usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Is advance knowledge of flow sizes

a plausible assumption?

Vojislav Buki¢, ETH Zurich; Sangeetha Abdu Jyothi, University of lllinois at Urbana-
Champaign; Bojan Karlas, Muhsen Owaida, Ce Zhang, and Ankit Singla, ETH Zurich

https://www.usenix.org/conference/nsdi19/presentation/dukic

This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI '19).
February 26-28, 2019 - Boston, MA, USA
ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI '19)
is sponsored by

IIII||||L|J|||H

Is advance knowledge of flow sizes a plausible assumption?

Vojislav Pukic', Sangeetha Abdu Jyothi®, Bojan Karlas’,
Muhsen Owaida', Ce Zhangl, Ankit Singla1

TETH Zurich

Abstract

Recent research has proposed several packet, flow, and
coflow scheduling methods that could substantially improve
data center network performance. Most of this work assumes
advance knowledge of flow sizes. However, the lack of a
clear path to obtaining such knowledge has also prompted
some work on non-clairvoyant scheduling, albeit with more
limited performance benefits.

We thus investigate whether flow sizes can be known in ad-
vance in practice, using both simple heuristics and learning
methods. Our systematic and substantial efforts for estimat-
ing flow sizes indicate, unfortunately, that such knowledge
is likely hard to obtain with high confidence across many
settings of practical interest. Nevertheless, our prognosis is
ultimately more positive: even simple heuristics can help es-
timate flow sizes for many flows, and this partial knowledge
has utility in scheduling.

These results indicate that a presumed lack of advance
knowledge of flow sizes is not necessarily prohibitive for
highly efficient scheduling, and suggest further exploration
in two directions: (a) scheduling under partial knowledge;
and (b) evaluating the practical payoff and expense of ob-
taining more knowledge.

1 Introduction

Advance knowledge of future events in a dynamic system
can often be leveraged to improve the system’s performance
and efficiency. In data center networks, such knowledge
could potentially benefit many problems, including routing
and flow scheduling, circuit switching, packet scheduling in
switch queues, and transport protocols. Indeed, past work on
each of the above topics has explored this, and in some cases,
claimed significant improvements [34, 21, 5, 4, 30].

Nevertheless, little of this work has achieved deployment.
Modern deployments largely use techniques that do not de-
pend on knowing traffic features in advance, such as shortest
path routing with randomization, and first-in-first-out queue-
ing. A significant barrier to the adoption of traffic-aware
scheduling is that in practice, traffic features can be difficult
to ascertain in a timely fashion with adequate accuracy.

We focus on the plausibility and utility of obtaining flow
size information a priori for use in packet, flow, and coflow
scheduling in data centers. We explore this problem in the
context of four scheduling techniques from past work: pFab-
ric [5], pHost [21], FastPass [34], and Sincronia [4]. Each of
these is a clairvoyant scheduler, with advance knowledge of

2University of Illinois at Urbana—Champaign

the size of each flow at its start (but not necessarily the flow
arrival times). For some problems, non-clairvoyant algo-
rithms are also known, e.g., PIAS [7] for packet scheduling,
and Aalo [13] for coflow scheduling. While such techniques
outperform FIFO and fair-sharing baselines, there is still a
substantial performance gap compared to clairvoyant algo-
rithms (§3.2). Further, it is unclear if similar non-clairvoyant
methods can be developed for scheduling problems such as
FastPass [34], where absolute flow sizes are needed, rather
than just the relative priorities leveraged by PIAS and Aalo.

We thus examine a wide array of possibilities for esti-
mating flow sizes in advance, including modifications to the
application-system interface for explicit signaling by the ap-
plication, as well as more broadly applicable application-
agnostic methods, ranging from simple heuristics like read-
ing buffer occupancy and monitoring system calls, to sophis-
ticated machine learning. We analyze the complexity, accu-
racy, and timeliness of different approaches, and the utility of
the (often imprecise) flow size information gleaned by these
methods across our four example scheduling techniques.

We find that even simple heuristics effectively estimate
flow sizes for a large fraction of flows in many settings. But
accurate estimation for all flows is likely intractable: for
many scenarios of practical interest, each of the estimation
approaches under consideration has limitations that prevent
accurate flow size estimation. Superficially, this can be seen
as a negative result for clairvoyant schedulers. However, this
does not necessarily restrict us to non-clairvoyant schedul-
ing — as recent work shows [9, 40], partial knowledge of
flow sizes, coupled with heuristics to tackle the unknown
flow sizes, can often provide an effective compromise. We
pose a novel question by intersecting this past work with our
results on the effectiveness and complexity of different meth-
ods of flow size estimation: how does investment in increas-
ing the coverage of flow size estimation pay off? To the best
of our knowledge, no prior work has tackled this issue —
as we invest greater effort in flow size estimation, how does
scheduling performance change?

We show, empirically and analytically, that for packet
scheduling at switches, a simple approach' incentivizes
greater efforts in estimating flow sizes. While this may seem
obvious, somewhat surprisingly, we find that adding more
flow size estimates does not always improve performance
— for coflow scheduling, an intuitive scheduling scheme for

! A simplification of Karuna [9] replacing discrete thresholds for priority
queues with continuously degrading flow priority as more bytes are sent.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 565

partial knowledge settings sometimes sees increased coflow
completion times as more flow sizes are made known.

These first results call for more exploration in two direc-
tions: (a) schedulers explicitly designed for partial knowl-
edge settings; and (b) the scheduling efficiency benefits of
greater investments in learning flow sizes.

We believe this to be the first in-depth critical analysis
of assumptions of (non-) clairvoyance in flow, coflow, and
packet scheduling, together with considering the utility of
partial knowledge, and various vectors for increasing this
knowledge. We make the following contributions:

* We design FLUX, a framework for estimating flow sizes
in advance, and tagging packets with this information.

» Using FLUX, we evaluate both simple heuristics using
system calls and buffer sizes, as well as learning meth-
ods; identify which factors are effective in flow size es-
timation; and explain how these depend on applications.

* We implement FLUX in Linux?, and demonstrate that
even the learning method implemented incurs only
small computational and latency overheads, which can
be further reduced using specialized hardware.

» For each method of flow estimation, we also explore its
limitations, concluding that for many practical scenar-
i0s, such estimation will remain challenging.

* We evaluate the utility of inferred (often imprecise) flow
sizes across four scheduling techniques, finding signifi-
cant benefits compared to flow-unaware scheduling.

* We analyze settings with some fraction of traffic per-
mitting flow estimation, and show that the impact of
increasing this fraction is not always positive.

¢ In a simplified model, we prove that for shortest remain-
ing first packet scheduling [5], coupled with a simple
heuristic for handling unknown flows, adding a flow’s
size cannot worsen its completion time.

2 Background & motivation

Many scheduling techniques for data center networks have
been proposed, promising substantial performance gains:

« PDQ [22] and D? [43] schedule flows across the fabric,
in a “shortest flow first” manner.

e pFabric [5] and EPN [29] schedule packets at switch
queues using “least remaining flow” prioritization.

* pHost [21], Homa [30], and FastPass [34] schedule sets
of packets across the network.

e Orchestra [14], Varys [15], Sincronia [4], and
Baraat [18] schedule coflows (app-level aggregates).

* c-Through [41], Helios [20], and several followup pro-
posals schedule flows along time-varying circuits.

2Code and traces here: https://github.com/vojislavdjukic/flux.

All of these proposals are clairvoyant schedulers, i.e., they
assume that the size of a flow is known when it starts. Some
of this work has made this assumption explicit:

“In many data center applications flow sizes or dead-
lines are known at initiation time and can be conveyed
to the network stack (e.g., through a socket API) ...”

— Alizadeh et al. [5], 2013

“The sender must specify the size of a message when
presenting its first byte to the transport ...”

— Montazeri et al. [30], 2018

There is not, however, consensus on the availability of such
information; work in the years intervening the above two
proposals has argued the opposite. For instance:

“... for many applications, such information is difficult
to obtain, and may even be unavailable.”

— Bai et al. [7], 2015

Thus, we explore this question in depth: Is advance knowl-
edge of flow sizes a plausible assumption? Further, what
happens when only information for some flows is available?
We design a framework for estimating flow size informa-
tion and evaluate its utility for four example scheduling tech-
niques in past work that depend on this information. We in-
clude here brief, simplified background on these techniques:

pFabric [5]: Each packet is tagged with a priority at the
end-host, based on the remaining flow size. Switches then
schedule packets in order of least remaining size. This results
in near-optimal packet scheduling and can improve average
flow completion time (FCT) by as much as 4x for certain
workloads, compared to the oblivious FIFO scheme.

pHost [21]: pHost uses distributed scheduling, with the
source sending to the destination a “Request To Send” mes-
sage carrying the number of pending bytes in the flow. The
destination clears transmission for the flow with the least
bytes. pHost claims an average FCT reduction of 3 x.

