse, while the normalized numbers show that the situation is improving; 
second, both numbers show that things are improving, but the normalized numbers 
show that things are getting better at a faster rate; and third, both numbers say that 
things are getting worse, but the normalized numbers indicate that the situation is 
deteriorating more slowly than the absolute numbers. Overall, global cyberspace is 
actually far safer than commonly thought.

In short, Jardine is saying that the denominator matters, i.e., that reporting counts of any-
thing is poorer decision support than reporting rates and proportions, that counts of events 
per unit time will, and must, mislead. It is incorrect to talk about how much mayhem there is 
without talking about how much opportunity for mayhem there is.

Jardine’s line of critique is entirely straightforward, and cyberspace is not the only place that 
such arguments about the validity of inference are taking place. As a prominent example, 
consider Stephen Pinker’s 2012 book The Better Angels of Our Nature: Why Violence Has 
Declined. In a synopsis in the Wall Street Journal, he wrote:

For Good Measure
The Denominator
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We tend to estimate the probability of an event from the 
ease with which we can recall examples, and scenes of 
carnage are more likely to be beamed into our homes 
and burned into our memories than footage of people 
dying of old age. There will always be enough violent 
deaths to fill the evening news, so people’s impressions 
of violence will be disconnected from its actual 
likelihood.

This is, again, an argument for looking at rates and proportions 
rather than counts. But in a direct cross, Nassim Nicholas Taleb 
responded with a paper, “On the Super-Additivity and Estima-
tion Biases of Quantile Contributions” [2], in which he argues 
that when a distribution is fat-tailed, estimations of parameters 
based on historical experience will inevitably mislead:

When I finished writing The Black Swan, in 2006, I 
was confronted with ideas of “great moderation,” by 
people who did not realize that the process was getting 
fatter and fatter tails (from operational and financial 
leverage, complexity, interdependence, etc.), meaning 
fewer but deeper departures from the mean. The fact 
that nuclear bombs explode less often than regular 
shells does not make them safer. Needless to say that 
with the arrival of the events of 2008, I did not have 
to explain myself too much. Nevertheless people in 
economics are still using the methods that led to 
the “great moderation” narrative, and Bernanke, the 
protagonist of the theory, had his mandate renewed.

And to highlight his central point:

[We are] undergoing a switch between [continuous low 
grade volatility] to … the process moving by jumps, with 
less and less variations outside of jumps.

You will possibly find Taleb’s paper difficult, but he is speaking 
to our interest in cybersecurity—are we getting worse or are we 
getting better? Is there anything we are currently measuring 
that is leading us to conclude that we are doing the right thing(s) 
as inferred from measurements of what we believe to be out-
comes? Are our inferences confounded with little understood 
assumptions about thin tails (Gaussian) when we are actually 
in a fat-tailed (power law) situation? Are we moving into a world 
where, as Taleb suggests, we are switching from continuous low 
grade volatility to less frequent but much larger jump changes in 
the state of the (our) world?

The present author asked this question in a naive form in the 
spring of 2008 at SOURCE Boston:

Everyone but everyone classifies the 9/11 attack as out-
of-nowhere—a black swan to use Taleb’s terminology. 
That attack changed everything because it was not 
foreseen. It was a physical attack, but we, here, deal 
in digital attacks. Many of us have heard the phrase 
“Digital Pearl Harbor,” and many of us here have 
wished we hadn’t. If we talk with a member of the 
general public, we are likely to hear something like, 
“Look, you paranoid worry-warts keep predicting a 
big problem and if it was all that likely it would have 
happened by now. In fact, every day that goes by without 
something like that happening makes it more likely that 
it never will. Would you just stop bothering me?”

Now, a statement like, “That we have gone this long 
without anything big happening” is precisely the kind 
of statement that expects stability to continue, and 
which is necessary but not sufficient for a punctuation 
of that stability. If we look at 9/11 as digital security 
people, we might remember that the Nimda virus 
appeared the evening of September 18, 2001, i.e., a 
week later. Until that point, we’d never seen a virus 
that had carried more than one method of attack, and 
Nimda had five. So, to begin with, even if we had known 
everything about each of those five methods, including 
population statistics for the numbers and connectivity 
of vulnerable machines, we would not have predicted 
the ability of Nimda to spread as it did as we had not yet 
thought to model the union of multiple vulnerabilities.

