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Abstract
As its price per bit drops, SSD is increasingly becoming

the default storage medium for hot data in cloud application
databases. Even though SSD’s price per bit is more than 10×
lower, and it provides sufficient performance (when accessed
over a network) compared to DRAM, the durability of flash
has limited its adoption in write-heavy use cases, such as
key-value caching. This is because key-value caches need to
frequently insert, update and evict small objects. This causes
excessive writes and erasures on flash storage, which signif-
icantly shortens the lifetime of flash. We present Flashield, a
hybrid key-value cache that uses DRAM as a “filter” to con-
trol and limit writes to SSD. Flashield performs lightweight
machine learning admission control to predict which ob-
jects are likely to be read frequently without getting updated;
these objects, which are prime candidates to be stored on
SSD, are written to SSD in large chunks sequentially. In or-
der to efficiently utilize the cache’s available memory, we
design a novel in-memory index for the variable-sized ob-
jects stored on flash that requires only 4 bytes per object
in DRAM. We describe Flashield’s design and implemen-
tation, and evaluate it on real-world traces from a widely
used caching service, Memcachier. Compared to state-of-
the-art systems that suffer a write amplification of 2.5× or
more, Flashield maintains a median write amplification of
0.5× (since many filtered objects are never written to flash
at all), without any loss of hit rate or throughput.

1 Introduction
Flash has an order of magnitude lower cost per bit com-

pared to DRAM. Consequently, it has become the preferred
storage medium for hot data that requires high through-
put and low latency. For example Google [36] and Face-
book [30] use it for storing photos, and databases like Lev-
elDB [5] and RocksDB [9] are deployed on top of flash.

Key-value caches are an essential layer in modern web
scale applications, and are widely used by almost all web ser-
vices, including Facebook, Twitter and Airbnb. Large web
service providers run their own key-value cache clusters,

SSD+DRAM DRAM only

Count Cost Count Cost

Dell 2×10 core server
with 256 GB DRAM

1 $7,700 17 $130,900

Samsung 1 TB enter-
prise SSD

4 $4,800 0 0

Total $12,500 $130,900

Table 1: The cost of a hybrid cache server with combined capacity
of 4.25 TB, versus the cost of multiple DRAM-only cache servers
with the same aggregate capacity. SSD’s superior cost per bit results
in a 10× lower total cost of ownership for a hybrid cache server.

while smaller providers often utilize caching-as-a-service so-
lutions like Amazon ElastiCache [1] and Memcachier [7].

However, due to its limited endurance under writes,
flash is typically not used for key-value caches like Mem-
cached [6] and Redis [8]. This is all the more perplexing
since these caches are typically deployed in a dedicated re-
mote cluster [31] or remote data center [1, 7] or with client-
side batching [31]. As a result, client-observed accesses
times can be hundreds of microseconds to milliseconds, so
flash would only increase delays by a small fraction when
compared to using DRAM.

Furthermore, since the performance of caches is primar-
ily determined by the amount of memory capacity they pro-
vide [13, 14], and the cost per bit of SSD is more than 10×
lower than DRAM, flash promises significant financial ben-
efits compared to DRAM. Table 1 demonstrates that the cost
difference between DRAM-only cache and hybrid cache,
both with 4.25 TB capacity, is more than 10×. The Total
Cost of Ownership (TCO) difference would be even greater
due to power costs, since flash consumes significantly less
power than DRAM, and can be powered down when there
are fewer requests without requiring re-warming the cache.

The reason flash has not been widely adopted as a key-
value cache is that cache workloads wear out flash drives
very quickly. These workloads typically consist of small ob-
jects, some of which need to be frequently updated [10, 31].
But, modern flash chips within SSDs can only be written a



few thousand times per location over their lifetime.
Further, SSDs suffer from write amplification (WA). That

is, for each byte written by the application (e.g., the key-
value cache), several more bytes are written to the flash at the
device level. WA occurs because flash pages are physically
grouped in large blocks. Pages must be erased before they
can be overwritten, but that can only be done in the granular-
ity of blocks. The result is that over time, these large blocks
typically contain a mix of valid pages and pages whose con-
tents have been invalidated. Any valid pages must be copied
to other flash blocks before a block can be erased. This
garbage collection process creates device-level write amplifi-
cation (DLWA) that can increase the amount of data written
to flash by orders of magnitude. Modern SSDs exacerbate
this by striping many flash blocks together (512 MB worth or
more) to increase sequential write performance (§2.1, [38]).