FastPass [34]: FastPass uses a centralized arbiter to schedule
flows. When a host wants to send data, it asks the arbiter to
assign it a data transmission time slot and path. The arbiter
tries to make a decision based on the traffic demand (flow
size) of all active flows. FastPass claims “near-zero queuing”
on heavily loaded networks, cutting network RTT by 15x.

Sincronia [4]: Sincronia orders coflows using sizes of in-
dividual flows to find network bottlenecks and uses this or-
dering for priority scheduling. It achieves average coflow
completion time (CCT) within 4 x of the optimal.

If flow sizes were known a priori, such techniques could
improve various performance metrics of interest by 3-15x
compared to size-unaware ECMP-plus-FIFO scheduling.
For some scheduling problems, where only relative flow pri-
orities matter rather than absolute sizes, prior work has de-
veloped non-clairvoyant schedulers [7, 45, 13] that also beat
the ECMP-FIFO baseline. But as we shall see later, their per-

566 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://github.com/vojislavdjukic/flux

formance improvements are often much more modest than
clairvoyant schedulers. Thus, addressing the question of
flow size estimation remains an interesting open problem.

3 Flow size estimation: design space

Before considering flow size estimation, it is necessary to
define a flow. The primary goal of flow size estimation is to
improve application performance using network scheduling.
Where application messages directly translate to individual
TCP connections, using TCP 5-tuples to define flows suf-
fices. However, to avoid the overheads of connection setup
and TCP slow start, it is common practice in many data cen-
ters to use persistent long-lived TCP connections (e.g., be-
tween Web servers and caches) which carry multiple appli-
cation messages over time. In these settings, it may be more
appropriate to consider instead a series of packets between
two hosts that are separated from other packet series by a
suitable time gap. We note that this is an imprecise method,
as system-level variability and workload effects can impair
such identification of flows. For instance, multiple small
cache responses sent out in quick succession could be mis-
takenly identified as one flow. This limitation applies to all
application-oblivious methods — in some scenarios, mecha-
nisms to identify packets that form an application-level mes-
sage are inherently bound to be imprecise.

We next describe several approaches for obtaining flow
sizes, and intuitively reason about their efficacy in various
settings. Experimental evaluations of the quality of estima-
tion and its impact on network scheduling are deferred to §6.

3.1 Exact sizes provided by application

Many applications can assess how much data they want to
send, such as standard Web servers, RPC libraries, and file
servers. Modifying such applications to notify the network
of a message’s size is thus plausible. This would require a
new interface between applications and the network stack,
and is clearly doable, but not trivial. The replacement must
be interruptible, like send in Linux, and it’s unclear how
best to implement this — what happens when it gets inter-
rupted after sending some bytes? When a new call is made
to finish the transfer, how do we decide whether or not this is
the same flow? Thus, this may also require introducing some
notion of flow identifiers. While this can surely be done, we
merely point out that it requires care.

Limitations: As discussed in some depth in prior
work [7], there are several scenarios where the application
itself is unaware of the final flow size when it starts send-
ing out data, such as for chunked HTTP transfers, streaming
applications, and database queries where partial results can
be sent out before completion. Also, apart from introducing
changes to the host network stack (which are not necessarily
prohibitive for private data centers), this approach requires
modifying a large number of applications to use the new API.
In settings like the public cloud, this may not be feasible.

Still, this approach should not be casually dismissed; a few
software packages dominate the vast majority of deployed
applications, e.g., a large fraction of Web servers use one of
the three most popular server software packages, most data
analytics tasks use one of a small number of leading frame-
works, etc. Past work (e.g., FlowProphet [42] and Hadoop-
Watch [33]) has in fact explored the use framework-internals
for gleaning flow sizes. Thus, this approach could make flow
size information accessible to the network for many applica-
tions, provided the right APIs are developed.

3.2 Flow aging

A set of application-agnostic techniques have been pro-
posed around the idea of using the number of bytes a flow
has already sent as an estimator for its pending data. For in-
stance, Least Attained Service [35] gives the highest priority
to new flows and then decreases their priority as they send
more data. Thus, flow priorities “age” over time. PIAS [7]
explores a variant of this approach, coupling it with the use of
a small number of discrete queues to fit commodity switches.
Aalo [13] applies similar ideas to coflow scheduling.

Limitations: The most significant drawback is that this
approach may not benefit scheduling techniques that require
absolute flow sizes (as opposed to only relative priorities),
such as Sincronia®, FastPass and optical circuit scheduling.
Even where applicable, the effectiveness of such methods de-
pends on flow size distribution. For instance, LAS does not
work well when there are a large number of flows of similar
size. In the limiting case, if all flows are the same size, older
flows nearer to completion are deprioritized, which is the op-
posite of the desired scheduling. More sophisticated meth-
ods based on multi-level feedback queues [7] still depend
on estimating a stable underlying flow size distribution*.
Further, even in favorable settings, with stable heavy-tailed
flow size distributions, the performance of such application-
agnostic techniques can be substantially lower than clair-
voyant ones. For instance, recent work [30] reports ~2x
difference in 99" percentile slowdown between PIAS [7]
and pFabric [5]. Similarly, Sincronia [4], the best-known
clairvoyant coflow scheduler, claims a 2-8x advantage over
Varys, and by extension, over CODA [45], the best-known
non-clairvoyant coflow scheduler. (Note however, that the
scheduling knowledge involved in CODA is not limited to
flow sizes, but also classification of flows into coflows.)

3.3 TCP buffer occupancy

The occupancy of the TCP send buffer at the sending host
can provide approximate information on flow sizes. When
the buffer occupancy is small, the number of packets in the
buffer may be the actual flow size of a small flow. When the

3Sincronia uses only relative priorities in the network, but for assign-
ing these priorities, it computes the bottleneck port using sizes of all flows
destined to each port. It is unclear if aging would be effective here.

4 Alternatively, additional effort must be spent in continuously monitor-
ing and following the changes in the underlying distribution [10].

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 567

250KB
> 200kB A A MA
S e N AN
S 150KB
Voo
. 100KB
9]
5] oKB 1G network —
@ > 10G network

OKp timmmdll by :

1 1.002 1.004 1.006 1.008 1.01
Time (s)
Figure 1: Buffer occupancy while transferring a 1GB static file
from the hard disk over 1G and 10G connections. We show a rep-
resentative 10 ms segment of the trace starting at 1 second.

buffer is fully occupied, i.e., its draining rate is less than its
filling rate, the flow may be categorized as a large flow. Ma-
hout [17] and c-Through [41] used roughly this approach.
ADS [31] also suggests (but does not evaluate) a similar
mechanism, although it is unclear whether it uses system
calls, or buffer occupancy, or both.

Limitations: Buffering reflects flow size only when the
sender is network or destination limited. If the bottleneck is
elsewhere, the buffer may not be filled even by a large flow.
Consider a program that reads a large file from the disk and
sends it over the network. The program reads data in chunks
of a certain size (e.g., 100 KB) and sends as follows:

while(...):
read(file_desc, read_buffer, 100KB)
write (socket_desc, read_buffer, 100KB)

Today’s SSDs achieve a read throughput of ~6 Gbps,
while NIC bandwidths of 10-40 Gbps are common. This
disparity implies that the buffer may remain sparsely popu-
lated most of the time. To illustrate this behavior, we ran a
simple experiment. We transfer a 1GB static file served by a
Web server over 1G and 10G connections (Fig.1). The file is
stored on a regular 7200 RPM hard drive with the maximum
read speed of ~1 Gbps. We see that for the faster connec-
tion, the buffer is almost empty. For slow connections, the
buffer indicates the lower bound of the flow size, but when
the buffer occupancy starts decreasing, it is unclear if that
means that no additional data will be added. This presents a
serious obstacle for flow size estimation.

3.4 Monitoring system calls

The write/send system calls from an application to the
kernel provide information on the amount of data the appli-
cation wants to send. The flow size is typically greater or
equal to the number of bytes in the first system call of a flow.
It is also interesting to notice that many applications have a
standard system call length. For instance, Apache Tomcat
by default transfers data in chunks of 8 KB. If it wants to
send less than 8 KB, it issues a single system call which re-
flects the exact flow size. For larger flows, multiple calls are,
of course, necessary. Other applications behave similarly;

MySQL uses chunks of 16 KB, Spark Standalone 100 KB,
and YARN 262 KB. Thus, for identifying short flows, this
is a reliable approach, and can directly enable algorithms
like Homa [30]. Further, recent work from Facebook sug-
gests that a substantial portion of flows is extremely small
and most likely transferred over a single system call [46].