That, however, is not all. For writers of classic virus 
attacks, the measure of their success is the energy 
differential between the first entry into a given target 
and the second, i.e., the bigger the difference in how 
hard it is to break in the first time and how easy it is to 
break in the second time, the bigger the win. The lowest 
energy way to maximize this energy differential is to 
install a new back door. Nimda followed this pattern 
and installed such a back door.

Because it had five methods for propagation and 
because it was evidently written with speed in mind, 
Nimda was also the fastest spreading virus we had yet 
seen. That rate of spread is known among infectious-
disease people as virulence, and we’ll return to that in 
a moment.
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As you know, nearly all malware in the wild persists 
there. An older virus called E911 was such an example. 
E911 would cause your modem to dial 911 repeatedly; 
that is all it did. Now when I call you on the phone, the 
circuit stays up until the calling party disconnects. 
When I call 911, however, the circuit stays up until the 
called party disconnects, a difference that is done at the 
switch for the obvious reason that you do not want the 
intruder to cut the phone line and the police dispatcher 
to have to say, “Now whom was I talking to?” For the 
police to hang up on a 911 call when the calling party 
has gone away requires a human decision, made under 
uncertainty, done at human time scales. Because of 
this, it is possible to saturate a 911 console and that is 
precisely what the E911 virus was crafted to do.

The E911 virus was old and forgotten on September 18, 
2001, but it was still available on the Net, and, of course, 
the Internet in the fall of 2001 was still dominated 
by dial-up connections. We got lucky in the simplest, 
stupidest, dumb luck kind of way. No jackass had the 
imagination to grab the E911 virus and re-target it 
at the back door Nimda was busy installing at warp 
speed everywhere while we all were preoccupied 
with watching CNN 24x7. If someone had done that, 
then everyone in America would have gotten up the 
morning of September 19 only to find that there was 
no emergency service available nationwide; it would 
have been turned off everywhere and all at once, like a 
light switch. While that would not have been a disaster 
of a physical sort, I submit that it would have been a 
grand mal seizure of the public confidence. Clinically, 
that defines terror; it would have required no planning 
just opportunistic reaction, and it would have been an 
unpredictable event whose downstream influence was 
out of all proportion to its concrete effects. It would 
parallel the Treasury’s position that money lost or 
banks folded is a private tragedy of no importance, but 
that public loss of confidence in the financial system 
must be avoided.

On September 18, 2001, we escaped a public loss of 
confidence by luck and luck alone. As such, the next 
time someone tells you that the absence of a major 
Internet attack to date makes the absence of one 
tomorrow more assured, you can remind them that this 
proof (that we escaped such an attack by dumb luck) 
puts to bed any implication that every day without such 
an attack makes such an attack less likely. It does not 
make it less likely, but what it does most assuredly do is 
make it more surprising when it does come.

So is cyberspace getting worse or getting better? Jardine asks 
us to normalize how many events did occur to the size of how 
many events could have occurred, not how many did occur in an 
interval of unit time. He is correct that the possible event space 
is expanding dramatically, accelerating in its expansion by all 
accounts. Part of that is network extent, which I’ve estimated 
as having a 35% compound annual growth rate [3]. Part of that 
is the question of attack surface, per se [4]. In any case, Jardine 
is right that when we count events, we are misleading ourselves 
as to whether we are getting better or getting worse. But does 
changing the divisor alone really make the correction we need?

There is a power law here, to be sure. Wikipedia’s concise 
reminder (under “Power Law”) is that “Power-laws have a 
well-defined mean only if the exponent exceeds 2 and have a 
finite variance only when the exponent exceeds 3; most identi-
fied power laws in nature have exponents such that the mean is 
well-defined but the variance is not, implying they are capable 
of black swan behavior.” That, my friends, is our situation—
cyberspace does not have a well-defined variance for what can 
go wrong and hence cyberspace is unarguably capable of black 
swan behavior.

Elroy Dimson famously suggested that the definition of risk is 
that “more things can happen than will happen” [5], and our rate 
of growth in interdependence is absolutely making the number 
of things that can happen larger. Unfortunately, complexity 
prevents us from counting the number of things that can hap-
pen, and hence Jardine’s argument that we divide the number 
of things that did happen by the number of things that could 
have happened is correct in spirit but would be irrelevant if our 
estimate of the number of things that could have happened were 
to be wrong.