To minimize the number of flash writes, SSD storage
systems are constrained to writing data in large contiguous
chunks. This forces a second-order form of write amplifi-
cation, which is unique to caches, that we name cache level
write amplification (CLWA). CLWA occurs when the cache
is forced to relocate objects to avoid DLWA. For example,
when a hot object occupies the same flash block as many
items that are ready for eviction, the cache faces a choice.
It can evict the hot object with the cold objects, or it can
rewrite the hot object as part of a new, large write. There-
fore, in existing SSD cache designs, objects get re-written
multiple times into flash.

To deal with this problem, the state-of-the-art system,
RIPQ [38], proposes to store hot and cold objects together on
flash, by inserting them in different physical regions. How-
ever, efficient data placement on flash is not sufficient to pro-
tect against high CLWA, and in fact, may further increase
CLWA in certain scenarios. For example, consider an appli-
cation, in which a large number of objects are infrequently
accessed (or frequently updated). Since RIPQ admits all ob-
jects (hot and cold) into flash, infrequently accessed objects
will get inserted into a “cold” insertion point, and will typi-
cally get evicted before it is accessed again. Therefore, these
objects can get inserted and evicted multiple times. We show
that under such workloads, RIPQ suffers from a CLWA of up
to 150 (§5), which means it will wear out flash devices too
quickly for many applications.

The flash reliability problem will become even greater
over time, since as flash density increases, its durability will
continue to decrease [20]. In particular, the next generation
of flash technology (QLC), can endure 30× fewer writes than
the existing technology (TLC) [3, 29, 32].

We present Flashield, a novel hybrid key-value cache that
uses both DRAM and SSDs. Our contribution is a novel
caching strategy that significantly extends the lifetime of
SSDs, such that it is comparable to DRAM by controlling
and minimizing the number of writes to flash. Our main ob-
servation is that not all objects entering the cache are good

candidates for placement in SSD. In particular, the cache
should avoid writing objects to flash that will be updated or
that will not be read in the near future. However, when ob-
jects first enter the cache, it does not know which objects are
good candidates for SSD and which are not.

Therefore, a key idea in Flashield’s design is that objects
inserted into the cache always spend a period of time in
DRAM, during which the cache learns whether they are good
candidates for flash storage. If they indeed prove themselves
as flash-worthy, Flashield will move them into flash. If not,
they are never moved into flash, which reduces the result-
ing write amplification. Since the flash layer is considerably
larger than DRAM (e.g., 10× larger), objects moved to flash
on average will remain in the cache much longer than those
that stay in DRAM.

To dynamically decide which objects are flash-worthy un-
der varying workloads, we implement the admission control
algorithm using machine-learning based Support Vector Ma-
chine (SVM) classification. We train a different classifier
for each application in the cache. To train the classifiers, we
design a lightweight sampling technique that uniformly sam-
ples objects over time, collecting statistics about the number
of past reads and updates. The classifier predicts whether an
object will be read more than n times in the future without
getting updated, which is used to determine its suitability for
storage on flash. We term this metric flashiness.

The second main idea in Flashield’s design is its novel
DRAM-based lookup index for variable-length objects
stored on flash that requires less than 4 bytes of DRAM per
object. This is more than 5× less than RIPQ, which con-
sumes 22 bytes per object. Since the flash layer’s capacity
is much larger than the DRAM’s, a naı̈ve lookup index for
objects stored on flash would consume the entire capacity of
the DRAM. Our index consumes a relatively small amount
of memory by not storing the location of the objects and their
corresponding keys. Instead, for each object stored on flash,
the index contains a pointer to a region in the flash where the
object is stored, and it stores an additional 4 bits that specify
a hash function on the object key that indicates the insertion
point of the object in its region on flash. The index lever-
ages bloom filters to indicate whether the object resides on
flash or not without storing full keys in DRAM. On average,
Flashield’s lookup index only requires 1.03 reads from the
SSD to return an object stored on it.