To test this approach, we run a simple experiment where
we store 100,000 objects of sizes between 500 B to 1 KB
using MySQL. Further, we execute three types of queries:
fetch an object based on the key, fetch a range of 10 objects
using a date index, and fetch 1000 objects (e.g., to perform a
join operation or backup). Since results for queries fetching
1 and 10 objects fit into the initial system call, we were, in
fact, able to obtain their flow sizes accurately.

Limitations: The flow size information inferred from sys-
tem calls may correspond to only a part of the flow rather
than the whole flow, as in the above example for large
queries. Increasing the size of the initial system call could
work, but larger system calls require more buffer memory per
connection. Thus, Web servers, databases, and other highly
concurrent programs tend to keep system calls small.

3.5 Learning from past traces

We can also apply machine learning to infer flow size in-
formation from system traces. Ultimately, data sent out to
the network trace causality to some data received, read from
disk or memory, or generated through computation. Thus,
traces of these activities may allow learning network flow
sizes. Given that most jobs in data centers today are repeti-
tive, there is a significant opportunity for such learning. For
instance, in [25], the authors observed that more than 60%
jobs in enterprise clusters are periodic with predictable re-
source usage patterns. Analysis of publicly available Google
data center traces also confirms this finding: most of the re-
sources are consumed by long-term workloads [37, 3, 36].

Unlike the simpler approaches above, the effectiveness
and limitations of learning methods are hard to analyze
without a serious attempt at building a learning system.
A key challenge here is the short timescale: while past
work [28, 44] has explored learning workload characteris-
tics at timescales of minutes and hours, can we learn at
the microsecond timescales necessary for flow size estima-
tion? This represents a challenging leap across 8-10 orders
of magnitude in timescales. We next detail our efforts to-
wards building a learning system for flow size prediction.

4 Learning flow sizes

We explore the design of a learning-based approach for
flow size estimation, addressing the following questions:

* Which methods can we use for flow size prediction?

» What prediction accuracy is achievable?

Learning task: We would like to learn flow sizes for out-
going flows in advance, using system traces. When a flow

568 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

f starts, are recent measurements of network, disk, memory
I/0, CPU utilization, etc. predictive of f’s size?

We first present a superficial “black box” treatment of
this question, going directly from training standard learning
methods over traces we collected to the best accuracy we ob-
tained. §5 shall delve into the details of how we made this
approach work, and give intuition into its success. §6 will
discuss how the accuracy results translate to network perfor-
mance improvements, while §7 discusses its limitations.

4.1 Workloads

To explore what inputs are predictive of flow sizes, it is es-
sential to gather job execution traces with as much detail as
possible, across many instances of jobs with variable inputs
and configurations. Unfortunately, publicly available data
center traces do not contain enough information. Facebook’s
traces [39], by sampling 1 per 30000 packets, provide no
visibility at the flow granularity. Google’s traces [38] com-
pletely omit network data, focusing on CPU, memory uti-
lization, etc. We thus collect traces for (a) a large range of
synthetic workloads; and (b) machine learning applications
running on our university clusters.

Our traces comprise 5 applications: PageRank, K-Means,
and Stochastic Gradient Descent (SGD) implemented on
Spark; training deep neural networks using TensorFlow; and
a Web workload. The SGD and Tensorflow traces are from
instrumented applications running on our university cluster.

Each of SGD, KMeans, and PageRank runs on a Spark
cluster of 8 machines, each machine with 2 CPU sockets (4
cores each) and 24 GB DRAM. For SGD, the input sizes vary
from 2-25 GB, with significant variation across the hyperpa-
rameters. We also impose large input variations for KMeans
and PageRank: for PageRank, we randomly generate new
graphs with 1-15 million nodes; and for KMeans, we gener-
ate datasets with 20-50 million points, while also varying K.
We also vary the number of workers per job from 8 to 64.

The Tensorflow trace consists of one 25 minute long ex-
ecution of distributed training of AlexNet [26] on the Ima-
geNet dataset on 40 GPU machines.

For the synthetic Web workload, we use Apache Tomcat
7.0 to host a full Wikipedia mirror and fetch random pages.

Fig. 2 summarizes these workloads. Fig. 2(a) shows the
job execution times across different executions for each al-
gorithm. Execution times for KMeans, PageRank, and SGD
vary by factors of as much as 2.6, 1.5x, and 24.5 x respec-
tively. Thus, there is substantial variation across executions.
The main source of the variations across traces is the change
in the size of the input data and the number of iterations.
However, for many runs there were more resources in the
cluster than required by the job, leading traces to further in-
corporate the influence of Spark’s scheduling decisions.

We also aggregate flow statistics across all jobs and ex-
ecutions for each application to give a sense of the traffic;
Fig. 2(b) shows the flow size distributions, and Fig. 2(c)

shows the arrival rates (aggregated across the workers). The
TensorFlow workload consists of many short flows with an
average arrival rate of 8273 flows/second.

4.2 Machine learning models

We evaluate several ML models, but with only modest ef-
forts to optimize these, because our goal is not to identify the
best model or hyperparameters, but to show that a variety of
methods could work (as we show with results on improve-
ments in scheduling in §6) with reasonable effort , modulo
the limitations of learning in this context, as discussed in §7.

Recurrent Neural Network with LSTM layers: All our
traces are time series. Given the natural dependency between
data points in the trace, we test a network that can keep state
and learn these dependencies while processing the trace se-
quentially. For this purpose, we use an LSTM model [24].
Using Keras [12] and Tensorflow [2], we test varied LSTM
models with different numbers of layers. The best configu-
ration in our setting uses a single layer with 64 LSTM units.

Gradient Boosting Decision Trees: In many of our traces,
simple conditionals reveal information about the flow size.
For instance, if the first system call size is below a certain
value, that can often reveal the flow’s size. Thus, we train
GBDT models of different sizes (i.e., numbers of trees) and
find that using 50 trees (with maximum depth of 10 per tree)
gives fast yet accurate results.

Feed-Forward Neural Network: The dependency between
flow size and other system-level features should not strictly
depend on the ML model we choose. Thus, we test
a standard FFNN model [23] with various configurations
for the number of layers and neurons, implemented using
Keras [12]. We find that 2 layers (and the ReLU activation
function) with 5 neurons each yield the best performance.

Results: We split the traces into 3 fixed sets — training, val-
idation, and test. Table | compares the three tested models.
We use the coefficient of determination (R?) to measure ac-
curacy. R? is very useful because it can be easily compared
across different models: R? = 1 if the model produces per-
fect predictions, and R> = 0 if the model makes a predic-
tion of zero value, always predicting the mean. GBDT and
FFNN achieve comparable accuracy (Table 1), with the high
values of R? implying highly accurate flow size predictions.
For two workloads, LSTM gave inferior results and did not
seem to capture the dependencies, particularly across traces
where the underlying executions were very different (e.g.,
test-set for SGD). With greater effort, for instance, specializ-
ing the model to these traces, it may be possible to overcome
LSTM’s apparent deficiency. However, we wanted to use the
same training and inference approach across traces.

GBDT’s accuracy, fast convergence, and fast inference
motivate its choice for FLUX. The tradeoff is that the model
updates in batch mode (not online); this should suffice, un-
less applications change at sub-second timescales.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 569

1

Sl e y——
*

4 Z
Ve {r Ly 7
0.8 0.8 ;
.'{,/ .:"’"r 7/’-/' KMeans == 0.8 !‘;"’J
y 06 " u 0.6 i 4 PageRank == 0.6 N
a N [a} _./l‘ 5 i
o4 ,’ KMeans -= “o.4 + ,'7’_‘! SGD O H KMeans ==
H (] e
/ PageRank == | & TensorFlow - l'g PageRank ==
0.2 j 4 SGD 0.2 ,.AI"'“ Web Server — 0.2 g]] SGD
o LL: . . 0 S AR P I R B 0 M i i ! ! i
102 103 10% 109 10! 102 103 10* 10°> 10% 107 108 10° 0 2 4 6 8 10 12
Time (s) Flow size (B) Flows per second

(a)

(d)

©

Figure 2: Workload diversity: (a) Execution time varies substantially across executions of the same job. We also show the distribution of (b)

Sflow sizes and (c) flow arrival rate across our workloads.

GBDT FFNN LSTM
Web server 94196 92194 73174
TensorFlow 97197 95195 94194
PageRank 85183 84184 83183
Kmeans 88190 88195 88193
SGD 58179 54172 4610

Table 1: Prediction accuracy (shown for validation-set | test-set)
across models and workloads in terms of R® percentage.

5 Opening the black box

What explains the high accuracy of our ML approach? We
discuss the predictive power of various system-level mea-
surements, and detail refinements that led from poor initial
results to these high-accuracy predictions.