Yet if the denominator is the number of things that could have 
happened and we severely underestimate that, doesn’t that make 
the news even better? Taleb says “no” emphatically; the fat tails 
of power law distributions enlarge the variance of our estimates, 
leading to less frequent but more severe failures (The Black 
Swan). The best one could say is that most days will be better and 
better but some will be worse than ever. Everything with a power 
law underneath has that property (think earthquakes and whether 
one is overdue in California), and cyberspace’s interconnectivity 
and interdependence are inherently power law phenomena.

Put differently, are pessimists getting the right answer for the 
wrong reasons? Is what Pinker said about the memorableness of 
televised violence making violence seem more prevalent than it 
is both true and yet misleading? Is what Jardine said about how 
looking at time series of cybersecurity failures is inherently mis-
leading when the numbers of failures are not normalized in some 
way? Is what Taleb describes as the trivializing of risk when a 
power law is mistaken for a Gaussian the heart of what is in play?
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In an article in the San Francisco Chronicle [6], Thomas Lee 
recounted how

I found myself at a dinner in a fancy Menlo Park hotel 
to discuss cybersecurity with the executives of top 
Silicon Valley firms. [T]he mood was decidedly grim.

“A devastating cyberattack is likely to occur in the next 
five years,” said a top HP exec. Companies are nowhere 
near prepared for it. Neither are the feds. There were 
plenty of comparisons to hurricanes and earthquakes.

“A slow-moving train wreck,” one executive said.

There [is] a kind of collective cognitive dissonance in 
Americans’ thinking about tech. We’ll eagerly pursue 
new innovations like the Internet of Things and 
electronic health records even as we’re increasingly 
aware how vulnerable such technology makes us to 
terrorists and criminals.

What struck me about the dinner, attended by 
executives from Hewlett Packard, Cloudera and PayPal, 
along with academics and investors, was the naked 
pessimism expressed by those in the room. Nobody 
even tried to put a happy face on the situation.

Are those executives, academics, and investors getting the 
right answer for the wrong reasons? Are Jardine and/or Pinker 
getting the wrong answer for the right reasons? Is it a truism 
that when risk cannot be estimated it will therefore be under-
estimated [7]? How do we tell if we are getting better or getting 
worse, and how can we explain this to citizens, regulators, and 
reinsurers? Is Taleb right that fat-tailed distributions and asym-
metry are where risk lies and, which is more, that the apparent 
suppression of small failures is “balanced” by yet-to-be-observed 
black swan excursions?
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R O B E R T  G .  F E R R E L L

I am not a computer scientist. I don’t designs ’em, I just runs ’em. When 
talk ’round the cocktail party buffet table turns to B-trees, linked lists, 
and why bubble sorts are awful, I grab another stuffed jalapeño and look 

for a less esoteric knot in which to mingle. Consequently, I am in no position 
to pontificate with authority or even basic coherence on any topic that con-
tains a CS-related word more advanced than “algorithm.” I had probably been 
a sysadmin for ten years before I learned what that one meant.

Computer science and systems administration are very different disciplines. Whenever I 
see a job opening for a system administrator that lists as one of its requirements an under-
graduate degree in computer science, I roll my eyes and write that company, or at least their 
HR department, off as personae sans clue. Requiring a CS degree for your sysadmins is like 
insisting a Formula 1 driver possess a degree in traffic engineering. It’s essentially a non 
sequitur. I think I’ve ranted on this before. 

We used to joke that the only truly secure system was one with no I/O devices that had been 
encased in concrete and dumped into the Challenger Deep. Apparently that was no joke. 
Recent events have shown us that any system connected to another not only can but eventu-
ally will be compromised. I would now go so far as to say if you have ever used a credit card, 
applied for a US security clearance, or shopped online, your information is available to any-
one who cares to purchase access to it. You and I and virtually everyone you know have been, 
to bring the subject into sharp focus, quite thoroughly pwned.