We implement Flashield in C and evaluate its perfor-
mance on a set of real-world applications that use Mem-
cachier [7], a popular cloud-based caching service, using
week-long traces. We show that compared with RIPQ [38],
Flashield reduces write amplification by a median of 5× and
an average of 16×, and the index size by more than 5×,
while maintaining the same average hit rates. We show that
when objects are read from SSD, Flashield’s read latency and
throughput is close to the SSD’s latency and throughput, and
when objects are written to the cache or read from DRAM,



Random Sequential

l

l

l

l

l

l

l

l

l

l
l

l

l l

l l

l

l

l l l1

2

3

4

5

6

7

8

0.5 0.75 1 0.5 0.75 1
Flash Utilization

D
ev

ic
e−

le
ve

l W
rit

e 
A

m
pl

ifi
ca

tio
n

Write Size
l

l

l

l

l

1 MB

8 MB

64 MB

256 MB

512 MB

Figure 1: Device-level write amplification after writing 4 TB ran-
domly and sequentially using different write sizes.

its latency and throughput are similar to that of DRAM-based
caches like Memcached.

This paper makes three main contributions:
1. Flashield is the first SSD storage system that explicitly

uses DRAM as an admission control filter for deciding
which objects to insert into flash.

2. Flashield’s novel in-memory lookup index for flash
takes up less than 4 bytes per object in DRAM, without
sacrificing flash write amplifiction and read amplifica-
tion.

3. Flashield is the first key-value cache that uses a
machine-learning based admission control algorithm
and lightweight temporal sampling to predict which ob-
jects will be good candidates for flash.

As new generations of flash technology can tolerate even
fewer writes [3,20,29,32], our dynamic admission control to
flash can be extended to other systems beyond caches, such
as flash databases and file systems.

2 The Problem
Designing an SSD-based cache requires solving two con-

flicting challenges. SSDs perform poorly and wear out
quickly unless writes are large and sequential. This con-
flicts with the characteristics of cache workloads. Caches
store small objects with highly variable lifetimes; this drives
caches to prefer small random I/O for writes which will wear
flash drives out quickly.

The lifetime of an SSD is defined by flash device manu-
facturers as the amount of time before a device has a non-
negligible probability of producing uncorrectable read errors
(e.g., a probability of 10−15 of encountering a corrupt bit).
The lifetime of an SSD depends on several factors, includ-
ing the number of writes and erasures (termed program-erase
cycles), the average time between refresh cycles of the SSD
cells, the cell technology, the error correction code and more.
The typical lifetime of a flash cell is between 3-5 years as-
suming it is written 3-5 times a day on average.

The key metric for device wear is write amplification.
Many write patterns force the SSD to perform additional
writes to flash in order to reorganize data. Write amplifica-
tion is the ratio of the bytes written to flash chips compared
to the bytes sent to the SSD by the application. A write am-

plification of 1 means each byte written by the application
caused a one byte write to flash. A write amplification of 10
means each byte written by the application caused an extra
9 bytes of data to be reorganized and rewritten to flash.

2.1 Device-level Write Amplification
Device-level write amplification (DLWA) is write ampli-

fication that is caused by the internal reorganization of the
SSD. The main source of DLWA comes from the size of the
unit of flash reuse. Flash is read and written in small (˜8 KB)
pages. However, pages cannot be rewritten without first be-
ing erased. Erasure happens at a granularity of groups of sev-
eral pages called blocks (˜256 KB). The mismatch between
the page size (or object sizes) and the erase unit size induces
write amplification when the device is at high utilization.

For example, when an application overwrites the contents
of a page, the SSD writes it to a different, fresh block and
maintains a relocation mapping called the Flash Translation
Layer (FTL). The original block cannot be erased yet, be-
cause the other pages in the same block may still be live.
When the flash chips are completely occupied, the SSD must
erase blocks in order to make room for newly written pages.
If there are no blocks where all of the pages have been su-
perseded by more recently written data, then live pages from
mutiple blocks must be consolidated into a single flash block.