5.1 The treachery of time

We first tried what we considered a natural model for the
data of our interest: time series. To generate time series data,
during the execution of each workload, we sampled CPU and
memory utilization, and disk and memory I/O, every 20 ms,
and recorded headers of all incoming and outgoing packets.
We then attempted to predict the next few time-steps for net-
work traffic. However, this gave poor results due to low-level
system effects that can have a significant impact on timing.

An alternative representation with a flow-centric view
treats a job as a series of flows, with several attributes
recorded per flow (Table 2). This is effective for flow size
prediction, as it does not suffer from minor timing varia-
tions, and captures the relationship between (for instance)
system calls and the volume of outgoing traffic. In addition,
the measurements themselves serve as a “clock”, one that is
more robust to system scheduling artifacts.

5.2 Why these features?

New flows are created either by reading data from the
disk or memory, processing previously received flows, do-
ing some computation to create data, etc. Thus, features that
characterize each of these causal factors could help estimate
flow size. For each type of system measurement, we track
the total number of operations or bytes from the beginning
of program execution. This enables the learning algorithm

Feature Description

Start time, #7 Start time of f relative to job start time

Flow gap Time since the end of the previous flow
First Call Size of the first system call ¢,

Network In Data received until #¢

Network Out Data sent until #5

Network In(d) Data received at flow’s dest. d until 75
Network Out(d) Data sent by this host to d until 77

CPU CPU cycles used until z¢

Disk I/O Total disk I/O until #¢

Memory 1/0 Total memory I/O until #¢

Previous flows Flow sizes for last k flows

Table 2: Features of a flow f. All network, memory, disk and CPU
activity is cumulative until this flow’s start at ty.

to know how many operations or bytes were processed be-
tween the last and the new flow. In our experiments, when
we predict the flow size, we use features from Table 2 for last
5 flows. Thus, we try to catch dependencies between consec-
utive flows as well as resources that have been consumed.

As expected, the most predictive features vary across ap-
plications. For instance, some applications do not produce a
lot of disk traffic, while others rely completely on the disk.
The GBDT model provides a natural way of assessing fea-
ture importance: it uses a set of decision trees, with each
attribute’s contribution measured in terms of “splits”, i.e., in
what percentage of branch conditions in the decision tree the
attribute appears. Fig. 3 shows these splits for the aggre-
gated flow-centric traces from a Spark environment. Inter-
estingly, for these traces, we find that similar accuracy can
be obtained by a model constrained to not use memory, disk,
and CPU monitoring, relying only on network data and tim-
ing of flows. Web queries, on the other hand, have a different
set of critical features where 66% of all splits use disk I/O.

Finding the best model and feature-set may require man-
ual work, but effective solutions could be obtained automat-
ically by comparing the accuracy of the largest model to the
accuracy of candidate models limited to using only the first
model’s most salient features.

570

16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Network Out EE23 Network In =3

Time B3 First Call C——
100
2 30
C
'8 60 XXX
3 XXX
2 a0 55
b= XXX
S5 20 908
© K
0
Complete Pruned
feature set feature set

Figure 3: Feature contributions for 2 models for the Spark work-
loads, measured using GBDT splits. The figure omits labels for the
less important features: memory and CPU utilization, and disk and
memory I/0. Both models provide the same prediction accuracy. If
we exclude any of the top 3 contributors, the accuracy decreases.

Tensorflow
SGD = =

KMeans e==== Web Server =eee=
PageRank e

1

0.8 K

0.6 iR
'-.\\\\
s\ N - -,

0.4 “‘-\

0.2

0 T ——
0 1 2 3 4 5 6 7 8 9
Figure 4: Prediction accuracy declines for more distant flows. x =
0 is the current flow, for which packets are starting to be sent out,
while x = 1 is the next flow after this one, and so on.

5.3 Model accuracy

The accuracy of predictions obtained using learning de-
pends on three main factors, which we discuss next.

How far the predicted future is: It is critical to make pre-
dictions within a time budget. Since most flows in data cen-
ters are small, this budget is commensurately small: if the
inference takes too long, we might either block on the infer-
ence and slow down the flow, or allow packets to flow with-
out having the result of the inference and without tagging
them appropriately, resulting in sub-optimal performance.

There are two possibilities for overcoming this issue: (a)
when a new flow starts, make a prediction in an extremely
small time budget by engineering down the inference time;
and (b) when a new flow starts, start inference for the next
outgoing flow, or even more generally, for some future flow.
This choice represents a trade-off: we can either get high-
accuracy inference by incorporating the maximum informa-
tion available for inference, but incurring a data path latency
to do so (or use results late, as they become available); or
get lower accuracy due to missing some relevant information
from needing to predict a farther future.

Fig.4 shows the dependence of prediction accuracy on this
“future distance”, starting from trying to predict a flow’s size

immediately when it starts, through predicting the next sev-
eral flows. For TensorFlow, predicting several flows into the
future is possible with high accuracy, because flows are pre-
dictive of future flows. But as expected, for the Web server
workload, it is only possible to accurately predict the flow
starting now, because two consecutive flows share no rela-
tionship (because we are requesting random objects from a
Wikipedia mirror) — in essence, each “job” is of size one.

Model size: Larger models often yield higher accuracy at the
cost of more memory and computation, and consequently,
and more crucially, higher latency for inference.

While details of the impact of model accuracy on schedul-
ing performance are deferred to §6, we use flow completion
times instead of R* to compare model sizes. For an exam-
ple trace (pFabric scheduling for PageRank), when predict-
ing the current (next) flow’s size, the average FCT using a
smaller model with 20 trees is worse by 9% (10%) than the
larger model with 50 trees. Interestingly, the larger model
achieves better results than the smaller one, even when the
larger model is impaired by having to predict the next flow,
while the smaller model predicts the current flow.

Training dataset size: Obviously, the learning approach de-
pends on having seen enough training data, but this “conver-
gence time” varies across workloads. For the Web workload,
the model only needs to observe ~50 requests to achieve
R? > 0.5. To achieve nearly its maximum prediction accu-
racy, the model needs to observe ~500 requests. For a pop-
ular Web server, this is on the order of a few seconds. (Of
course, our model for a Web server is extremely simple.)

The model for TensorFlow needs to see ~3000 flows to
reach peak accuracy, but given its flow arrival rate of more
than 8200 flows per second, convergence time is sub-second.
This is negligible compared to the job duration itself (~25
min). The iterative nature of neural network training, with
similar traffic across iterations, allows accurate prediction
within a few iterations of monitoring a never-seen-before job.
The Spark workloads show the highest variability, and this
is reflected in their convergence time. Here we need traces
from multiple executions of the same job type to achieve
high accuracy; 10 executions suffice for each of our 3 test job
types®. Fortunately, data processing frameworks are often
run repetitively with many instances of the same job [25, 16]
since the workloads often involve tasks like making daily re-
ports, code builds, backups or re-indexing data structures.

Note that good results can be achieved even across repeat
executions with very different underlying data and run con-
figurations — the job instances over which we train and test
exhibit such variations, as discussed in §4.1.

5.4 Fast-enough, deployable learning?

With data center round-trip times on the order of 10 s,
our objective is to achieve inference in a fraction of this time.

SEach execution yields 7 traces, when n machines execute the job.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 571

1
0.8

W 0.6

[a)]

“o4

CcPU
0.2 FPGA —
0 bamd.

1 10
Latency (ps)

Figure 5: Inference latency across 100 measurements for GBDT
with 50 trees implemented in-kernel on a CPU and using an FPGA.

CPU implementation: To efficiently implement GBDT, we
use treelite [1], which takes an XGBoost model as input, and
transforms it into a single C function, which is a long se-
quence of simple if-else statements. This approach incurs a
minor slowdown when the model is updated (to generate C
code), but improves inference performance by an order of
magnitude in comparison to the original GBDT implemen-
tation in the XGBoost library [11]. This enables us to make
inferences in 5 s within the typical case.

Accelerator implementation: The latency caused by the
CPU implementation is small, but still comparable to data
center RTTs. We investigate if offloading inference to spe-
cialized hardware could improve latency. Such logic could
be built into NIC hardware, or deployed on the FPGAs al-
ready in use in some data centers [8].

We extend recent work on deploying GBDT on FPGA [32]
to obtain our hardware implementation. Fig. 5 compares the
inference latency for a 50-tree model on a CPU vs. using an
FPGA. The mean latency is 4.3us on the CPU, and 1.23us
on the FPGA. In each case, this includes the end-to-end time
elapsed from when a new flow’s packet arrives in the kernel
to when it has the result for packet tagging. The FPGA also
eliminates the variance in software performance.