Prior to becoming a full-time writer I made my career, such as it was, in information secu-
rity. Back in those days we naively believed that, were proper precautions taken and best 
practices followed faithfully, you could operate an enterprise-level network in relative safety 
where the vaunted C-I-A (confidentiality, integrity, and availability) were concerned. It’s 
become increasingly obvious over the past few years, however, that networking is rotten at 
its most fundamental core, security-wise, and can’t be fixed. I think the only sensible way 
to proceed from this point forward is to assume that every single bit of data you place in any 
networked environment will be, without any realistic possibility of sanctuary, compromised. 

My personal solution, were money and profound inconvenience no obstacles, would be to tear 
the entire network infrastructure down and start over again from square one. In my ideal-
ized network protocol, which I will call the “No-Eavesdropping Data Transfer Protocol,” or 
NEDTP, all connections would be point-to-point and determinative, meaning every device 
knows for an indisputable fact the identity of the other devices to which it is attached. No 
spoofing is possible. No man-in-the-middle attacks are possible. When a packet comes in, its 
origin and data integrity are assured by the simple expedient that every link along the way is 
known and any tampering modifies the integrity hash in an irreversible manner. This would 
suck from a privacy standpoint, but what we have now isn’t exactly exemplary in that depart-
ment. At least in my world you could buy crap online without needing your phone in the other 
hand to cancel that account when, moments later, the first inevitable fraudulent charge came 
through.
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/dev/random

How easy would this be to implement? Beats me. I’m just the 
idea guy here. If I really had an unhackable network protocol, 
I’d be rubbing elbows with Elon Musk and having craters on 
Charon named after me. I’m just a humorist, after all. But I do 
know something needs to be done. I’m tired of getting emails 
and/or snail mail letters every other week announcing that yet 
another of the supposedly secure data archives to which my life’s 
statistics are entrusted has been breached by hackers working 
for career criminals or the unfriendly state du jour. I have more 
free subscriptions to LifeLock these days than pairs of wearable 
shoes.

Maybe we should just stop trying to protect our vital informa-
tion. If we all simply proceed on the presumption that every 
purchase, every bank account, every electronically enabled 
transaction of any sort is being monitored by criminals who fully 
intended to exploit whatever information we provide in order to 
conduct them, we might actually be safer. Instead of established 
account numbers, we could all use one-time pads that ceased 
to be of further utility the moment they were used. That pretty 
much describes all of my credit accounts, anyway.

I’d like to devote the rest of this column to addressing the thorny 
issue of operating systems, specifically the requirement thereof. 
Way back in the Cretaceous era of computing someone decided 
that just having a computer wasn’t enough: it needed to be usable 
for something. So long as all users were engineers and deeply 
competent in machine language, the usability monster did not 
dare raise its misshapen head, but once the proposal was put 
forth that people who were not married to the system might 
want to do computing as well, the toxin-belching chimera was 
released into the wild.

It became obvious before long to those tasked with implementing 
this radical idea that some form of interface between the human 
who spoke a rich language full of nuance and complex syntacti-
cal rules and the machine that only made use of ones and zeroes 
was going to be needed. Various solutions were suggested to 
fulfill this requirement, the battles among the various camps 
reaching epic proportions at times. After much acrimony and 
several spoiled friendships, the basic operating system design 
that we know and love/loathe today emerged victorious.

What alternatives do we have to the familiar architecture? I, for 
one (because multiple personalities are so far not one of the men-
tal aberrations with which I am saddled), would prefer that oper-
ating systems be stripped down. The examples we have today are 
so bloated with “features” that people spend huge chunks of their 
careers just trying to understand them. That’s messed up, if you 
think about it. These are devices that are supposed to simplify 
our lives so we can devote more time and attention to the stuff 
that really matters, not occupy vast tracts of neocortical real 
estate in and of themselves. 

Imagine needing a six-week course just to be able to make toast 
with your toaster. Ponder if you dare the impact of similar 
complexity on the efficient operation of your electric toothbrush. 
Except for those holding the Certified Powered Dental Cleansing 
Appliance Operator designation, we’d all be toothless.

I didn’t intend to draw a parallel between operating systems and 
dental hygiene when I started out, but that’s the nature of cre-
ative writing. Sometimes when you dig for gold you come across 
earthworms instead. When that happens it’s time to go fishing. 