This consolidation or garbage collection is the source of
DLWA. If a device is at 90% occupancy, its DLWA can be
very high. Figure 1 shows DLWA under sequential and ran-
dom writes. The measurements were taken on a 480 GB
Intel 535 Series SSD using SMART, a system for monitor-
ing the internal formation of the device. For each data point,
4 TB of randomly generated data is written either randomly
or sequentially to the raw logical block addresses of the de-
vice with varying buffer sizes. Specifically, in the random
workload the logical block space is broken into contiguous
fixed buffer-sized regions; each write overwrites one of the
regions at random with a full buffer of random data. The se-
quential workload is circular; regions are overwritten in or-
der of their logical block addresses, looping back to the start
of the device as needed. For both patterns, we varied the de-
vice space utilization by limiting writes to a smaller portion
of the logical block addresses.

The results show that random, aligned 1 MB flash writes
experience a nearly 8×DLWA. This is surprising, since flash
erase blocks are smaller than 1 MB. The reason for this write
amplification is because SSDs are increasingly optimized for
high write bandwidth. Each flash package within an SSD is
accessed via a relatively slow link (50-90 MB/s today); SSDs
stripe large sequential writes across many flash packages in
parallel to get high write bandwidth. This effectively fuses
erase blocks from several packages into one logical erase
block. A 1 MB random write marks a large region of pages
as ready for erase, but that region is striped across several
erase units that still contain mostly live pages. Others have



Avg Object Size Read / Write / Update % Unread Writes %

257 B 90.0% / 9.5% / 0.5% 60.6%

Table 2: Statistics of the 20 applications with the most requests in
the week-long Memcachier trace.
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Figure 2: CDF of the object sizes written to memory by the top 20
applications in the Memcachier trace.

corroborated this effect as well [38].
There are two ways to combat this effect. The first is to

write in units of B ·W where B is the erase block size and
W is how many blocks the SSD stripes writes across. Our
results show that a cache would have to write in blocks of
512 MB in order to eliminate DLWA. The second approach
is to write the device sequentially, in FIFO-order at all times.
This works because each B ·W written produces one com-
pletely empty B ·W unit, even if writes are issued in units
smaller than B ·W . Figure 1 shows that 8 MB sequential
writes also eliminate DLWA.

This means our cache is extremely constrained in how it
writes data to flash. To minimize DLWA the cache must
write objects in large blocks or sequentially. In either case,
this gives the cache little control on precisely which objects
should be replaced on flash.

2.2 Cache-level Write Amplification
Writing to flash in large segments (contiguous chunks of

data) is a necessary but not sufficient condition for mini-
mizing overall write amplification. The main side effect
of writing in large segments is cache-level write amplifica-
tion (CLWA). CLWA occurs when objects that were removed
from the SSD are re-written to it by the cache eviction policy.
If the size of the segments (MBs) is significantly larger than
the size of objects (bytes or KBs), it is difficult to guarantee
that high-ranking objects in the cache will always be stored
physically separate from low-ranked objects or objects that
contain old values. Therefore, when a segment that has many
low-ranked objects is erased from the cache, it may also in-
advertently erase some high-ranking objects.

Table 2 presents general statistics of a week-long
trace of Memcachier, a commercial Memcached service
provider [13, 14], and Figure 2 presents the distribution of
the sizes of objects written in the trace. The figure demon-
strates that object sizes vary widely, and in general they are
very small: the average size of objects written to the cache
is 257 bytes, and 80.67% of objects are smaller than 1 KB.
Therefore, even with a segment size of 8 MB using sequen-

Hit Rate CLWA

Victim Cache 69.72% 4.00
RIPQ 70.59% 2.59

Table 3: Hit rate and cache-level write amplification of RIPQ and
the victim cache policy under the entire Memcachier trace.

tial writes, which is the the smallest possible segment size
that does not incur extra write amplification, each segment
will contain on average over 32,000 unique objects.

In addition, 60.6% of writes (and 5.8% of all requests) are
unread writes, which means they are never read after they are
written, and 0.5% of all requests are updates. Both unread
writes and updates contribute to write amplification. Ideally,
unread writes should not be written to the cache. In the case
of updates, to reclaim the space of an object after it was up-
dated, the cache needs to erase and rewrite the object.