Thus, inference latency can be driven down to a fraction
of the typical RTTs. Appendix A provides greater detail on
our implementation for interested readers.

6 Improving network scheduling

Assessing accuracy of ML-based method in terms of mean
error and R? is useful, but unsatisfactory — we ultimately
want to understand the impact of errors on scheduling that
uses the estimates. We thus quantify the performance of both
flow-level (FastPass, pFabric, and pHost) and coflow-level
(Sincronia) schedulers with varying degrees of inaccuracy
in flow sizes. Throughout this evaluation, we use the same
traces used for our validation and testing results in §4.2.

6.1 Flow-level scheduling

We use the YAPS simulator [27]. We use the leaf-spine
topology used in pFabric [5], with 4 spines, 9 racks, and 144
servers, with all network links being 10 Gbps. To measure
the effect of inaccurate predictions on flow completion times

(FCT), we replay the network traces collected from our clus-
ter in YAPS. Each experiment uses traces® from one of the
5 job types. We run all our tests at 60% network utilization,
mirroring the original pFabric and pHost papers.

We compare network performance across the following
flow estimators: (0) “Perfect”, an ideal predictor with zero
error. (1) “Mean”, whereby every flow size is predicted to be
the mean. (2) “GBDT”, the gradient-boosting decision tree
learning approach with 50 trees. (3) Specifically for pFab-
ric, we also evaluate the 0-knowledge LAS policy — “Ag-
ing” (§3.2). Today’s commonly deployed approach — FIFO
scheduling at switches and ECMP forwarding — is also eval-
uated as a baseline (“Oblivious”).

Fig. 6 shows the average FCT across all 5 workloads, 3
flow-level scheduling techniques, and these flow estimators.
Note that the Aging result is shown only for pFabric, because
it can be easily modified to use LAS.

Oblivious often results in mean FCT more than 2 x that of
Perfect, e.g., compared to FastPass across all workloads, and
compared to pFabric in Fig. 6(a) and 6(c); the largest gap is
as large as 11.1x, vs. FastPass in Fig. 6(a). GBDT achieves
mean FCT close to Perfect across all cases, with the largest
gap being 1.21x, vs. FastPass in Fig. 6(e). Compared to
Oblivious, improvements with GBDT range from 1.1-11.1x
across our experiments.

Understanding the performance of these schemes re-
quires a closer look across the entire flow size distribution.
Fig. 7 (left) shows the distribution for one example — pFabric
scheduling over an SGD trace, i.e., details behind the mean
FCTs for pFabric in Fig. 6(a). Note that the logarithmic x-
axis in Fig. 7 visually suppresses significant differences. Ag-
ing indeed achieves good results for the short flows for the
SGD trace, but for longer flows, which share the same prior-
ity for a long time, its performance is worse than Oblivious,
resulting in a larger mean FCT (Fig. 6(a)). The TensorFlow
workload, with most flows being short, presents a difficult
scenario for Aging — as noted in §3.2, for such workloads,
Aging’s behavior is the opposite of desirable (Fig. 7 (right)).

In contrast to Aging, GBDT’s performance is similar to
Perfect across the flow size spectrum for both workloads.

6.2 Coflow scheduling

We evaluate Sincronia, a recent proposal that leverages
flow size information to provide near-optimal coflow com-
pletion time (CCT), with our imprecise flow size estimates.

We generate coflows from our traces by picking r
consecutive flows grouped together to create a coflow.
For each coflow, r is chosen uniformly at random from
{1,2,3,...,20}. For each of our five traces, we run 200
coflows with Sincronia’s offline simulator at 60% network
load. We execute experiments for Perfect and GBDT,

Note that, unfortunately, we cannot provide results for flow size distri-
butions often used in data center research because we do not have the traces
to produce the distribution of estimation error for them.

572 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

0.45

12 5 - 0.4
10 R S e g 0F
i - - B E 4 [zt E 03
- 8 ,_ / = —
3] G EX ;; 3] 0.25
c 6 c [XX] c 0.2 %
5 . 52 LY $ 0.15 g 7 7
= B = sl] = o1 g Y <V
> X / 1 XX e / XA v g
s I oos A | IR
o LI X X o L 2o 0 0 ~ X 240
pFabric pHost FastPass pFabric pHost FastPass pFabric pHost FastPass
(a) SGD (b) PageRank (c) TensorFlow
m)
£ 3 Perfect &z
5, % 5 GBDT ==2
< % S Mean C——
1] x5 3 Aging =3
= % = Oblivious ———
X o i o
pFabric pHost FastPass pFabric pHost FastPass
(d) KMeans (e) Web server
Figure 6: Mean FCT across 4 scheduling techniques, 5 workloads, and several flow size estimators.
1 1 e 26
/‘4— /"—//”// 8 2.4
0.8 L _____,/ 0.8 e - é c 22
e e 5
y 06 2 0.6 ,’ g8 2
[a) Perfect == / Perfect == o3 18
o4 Oblivious 0.4 / Oblivious 55 16
/ Yo
GBDT -- / GBDT - 5% 14 [
0.2 . 0.2 / . K] 2
Aging — Vad Aging -— o 1.2
0 A i bl i g \ o P sl N 1 S
0.01 0.1 1 10 0.01 0.1 1 10 af\\L
RS
FCT (ms) FCT (ms) °

Figure 7: FCTs for pFabric for the SGD (left) and TensorFlow (right) workloads.
Due to the log-scale, small visual differences are significant. On the right plot, Per-
fect and GBDT are visually indistinguishable, and so are Aging and Oblivious.

and record mean CCT. To measure the effect of inaccurate
predictions, we define relative performance degradation as
GBDT-CCT / Perfect-CCT.

Fig. 8 shows that the performance degradation for coflow
scheduling for PageRank, KMeans and SGD, is substantialy
higher than for flow scheduling algorithms. That is because
errors in estimates for individual flow sizes compound with
coflows. This also explains why workloads with very high
accuracy for individual flow sizes, such as Web server and
TensorFlow, are only exposed to modest degradation.

7 Limitations of learning

It should be clear that the learning approach is not a
panacea. There are several scenarios where it falls short.
First and foremost, the prediction context should be clear,
i.e., the learning module has to identify the program that is
responsible for sending a flow and monitor all features of
interest for that flow, as described in §5.2. For Spark, the
prediction context assumes knowing start time of a job as
well as its ID. This is not unreasonable, as noted in §5.4.

However, for Web servers, we would have to tie disk and
memory reads to particular requests. To demonstrate the ef-

Figure 8: Relative performance degradation for
Sincronia expressed as the ratio between mean CCT
with imperfect estimates and perfect knowledge.

fect of missing context, we run Apache Tomcat, serving con-
current clients, so that it is not obvious how to match HTTP
requests with corresponding disk reads and responses. In this
case, disk reads become almost useless as an indicator, and
we can only rely on system calls. The prediction accuracy
can be made arbitrarily bad by tweaking the experiment pa-
rameters, SO we omit a concrete accuracy number.

One possibility for obtaining such context is to apply verti-
cal context injection [6], which is deployed in Google’s data
centers; it tags system calls with application information for
easier monitoring and debugging.

Further, for the execution of one-shot jobs without repet-
itive internal structure, there is clearly no learning potential.
Likewise, for jobs where large, non-deterministic data vol-
umes are generated (e.g., computationally) for transmission,
and there is little repetition across executions, it is unlikely
that this approach can succeed.

Thus, for many workloads of practical interest, despite our
best efforts, this approach will also be limited. We next dis-
cuss scenarios where learning or other heuristics can only
estimate flow sizes for some fraction of the traffic.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 573

i e i A7 ' _we A
SGD & /e i~ 2

0.8 |- 0.8 |- 0.8 - g

8) / 8 : PageRank ./ U 8 h -7
Z* -~
506 | ,E 5 0.6 - TensorFlow # ,/ 506 ; /
-~ i

E s E / 3 / /
04 | S et SGD & 04 7 Lo4 - 7 4 SGD &
& | /-/ p:g PageRank & / & | / / PageRank

0.2 i Tine 0.2 # 0.2 - 7 ¢

/B/ TensorFlow 4 / / / TensorFlow 4
0w Y . T S N 0 Wil b=
0% 20% 40% 60% 80% 100% 0 1KB 10KB 100KB 1MB 10MB All 0% 20% 40% 60% 80% 100%

Percentage of known flows

(a) pFabric, % of flows known

Size of known flows

(b) pFabric, flows known by size

Percentage of known flows

(¢) Sincronia, % of flows known

Figure 9: As more flow sizes are known, performance generally improves ...