I’ll be out in the boat. 
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The Essential Turing: The Ideas That Gave Birth to 
the Computer Age
B. Jack Copeland, ed.
Oxford University Press, 2004, 614 pages 
ISBN 978-0-19-825080-7

It’s really good to see Alan Turing finally getting his due in the 
popular media. He’s been a large figure in the mathematical 
foundations of modern computing from the 1930s (along with 
John von Neumann and Emil Post, to name just a couple) for 
quite a long time. Despite this, and despite the fact that Tur-
ing’s work is often glossed in elementary computing texts (who 
hasn’t at least heard of a Turing machine?), the actual papers on 
which his reputation is based are not often studied by students 
of computer science or system administration. It’s certainly 
not necessary anymore than it’s necessary to read Copernicus, 
Galileo, or Newton in the original Latin to be able to do physics 
or calculus, or to read Euclid in Greek to do geometry. For me, 
though, something draws me to those original texts.

Turing’s work contains much more than his wartime work on 
Enigma and the justifiably well-known “On Computable Num-
bers.” During his life Turing worked on mathematical topics in 
artificial intelligence and even artificial life, anticipating the 
discovery of DNA by positing a computational underpinning 
to the origin and formation of biological structures. Copeland 
presents 16 publications on these four topics, ranging from 
peer-reviewed papers, to a letter from Turing and three others 
at Bletchley Park that was hand delivered to Winston Churchill 
to request additional resources for their code-breaking work, to 
personal mail to his mother during his stay at Princeton before 
the war. In each case, Copeland provides background and con-
text to help the reader fully appreciate the main texts.

Many of the examples and arguments in Turing’s essays may 
seem obscure or dated to someone who is already familiar 
with lambda calculus (through the use of Lisp or other modern 
functional programming languages). A number of them have a 
decidedly mathematical rather than computational bent, which 
is understandable when you realize that Turing was writing 
at a time when no real machines existed or were even under 
development. It remains remarkable to me that Turing and his 
colleagues, Alonzo Church, von Neumann, Post and others, 
conceived these ideas entirely in the abstract. When contrasted 
with today’s methods of prototyping and fast-failure, the rigor 
involved is impressive (at least to a non-mathematician like 
myself).

The computational and mathematical writings here are pre-
sented in essence and more clearly in modern texts. If you are 
already familiar with Turing and his work through popular 
media or formal education in computer science and software 
development, you are unlikely to learn anything essential to your 
work. But you will gain insight into the range of topics to which 
Turing contributed and to the times and environment in which 
he worked as well as the pleasure of working through his original 
presentations.

I hope you will.

Postscript: If this kind of reading appeals to you, you might also 
be interested to find that Stephen Hawking has, over the past 
decade, released several edited volumes containing the founda-
tional works of classical physics, quantum physics, and mathe-
matics, translated into English and annotated, for those, like me, 
who feel the call to read them: On the Shoulders of Giants: The 
Foundations of Physics and Astronomy; The Dreams That Stuff Is 
Made of: The Most Astounding Papers of Quantum Physics—and 
How They Shook the Scientific World; and God Created the Inte-
gers: The Mathematical Breakthroughs That Changed History. 

Drift into Failure
Sydney Dekker
Ashgate Publishing Ltd., 2011; 220 pages 
ISBN 978-1-409402221-1

I think the most striking thing I found in Drift into Failure was 
the final section of the first chapter. That section was titled 
“Why we must not let Drift into Failure become the next folk 
model.” (The previous section was titled “Great title, lousy meta-
phor.”) The entire chapter was a sort of apology, although I think 
it was meant to set a framework for the rest of the book.

You see, the book is about how to think about failure, and more 
precisely, how to think about and analyze events in complex 
(nonlinear, to use a mathematical term) systems. The first and 
most important feature of these systems is that they will exhibit 
unpredictable behavior at times. This is the very nature of com-
plexity, which brings us to the title of the first chapter as a whole 
(I’m working my way out of the Russian doll I built): “Failure 
Is Always an Option.” If you’re looking for a way to eliminate 
failure, you’re reading the wrong book. Or, more significantly, 
you’re doomed to fail, and you should understand how the world 
really works and pick an achievable goal: understanding how 
failures happen, looking for the human behaviors that increase 
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the likelihood of failure (they’re not what you would think), and 
knowing when not to waste money “solving” a problem that will 
never happen again.