RIPQ [38] represents the state-of-the-art in minimizing
CLWA; it is an SSD-based photo cache that minimizes
CLWA by inserting objects that were read k times in the
past together 1. When objects are first inserted into the
cache, they are buffered in memory, and periodically they
are moved into flash together as a segment with other objects
that have been read the same number of times. The idea is
that objects that were read k times in the past might share a
similar future eviction rank. For example, an object that was
read once is stored on flash in the same segment with other
objects that were read once. Segments that contain objects
that have been read fewer times will be evicted faster than
segments with objects that have been read many times.

RIPQ works for photos, which are large and immutable,
but it breaks down on web cache workloads where values are
small and updated more frequently. To illustrate, we simu-
lated the CLWA of RIPQ (the RIPQ implementation is not
publicly available) with the Memcachier traces using a seg-
mented LRU with 8 queues. We also compared it with a
victim cache policy, a naı̈ve approach where the SSD simply
serves as an L2 cache (i.e., every object evicted from DRAM
is written to SSD). This policy is used by TAO [11], Face-
book’s graph data store, which leverages a limited amount of
flash as a victim cache for data stored in DRAM. The simula-
tion assigns the same amount of memory for each application
in the trace, with a ratio of DRAM to SSD of 1:7.

The results are presented in Table 3 and show that, while
RIPQ considerably improves upon victim cache, it still suf-
fers from a very high CLWA. Note that the victim cache
would suffer from an even greater total WA, because it also
suffers from DLWA (since it does not write to flash in large
segments). RIPQ suffers from CLWA for two reasons. First,
RIPQ has no admission policy and it writes all incoming
objects to flash; even unread objects or objects that are fre-
quently updated. Second, when the frequency of reads of a

1Non-cache SSD key-value systems that store data persistently [5, 9, 25,
27] are not affected by CLWA, because they do not evict objects (all data
fits in the database)
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Figure 3: Lifetime of an object in Flashield. Objects always enter
into DRAM. Objects that are a good fit for flash (flashy objects)
are aggregated and moved into flash as a segment. The decision of
whether to evict objects from DRAM or flash is based on a global
eviction priority.

certain object changes, it creates additional writes. For ex-
ample, if an object was read twice over a period of time after
it was written, it is grouped with other objects that were read
twice on flash. However, if it was read five more times, RIPQ
needs to rewrite it to group it with other higher ranking ob-
jects. Since the objects are much smaller than the segment
size, and there is a relatively high ratio of writes in the trace,
RIPQ struggles to guarantee that objects that have been read
around the same time will be stored in the same segment.

These results give two clues on how a cache should ex-
ploit DRAM differently to minimize CLWA for web cache
workloads. First, not every object inserted into the cache by
the application is a good candidate to be stored on SSD. For
example, objects that are updated soon after they are first
written or objects that have a low likelihood of being read in
the future. However, the occurrence of such objects varies
widely across different applications. For example, in some
applications of the Memcachier trace, more than half of writ-
ten objects are never read again, and in some applications, a
vast majority of objects are read many times and should be
written to the cache. Second, due to the disparity between
the segment size and the object size, it is difficult to guar-
antee that objects that were similarly ranked by the eviction
policy will be stored in physically adjacent regions on SSD.

Both of these insights motivate Flashield, a cache that suc-
cessfully minimizes CLWA with no DWLA.

3 Design
The design goal of Flashield is to minimize cache-level

and device-level write amplification, while maintaining com-
parable hit rate. The key insights of Flashield’s design are to
use DRAM as a filter, which prevents moving objects into
flash that will be soon thereafter evicted or updated, and
to maintain an efficient in-memory index which retains low
write and read amplification.

Figure 3 illustrates the lifetime of an object in Flashield.
Objects are first always written to DRAM. After the object is
read for the first time, Flashield starts collecting features that
describe its performance. These contain information about

when and how many times the object has been read and up-
dated. An object may be evicted from DRAM by Flashield’s
eviction algorithm.

Periodically, Flashield moves a segment (e.g., 512 MB)
composed of many DRAM objects into flash. Flashield uses
a machine learning classifier to rank objects based on their
features. If an object passes a rank threshold, it will be con-
sidered as a candidate to move to flash. The candidates to
flash are then ranked based on their score, which determines
the order they are moved by Flashield into flash. This order
is important when there are more flashy candidates than can
fit in a single segment. After it gets moved to flash, an object
will live in the cache for a relatively long duration. It will get
moved out of flash once its segment is erased from flash, in
FIFO order. At that point, the object will be evicted if it is
low in terms of eviction priority, or it will get re-inserted into
DRAM if it has a high eviction priority. Once the object is
re-inserted into DRAM, it will have to prove itself again as
flash worthy before it is re-written to flash. For more details,
see §4.3.