1 S
fomn
0.8 B
3 -2 //
c
c 0.6 Y /
£ AN _d
5 / -
0.4 SGD &
& 05 PageRank
3 TensorFlow #
o I I I 1 1 i
0 1KB 10KB 100KB 1MB 10MB All

Size of known flows
(d) Sincronia, flows known by size

Figure 9: (continued) ... but for Sincronia, as larger and larger
Sflows become known, performance sometimes degrades.

8 More knowledge = better performance?

While our exploration across several heuristics and an
ML-based approach is promising, it is also clear that we will
simply not get accurate flow size estimates for all applica-
tions. Thus, we advocate a pragmatic, two-fold approach: (a)
Schedulers should tread a middle-ground — rather than giving
up entirely on flow size estimation and operating in a non-
clairvoyant manner, using estimates when they are available.
(b) We should assess whether it is worth spending effort to
expand the set of flows for which sizes can be estimated. We
explore such pragmatism for flow- and coflow-level schedul-
ing with pFabric and Sincronia.

To the best of our knowledge, past work has only touched
on the first of these ideas. SOAP [40] and Karuna [9] have
explored settings with a fixed proportion of flows of known
and unknown sizes. Karuna combines pFabric’s shortest re-
maining first (SRF) approach for known flows with Aging’
for unknown flows. We refer to this policy as SRF-age, but
consider a version with infinitely many priorities.

Instead of settings where we have size estimates for a fixed
subset of flows, our interest is in examining what happens
when we can invest in estimating a larger fraction of flows.
In the following, we refer to flows with available sizes as
“known” and other flows as “unknown”.

Knowing x% of all flows: If x = 0, SRG-age devolves to
Aging, and if x = 100, it becomes Perfect (pFabric with full
knowledge). We define performance with an arbitrary x% of
flows known as the following normalization, where FCTp is

"We are simplifying here; Karuna actually uses a multi-level feedback
queue, with queue thresholds set based on the flow size distribution.

mean FCT with policy P:

FCTSRFfuge(x) - FCTAging
FCTPerfect - FCTAging

Perf(x) =

Fig. 9(a,b,c) shows the results on this normalized metric
for a sample of workloads from §6. As more flow sizes be-
come known, performance improves.

Knowing all flows of size up to x bytes: Given that some
approaches, like using the initial system call, are more effec-
tive at estimating smaller flows, it is worth asking how much
benefit knowledge of small flows gives. To evaluate this, we
modify SRF-age as follows: We assign priorities to known
flows following standard SRF, but for flows larger than x, we
use max(age,x). This reflects our confidence that any un-
known flow is larger than x bytes.

Fig. 9(b) shows that just knowing small flows will not im-
prove performance drastically in terms of mean flow comple-
tion time, because they finish near the highest priority even
in case of zero knowledge. However, their performance can
improve if other, larger flows are known, and do not compete
with small flows at the same high priority.

Coflow scheduling: Using Sincronia, we also explore the
effects of having partial knowledge on coflow scheduling.
We generate coflows in the same manner as in §6.2. We
run Sincronia offline with 1000 coflows. Unfortunately, not
having a packet-level implementation of Sincronia, coupled
with the lack of a known or intuitive translation of Aging,
limits our analysis. For unknown flows we thus assume that
they are of the mean flow size of the whole trace, and refer
to this policy as Sinc-mean.

We normalize performance with partial knowledge in the
same manner as for pFabric, except using coflow completion
times (CCT). The results with x% of flow sizes known and
all flows smaller than x bytes known are shown in Fig. 9(c)
and Fig. 9(d) respectively.

In some cases, knowing large fractions of flows does not
improve CCT substantially. For instance, for the PageRank
workload, knowing 70% of flows still gives more than 60%
worse results than with perfect knowledge (Fig. 9(c)). This is
due to unknown flows within a coflow acting like stragglers.

Fig. 9(d), oddly, indicates that sometimes adding knowl-
edge decreases performance. We explain this with an exam-

574 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Ingress Ports Egress Ports

Figure 10: In this scenario, Sinc-mean scheduling policy leads to
priority inversion and performance degradation when knowledge
about certain flows is added to the system.

ple scenario, following a brief (simplified) overview of Sin-
cronia. Sincronia finds a bottleneck port, i.e., one with the
largest number of bytes accumulative across flows; and then
assigns the lowest priority to the largest coflow on that link.
Flows within a coflow share priority.

Now consider a scenario with two coflows, with all their
flows going from the same ingress port to different egress
ports as shown in Fig. 10. Coflow ¢ contains only one flow
with 7 packets, and coflow ¢, contains two flows of 1 packet
each. The mean flow size is thus 3 packets. Regardless of
which flows are un/known, with Sinc-mean, the ingress port
would correctly be identified as the bottleneck. If all flows
are unknown, Sinc-mean would consider all of them to be
of the size 3. Sinc-mean would give c¢; higher priority, be-
cause its total estimated coflow size is 3 (compared to 6 for
¢»), and, thus, finish ¢ first, within 7 time units. Now in-
stead, say we had disclosed the size of c¢;’s single constituent
flow. This leads Sinc-mean to detect c¢; as the larger coflow
(with size 7 for ¢ vs. an estimated 6 for ¢) and give higher
priority to c;. In this case, c; finishes after ¢, with a coflow
completion time of 9 time units. Thus, for ¢, making its size
known results in worse performance under Sinc-mean.

When does more knowledge help? Ideally, we would like
the assurance that investing in learning about more flows
only improves performance. Otherwise, there are limited
incentives for data center operators and/or users to change
their applications to expose flow size information or to de-
ploy methods to estimate it.

This property clearly does not hold for Sinc-mean. It is
as yet unclear to us how Aging could be incorporated into
Sincronia, and whether a partial-knowledge variant can be
developed that does not have the quirk of (sometimes) de-
teriorating when given additional knowledge. However, for
the much simpler pFabric/SRF, we can prove a positive result
in this direction, showing that for SRF-age, making a certain
flow’s size known can never deteriorate its performance, at
least when interpreted in a worst-case manner.

Our simplified model assumes that all flows go through
one link with unlimited output queuing. This output buffer
queues packets in flow priority order. This implies that
across different flows, packets leave the queue in priority or-
der, but within flow packets leave in the same order as they
arrive. At every timestep, either a packet leaves the queue,

or a new flow arrives. When flows arrive, all their packets
are immediately added to this priority queue in their respec-
tive positions, with priority ties being broken randomly. To
tackle this randomness, we define worst-case scheduling for
a particular flow f, as the schedule where any and all ties for
fi’s packets break against f;.

For some flows, their flow sizes are known, and for others,
they are not. For flows with unknown sizes, each packet uses
the flow’s age so far as its priority. The first packet of such
a flow has the priority set to zero (highest), with successive
packets seeing increments in priority value (i.e., decreasing
priority with more packets sent). (For brevity, we omit the
distinction between packets and bytes and assume all packets
are the same size.) In line with SRF, for known flows, the
priority value for their last packet is zero (highest). If the
size of a flow f is known, we denote it with fk ; otherwise
with f“. We define priorities such that if P(p) and P(q) are
the priorities of packets p and g, then P(p) > P(g) implies p
has higher priority, and is scheduled before g.

Theorem 8.1. All else fixed, with SRF-age, learning the flow
size of a particular flow f, cannot deteriorate its worst-case
completion time, i.e., FCT (f*) < FCT(fY).

Proof. To prove the result, we shall show that every packet
of any other flow that is scheduled before the end of f* would
have also been scheduled before the end of f, assuming
worst-case scheduling for either. It is easy to see that this
would imply that the FCT for ff in a worst-case schedule
cannot be worse than the FCT of f}.

Suppose a packet r of some other flow is scheduled before
a packet p in f¥, given worst-case scheduling for f¥. This
scheduling implies r has priority higher than or equal to p%,
i.e., P(r) > P(pk).

Now, say the last packet of f{ is [¥. Notice that this last
packet of f¥ must have priority lower than or equal to all
packets of f¥, including pX, i.e., P(I*) < P(pX). This follows
from the definition of SRF-age. If the size of a flow f is | f]
packets, then the last packet of f“ (per aging) has priority
value |f| — 1. The n'" packet of ¥ has priority value | f| — n.

Putting the above two inequalities together yields P(r) >
P(1¥). Thus, r would also be scheduled before ¥ (which is
the end of f}'), at least in the worst-case schedule for f. [

A few remarks about this result are in order:

* The theorem and the proof specify worst-case tie-
breaking for the flow under consideration. It is easy to
produce counterexamples to the theorem statement with-
out the worst-case addendum.

* The definition of SRF-age is central to the result, and it is
easy to produce counterexamples for an analogous state-
ment for SRF-mean.