Throughout the book, Dekker seems to be aware of the tug of 
human nature. This is explicit in what he writes but also seems 
to influence how he writes it. We, modern humans, both by 
nature (psychology) and culture (the legacy of Descartes and 
Newton), expect the world to work in a predictable, mechanical, 
linear way. Asking us to give up the certainty of the Clockwork 
Universe is a tough sell. We want to be safe, we want to be in 
control. The argument too is tough: “You want to be certain? 
You can’t be certain, give up.” We all answer, “Of course we 
can! Watch,” and we find The Part That Failed and say, “There! 
That proves I can.” Dekker is in the position of trying to prove a 
negative, to show that while you can always isolate “the cause of 
failure” after the fact, you cannot in principle prevent all failures 
by eliminating all points of failure. He knows this and is careful 
never to offer “the solution.”

It’s scary to realize that we are not in control in the way we want 
to be. Dekker’s argument is that we have two choices: ignore 
the fact that we’re building and depending on complex systems 
and continue to waste time and effort trying in vain to be 100% 
safe, or accept that failure is inevitable, but learn to minimize it 
systematically rather than reductively.

Dekker is trying to show that what we get through our reduction-
ist impulses isn’t what we think it is. In that quest he lays out 
a series of well-known catastrophic failures of technology and 
analyzes the analysis of the failure and response to the findings. 
These failures range from a single point mechanical failure that 
brings down an airliner to the systemic collapse of Enron. Each 
resulted at its root not from some point failure, but from a series 
of small, localized, apparently rational decisions that, when seen 
from a higher scale and in light of the now-apparent flaw, look 
reckless or even criminal. With each example, he comments on 
how the seed of a response that would have avoided the failure 
was already in place, but was minimized or ignored.

Dekker’s conclusion is that we, as a society, must change. We 
must learn to accept risk and failure and respond not by punish-
ing the whistleblowers and the outliers who raise flags before 
failures, but by encouraging them and listening to them. He 
advocates creating businesses and other social structures where 
variety and diversity are accepted, welcomed, and rewarded, 
because these produce resilient systems. This is a message that 
has been espoused and championed in the last decade in the 
software development and service industries as DevOps and 
Agile methods. More recently, more mainstream businesses 
have picked up the banner and are finding that, when well done 
and used appropriately, these methods can work.

There are also cases of both misuse and of failure even when 
these methods are applied appropriately. The whole point of the 
book is that failure is inevitable, but that risk is manageable. I 
think Dekker’s reserved tone comes from his understanding of 
how human nature and modern media, with their two-sides-to-
everything mentality, will misrepresent his ideas and lead to a 
misguided and doomed popular movement akin to the common 
pop culture abuse of the terms of evolution in places where it just 
doesn’t apply.

For someone able to make a close and careful reading, Dekker 
will help create a framework with which to begin thinking and 
working to understand and (as much as is possible) control 
complex systems in work and in real life. I’m not sure he’ll be able 
to convince the general public, as wedded as it is to a reductionist 
world model and as insistent on Keeping Me Safe and Finding 
Someone To Blame as it is. I can only hope.
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USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2014

The following information is provided as the annual report of the USENIX Association’s finances. The accompanying statements have  
been reviewed by Michelle Suski, CPA, in accordance with Statements on Standards for Accounting and Review Services issued by the 
American Institute of Certified Public Accountants. The 2014 financial statements were also audited by McSweeney & Associates, CPAs.

Accompanying the statements are charts that illustrate the breakdown of the following: operating expenses, program expenses, and general 
and administrative expenses. The operating expenses for the Association consist of the following: program expenses, management and gen-
eral expenses, and fundraising expenses, as illustrated in Chart 1. The operating expenses include the general and administrative expenses 
allocated across the Association’s activities. Chart 2 shows the breakdown of USENIX’s general and administrative expenses. The program 
expenses, which are a subset of the operating expenses, consist of conferences and workshops; membership (including ;login: magazine); 
projects, programs, and good works projects; their individual portions are illustrated in Chart 3.

The Association’s complete financial statements for the fiscal year ended December 31, 2014, are available on request.

Casey Henderson, Executive Director

Continued on page 80
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