In Flashield, DRAM serves three purposes. First, it is
used as a filter to decide which objects should be inserted
into SSD. Second, it stores the metadata for looking up and
evicting objects on flash. Third, it serves as a caching layer
for objects before they are moved to SSD and for objects that
are not candidates for SSD.

3.1 DRAM as a Filter
In Flashield, DRAM serves as a proving ground for mov-

ing objects into flash. When objects are first written into
DRAM, Flashield does not have a-priori knowledge whether
they will be good candidates for flash. Furthermore, applica-
tions have unique workloads, so their access patterns need to
be learned individually.

A strawman approach for determining which objects are
flash-worthy is to rank them based on simple metrics like re-
cency or frequency, as done by standard cache replacement
polices like LRU or LFU. However, it is difficult to set a sin-
gle threshold for flash-worthiness that will work for all ap-
plications. For example, the system can define a frequency-
based threshold, requiring that an object will be read more
than once before it enters flash. However, for some applica-
tions, such a threshold proves too stringent where the access
patterns are long and reduces the hit rate due to premature
evictions. It can also be too lenient for other applications, in
which objects would be unnecessarily written to flash. Even
for a single application, such a threshold is a heuristic that
would have to be manually tuned (see the example described
below and depicted in Table 4).

Instead of using a one-size-fits-all approach, machine
learning can be used as a way to dynamically learn which
objects are flash-worthy for each individual application.
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Figure 4: Accuracy of SVM classifier in different Memcachier ap-
plications, for predicting whether an object will be accessed at least
n times in the future without updates.

3.2 Flashiness
We define flashiness as a metric that predicts whether an

object will be a good fit for flash. An object that has a high
flashiness score is an object that meets two criteria. First, it
is an object that will be accessed n times in the near future
(where n is a configurable parameter). This guarantees that it
will not be evicted by the cache’s eviction function. Second,
it needs to be immutable in the near future, since updating an
object in SSD requires an additional write.

Note that the threshold n, the number of times an object
will be read in the future, can be used by the system to in-
dicate how sensitive it is to write amplification. If the sys-
tem is very sensitive to write amplification, it can set n to a
relatively high number, which will ensure that Flashield will
only move objects into flash that it predicts will be read many
times in the future. On the other hand, if the system is more
sensitive to hit rate, n will be set as a low number. In addi-
tion, Flashield allows the operator to set a fixed limit on the
flash write rate to maintain a certain target lifetime.

Both of the above flashiness criteria can be captured by
predicting the number of times an object will be read in the
near future (e.g., one hour), and omitting objects that are pre-
dicted to be updated during this preiod.

Flashield uses a binary classifier using Support Vector Ma-
chine (SVM) to predict flashiness, by collecting two features:
(1) number of past reads and (2) number of past updates. Fig-
ure 4 provides the accuracy of the classifier on different ap-
plications from the Memcachier traces, with variable n val-

ues. Accuracy is defined as
t p+ tn

t p+ tn+ f p+ f n
, where t p is

true positives, tn is true negatives, f p is false positives, and
f n is false negatives. The classifier tries to predict whether
an object will be accessed at least n times in the future with-
out being updated, using a training time of one hour.

The accuracy of the prediction varies among the different
applications (from 75% to 99%), due to their varying work-
loads. In addition, the accuracy generally decreases as n in-
creases. This is because as n increases, the classifier is trying
to predict more rare events, of which it has observed fewer

App a b c d e f g

Num Accesses 5 4 5 2 4 4 6

Table 4: The threshold of the number of past accesses that predict
whether an object will be accessed 5 times or more in the next hour.

training data points. For example, there are more objects
that have been read more than once in the following hour,
than objects that have been been read five times or more.