* For systems with a limited number of priority queues, like
Karuna or PIAS, the theorem still holds if both known and
unknown flows share the same priority thresholds.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 575

1.2 :
1 /V"-’
o :
0.8 =
©
Eo6
£ 04 g Known flows =+
& _/f Unknown flows
0.2 [~ g™ All flows &
0 | |

0% 20% 40% 60% 80% 100%

Percentage of known flows
Figure 11: For the TensorFlow workload, with TCP, unknown
flows finish faster under SRF-age.

* The result can appear counter-intuitive; after all, large un-
known flows benefit from high priority in the beginning,
which they wouldn’t if they were known. While this is
true, unknown flows keep slowing down with aging, while
known flows keep speeding up with SRF. The proof for-
malizes this idea.

* Our model, like past work, assumes that scheduling does
not change packet inputs to the queue. This is not true for
TCP flows entering a finite queue.

The impact of the last issue above has not been explored
deeply in prior work on packet scheduling. To illustrate its
impact in practice, we take a closer look at the TensorFlow
trace in Fig. 9(a), separating out the FCTs for known and
unknown flows. As Fig. 11 shows, unknown flows finish
somewhat faster. This apparent deviation from our theo-
rem’s result stems from our simple model which ignores TCP
dynamics, assuming instead that all packets of a flow are
available for scheduling at its arrival time. The TensorFlow
workload comprises nearly 90% flows of sizes smaller than
100 KB. For unknown flows of this type, Aging results in
higher priority in the beginning, allowing TCP’s exponential
slow-start to grow such flows faster than flows with known
sizes. Incorporating TCP dynamics into our model to po-
tentially bound the disadvantage that known flows can suffer
will require substantial additional effort, which is left to fu-
ture work. While this discrepancy and its impact on schedul-
ing results should be examined in greater detail, this does
not take away from our results on incremental benefits from
having greater knowledge with SRF-age scheduling overall.

Mean completion time across all co/flows: Although we
have shown that SRF-age cannot deteriorate the performance
of a particular flow when its size is made known, it is easy to
produce examples where it hurts mean flow completion time
across the set of all flows®. While our empirical results show
improved mean FCT with SRF-age (and an overall trend for
improvement even for mean CCT with Sinc-mean), a fuller
analysis of this issue is left to future work.

8This is also true of Sinc-mean for mean coflow completion time.

9 Related work

We have described relevant past work in context through-
out, discussing past efforts on using various types of heuris-
tics for estimating flow sizes in §3, learning-based efforts
that operate at slower timescales in §3.5, and work on non-
clairvoyant methods that do not use flow sizes in §2 and §3.2.

CODA [45] merits mention as a coflow scheduler that ac-
knowledges imprecision in scheduling inputs, and explicitly
handles such imprecision. However, CODA’s focus is on
clustering flows into coflows, rather than on flow size infor-
mation, for which it also relies on PIAS-like techniques.

We also discussed Karuna [9] and SOAP [40] in §8, but
as the closest prior efforts considering scheduling in a mixed
setting with flow sizes (or deadlines, job sizes, etc.) available
and not available, we highlight our contributions in compar-
ison to these here. Both Karuna and SOAP only explore
scheduling in a mixed setting with a fixed set of known and
unknown flows, while our work (a) systematically exam-
ines ways of expanding the set of flows for which size esti-
mates are available; (b) evaluates the utility of imprecise es-
timates across multiple scheduling approaches; and (c) takes
first steps towards assessing how the incremental addition of
knowledge about flows impacts scheduling, with interesting
results for both flow and coflow scheduling.

10 Conclusion

While clairvoyant scheduling promises large performance
benefits across a variety of network scheduling problems, its
assumption of advance knowledge of flow sizes is, at best,
optimistic. Our analysis of how such information may be
obtained reveals several settings where even our best efforts
are bound to fail. Superficially, this would suggest focus-
ing on non-clairvoyant scheduling, but we argue that such
absolutism is unnecessary — we should be using flow size
information where available, and examining whether esti-
mating it for more flows yields additional improvements in
scheduling. Along these lines, we present several heuristics
and a practically implementable learning-based approach to
expand the scenarios where flow size knowledge is available.
We further show empirically and analytically, that incre-
mentally adding such knowledge is helpful for SRF packet
scheduling. For coflow scheduling, we find that small errors
in flow size estimation get compounded, leaving a sizable
performance gap compared with fully clairvoyant coflow
scheduling. We also find that for at least some intuitive poli-
cies for scheduling with partial information, additional infor-
mation can deteriorate scheduling, thus necessitating deeper
examination of this issue in future work.

Acknowledgments

We are greateful to Kai Chen, Mosharaf Chowdhury, Rachit
Agarwal, and the anonymous NSDI reviewers, for their feed-
back; and to George Porter for shepherding our paper.

576 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Treelite : toolbox for decision tree deployment. http:
//treelite.readthedocs.io/en/latest/,
2017.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A
system for large-scale machine learning. In USENIX
0SDI, 2016.

O. A. Abdul-Rahman and K. Aida. Towards under-
standing the usage behavior of Google cloud users: the
mice and elephants phenomenon. In IEEE CloudCom,
2014.

S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal,
D. Shmoys, and A. Vahdat. Sincronia: near-optimal
network design for coflows. In ACM SIGCOMM, 2018.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pFabric: Minimal
near-optimal datacenter transport. In ACM SIGCOMM,
2013.

D. Ardelean, A. Diwan, and C. Erdman. Performance
analysis of cloud applications. In USENIX NSDI, 2018.

W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and
C. Tian. Information-agnostic flow scheduling for com-
modity data centers. In USENIX NSDI, 2015.

A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey,
P. Kaur, J. Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger. A cloud-scale acceleration architecture. In
IEEE/ACM MICRO, 2016.

L. Chen, K. Chen, W. Bai, and M. Alizadeh. Schedul-
ing mix-flows in commodity datacenters with Karuna.
In ACM SIGCOMM, 2016.

L. Chen, J. Lingys, K. Chen, and F. Liu. Auto: Scaling
deep reinforcement learning for datacenter-scale auto-
matic traffic optimization. In ACM SIGCOMM, 2018.

T. Chen and C. Guestrin. XGBoost: A scalable tree
boosting system. In ACM SIGKDD, 2016.

F. Chollet et al. Keras. https://github.com/
keras—-team/keras, 2015.

M. Chowdhury and I. Stoica. Efficient coflow schedul-
ing without prior knowledge. In ACM SIGCOMM,
2015.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

M. Chowdhury, M. Zaharia, J. Ma, M. 1. Jordan, and
I. Stoica. Managing data transfers in computer clusters
with Orchestra. In ACM SIGCOMM, 2011.

M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
coflow scheduling with Varys. In ACM SIGCOMM,
2014.

E. Cortez, A. Bonde, A. Muzio, M. Russinovich,
M. Fontoura, and R. Bianchini. Resource central: Un-
derstanding and predicting workloads for improved re-

source management in large cloud platforms. In ACM
SOSP, 2017.

A. R. Curtis, W. Kim, and P. Yalagandula. Ma-
hout: Low-overhead datacenter traffic management us-
ing end-host-based elephant detection. In IEEE INFO-
COM, 2011.

F. R. Dogar, T. Karagiannis, H. Ballani, and A. Row-
stron. Decentralized task-aware scheduling for data
center networks. In ACM SIGCOMM, 2014.

Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan.
High performance network virtualization with SR-IOV.
In IEEE HPCA, 2010.

N. Farrington, G. Porter, S. Radhakrishnan, H. H.
Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and
A. Vahdat. Helios: A hybrid electrical/optical switch
architecture for modular data centers. In ACM SIG-
COMM, 2010.

P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Rat-
nasamy, and S. Shenker. pHost: Distributed Near-
optimal Datacenter Transport over Commodity Net-
work Fabric. In ACM CoNEXT, 2015.

C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing
flows quickly with preemptive scheduling. In ACM
SIGCOMM, 2012.

K. Hornik, M. Stinchcombe, and H. White. Multi-
layer feedforward networks are universal approxima-
tors. Neural Netw., 2(5), 1989.

L. C. Jain and L. R. Medsker. Recurrent Neural Net-
works: Design and Applications. CRC Press, Inc.,
Boca Raton, FL, USA, 1st edition, 1999.

S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-
murthy, A. Tumanov, J. Yaniv, R. Mavlyutov, i. Goiri,
S. Krishnan, J. Kulkarni, et al. Morpheus: Towards
Automated SLOs for Enterprise Clusters. In USENIX
OSDI, 2016.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural net-
works. In Advances in neural information processing
systems, pages 1097-1105, 2012.

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation

577

http://treelite.readthedocs.io/en/latest/
http://treelite.readthedocs.io/en/latest/
https://github.com/keras-team/keras
https://github.com/keras-team/keras

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

G. Kumar, A. Narayan, and P. Gao. YAPS network
simulator. https://github.com/NetSys/
simulator, 2015.

K. LaCurts, J. C. Mogul, H. Balakrishnan, and
Y. Turner. Cicada: Introducing predictive guarantees
for cloud networks. In USENIX HotCloud, 2014.

Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang,
and E. Chen. One more queue is enough: Minimizing
flow completion time with explicit priority notification.
In IEEE INFOCOM, 2017.

B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A receiver-driven low-latency transport proto-
col using network priorities. In ACM SIGCOMM, 2018.

A. Mushtaq, R. Mittal, J. McCauley, M. Alizadeh,
S. Ratnasamy, and S. Shenker. Datacenter congestion
control: Identifying what is essential and making it
practical. https://people.eecs.berkeley.
edu/~radhika/adsrpt.pdf, 2017.

M. Owaida, H. Zhang, C. Zhang, and G. Alonso. Scal-
able inference of decision tree ensembles: Flexible de-
sign for CPU-FPGA platforms. In FPL, 2017.

Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu.
Hadoopwatch: A first step towards comprehensive traf-
fic forecasting in cloud computing. In IEEE INFO-
COM, 2014.

J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A centralized zero-queue datacen-
ter network. In ACM SIGCOMM, 2014.

I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W.
Biersack. Performance analysis of LAS-based schedul-
ing disciplines in a packet switched network. In ACM
SIGMETRICS, 2004.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In ACM SoCC, 2012.

C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Tech-
nical report, Google Inc., Mountain View, CA,
USA, Nov. 2011. Revised 2014-11-17 for version
2.1. Posted at https://github.com/google/
cluster—-data.

C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Google Inc.,
White Paper, pages 1-14, 2011.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Sno-
eren. Inside the social network’s (datacenter) network.
In ACM SIGCOMM, 2015.

[40]

[41]

(42]

[43]

[44]

[45]

[40]

Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf.
SOAP: One clean analysis of all age-based scheduling
policies. In ACM SIGMETRICS, 2018.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagian-
naki, T. E. Ng, M. Kozuch, and M. Ryan. c-through:
Part-time optics in data centers. In ACM SIGCOMM,
2010.

H. Wang, L. Chen, K. Chen, Z. Li, Y. Zhang, H. Guan,
Z. Qi, D. Li, and Y. Geng. FlowProphet: Generic and
accurate traffic prediction for data-parallel cluster com-
puting. In IEEE ICDCS, 2015.

C. Wilson, H. Ballani, T. Karagiannis, and A. Row-
stron. Better never than late: Meeting deadlines in dat-
acenter networks. In ACM SIGCOMM, 2011.

D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The
only constant is change: Incorporating time-varying
network reservations in data centers. In ACM SIG-
COMM, 2012.

H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and
Y. Geng. CODA: Toward automatically identifying and
scheduling coflows in the dark. In ACM SIGCOMM,
2016.

Q. Zhang, V. Liu, H. Zeng, and A. Krishna-
murthy. High-resolution measurement of data center
microbursts. In ACM IMC, 2017.

578

16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://github.com/NetSys/simulator
https://github.com/NetSys/simulator
https://people.eecs.berkeley.edu/~radhika/adsrpt.pdf
https://people.eecs.berkeley.edu/~radhika/adsrpt.pdf
https://github.com/google/cluster-data
https://github.com/google/cluster-data

A Deployment architecture

Different deployment options expose different flexibility-
performance tradeoffs. We first discuss FLUX’s placement
in the app-kernel interface in a controlled environment, and
then usage in virtualized environments. For illustration,
without loss of generality, we consider the pFabric use case,
tagging packets with the remaining flow size.

A.1 Where does FLUX operate?

There are three possibilities for partitioning FLUX’s com-
ponents across user- and kernel-space, shown in Fig. 13.

The data collector must have visibility of app 1/O calls,
so it must be implemented as either a library to intercepts
these, or within the kernel. The packet tagger must sit in
the kernel to efficiently manipulate packets. Model training
operates off-datapath, and can sit essentially anywhere. The
key question is: where is inference implemented?

Fig. 13(a) — as a separate process: Inference is a standalone
process, serving requests from the syscall interceptor when-
ever a new flow starts. This approach makes changing or
updating the prediction model trivial. Since the model is a
single C function, it can be compiled to a shared library, and
loaded dynamically by the inference module.

When an app issues a send, the data collector requests in-
ference; a response for which is sent to the tagger. The infer-
ence path is much longer than the data path, and packets will
arrive for tagging before the inference. This blocking time
distribution is shown in Fig. 12(a) across 1000 flow starts.
The median (95" percentile) latency is 67.41s (720Ls).

Fig. 13(b) — as an interposed library: To reduce inter-
process communication, inference runs in the same library as
the collector. The send is intercepted and then issued to the
kernel after inference finishes, with the predicted flow size.
The application perceives this process as a long system call.
The median (95" percentile) latency is 4.97us (16.7.s).

Fig. 13(c) — as a kernel module: All components except
learning can be implemented in the kernel. This kernel mod-
ule itself runs inference for new flows, and communication
with the tagger uses shared kernel memory. The latency
comprises entirely of inference, and is shown in Fig. 12(b)
for different model sizes, with an average of 4.3us for the
50-tree model. This approach is quite inflexible: given that
different apps could need different inference models, a new
model must be inserted in the kernel for each new app.

A.2 Virtualization and offload

Virtualization: For containers, operation similar to a non-
virtualized environment works. For a guest OS, FLUX must
be interposed in the guest-host interface. Ultimately, the
guest is an “application” on the host, and the network in-
terface is similar, so this does much in terms of performance
and accuracy, except in cases where some networking func-
tionality is additionally offloaded to hardware.

Hardware offload: Parts of the network stack may be im-
plemented in hardware, or VMs may interact directly with
hardware, such as with SR-IOV [19]. Nevertheless, these
environments still must expose a similar send, rcv API to
underlying layers, which FLUX can intercept. However, in
these settings, FLUX must be implemented as part of a smart
NIC. This is fundamental to any method of using such
packet tagging for network scheduling, because the hyper-
visor may not touch individual packets at all.

RDMA stacks: RDMA has a significantly different API
than TCP. However, even for RDMA networking stacks, the
API exposes similar information about sent and received
data, which FLUX can exploit.

A.3 Inference speed

Fig. 12 shows how inference latency depends on the size
of GBDT models on CPU and on FPGA. For the 50-tree
model, with which we obtain reasonable accuracy on our
traces, the FPGA can achieve latency under 1.3us. Such
low latency is possible because the FPGA is connected to
the CPU through the Intel’s QPI interconnect which guaran-
tees very short FPGA-CPU round trip. On the other hand,
a PCle-attached FPGA exhibits a slower round trip (on the
order of 2.5us).

USENIX Association

16th USENIX Symposium on Networked Systems Design and Implementation 579

|
!

-

e H—
ST [0
0.8 /% 0.8 Fodiia
/ : [11
[} | '
u 06] i 20 trees — w 0.6 ey 20 trees -—
8 i i 8 I
Vo4 { / 50 trees -- Qo4 - H 50 trees --
: Infergnce as a library -— 100 trees - I 100 trees -
0.2 J Infergnce as a process - 500 trees 0.2 P : 1 500 trees
ol k=T 0 Ao PN P | oL L it i i i i | |
0.1 1 10 100 1000 10000 100 1000 1.1 1.2 13 14 15 16 1.7 18 19
Latency (ps) Latency (ps) Latency (ps)
(@) (b) ©

Figure 12: Inference latency: (a) 50 tree GBDT implemented in a library vs. in a process; as a function of model size (b) in-kernel on a

CPU; and (c) using an FPGA.

Application Flow Application Application
S — Sysall Predictor g |
yscall Interceptor nfo Flow predictor
\ / | Prediction
Syscall Info Prediction Prediction

\4 / Integrated

Packet Packet FLUX

Tagger Tagger module

| j | L
NIC NIC NIC

(b) as a library (c) as a kernel module

(a) as a process
Figure 13: Three possibilities for partitioning FLUX’s components across user- and kernel-space.

580 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background & motivation
	Flow size estimation: design space
	Exact sizes provided by application
	Flow aging
	TCP buffer occupancy
	Monitoring system calls
	Learning from past traces

	Learning flow sizes
	Workloads
	Machine learning models

	Opening the black box
	The treachery of time
	Why these features?
	Model accuracy
	Fast-enough, deployable learning?

	Improving network scheduling
	Flow-level scheduling
	Coflow scheduling

	Limitations of learning
	More knowledge better performance?
	Related work
	Conclusion
	Deployment architecture
	Where does Flux operate?
	Virtualization and offload
	Inference speed