To demonstrate why machine learning is more effective
than having a fixed threshold of the number of past accesses
for determining flashiness, consider the following example.
We trained a simple classifier across the applications from
the trace, which tries to predict flashiness with n = 5, utiliz-
ing a single feature (number of past reads), using a decision
tree with a depth of 1. Table 4 presents the thresholds that
the decision tree chose for each application, which would
provide the highest prediction accuracy, based on its train-
ing samples. The results demonstrate that there is no one
single static threshold that would be optimal for all applica-
tions. This also shows that it is difficult to determine what
this threshold would be a-priori. For example, for application
d, only two reads occurring in the past is sufficient to predict
that it will be read 5 more times or more in the future.

3.3 Flashiness Design Discussion

We experimented with several different features related to
the number and frequency of reads and updates. We found
that the only features that were impactful in the prediction
and capture past information on reads and update are: (1)
number of past reads and (2) number of past updates.

To our surprise, we found that across all the applications
we measured, features related to recency (e.g., time between
reads, time since the last read) had no positive impact on
predictions, and in fact, in some instances reduced classifier
accuracy. This supports our design choice to decouple the
flashiness metric, which is based on number and type of past
accesses, from the eviction policy, which is typically based
on recency (e.g., LRU or one of its derivatives, see §3.4).

In addition, we experimented with several different clas-
sification algorithms. Initially, we tried predicting this num-
ber directly using a logistic regression. We ran this classi-
fier on the Memcachier trace and found the prediction was
highly inaccurate. After trying different features and classi-
fiers, we found it is difficult to accurately predict exactly how
many times an object will be accessed in the future, which is
why we use binary classification, which predicts whether the
number of future reads is above n. We also tried using a dif-
ferent binary classifier, decision trees, which provided very
similar accuracy to SVM. We decided to use SVM, because
they provide a continuous score, which is used to provide a
global flashiness rank for objects. With decision trees, the
range of the score is limited to the number of leaves.



3.4 DRAM as an Index for Flash
Unlike log-structured merge trees (LSM), Flashield stores

the index in DRAM (both for objects in DRAM and in flash).
This allows Flashield to service requests at much lower la-
tency, since the index is read from DRAM. More impor-
tantly, storing the index on flash requires LSMs to constantly
update the index when objects get updated, which creates a
large number of writes [24, 27, 39]. When the index is on
DRAM, it is trivial to update it. However, since Flashield
uses DRAM also as an admission control layer, we must en-
sure that indexes will consume a minimal amount of space
on DRAM.

Similar to Memcached, Flashield stores its index in a
hash-table to enable efficient lookups. A naı̈ve index would
contain the identity of the keys stored in flash, the location of
the values, and their position in an eviction queue. However,
such an index would be prohibitively expensive. If we take
an example of a 6 TB flash device with an average object
size of 257 bytes (equal to the average object size of the top
20 applications in the Memcachier trace), storing a hash of
the key for each object that avoids collisions requires at least
8 bytes, storing the exact location of each object would be
43 bits, and keeping a pointer to a position in a queue would
be 4-8 bytes. Storing 17 bytes per object on DRAM would
require 406 GB of DRAM. This would take up (or exceed)
all of the DRAM of a high end server. In RIPQ, for ex-
ample, each in-memory index entry is 22 bytes. We design a
novel in-memory lookup index for variable-sized objects that
uses less than 4 bytes per object, without incurring additional
flash write amplification.
Identities of keys. Rather than storing the identities of
keys in the index, Flashield keeps them only in the flash de-
vice, as part of the object metadata. In order to identify hash
collisions in the lookup hash-table, Flashield compares the
key from flash. To limit the number of flash reads during
key lookup and avoid complex table expansions, Flashield
utilizes a multiple-choice hash-table without chains. Dur-
ing lookup, pre-defined hash functions are used one by one,
such that if the key is not found, the next hash function is
used. If all hash functions are used and the key was still not
found then Flashield returns a miss. Similarly if a collision
happens during insertion, the key is re-hashed with the next
hash function to map it to another entry in the lookup table.
If all hash functions are used and there is still a collision, the
last collided object is evicted to make space for the new key.

To reduce the number of excess reads from the flash
in case of hash collisions, Flashield utilizes an in-memory
bloom filter for each segment, which indicates whether a key
is stored in the segment. We decided to use a bloom filter
per segment, rather than a global bloom filter, to eliminate
the need of the bloom filter to support deletions (since each
segment is immutable). We use bloom filters with a false
positive rate of 1%. For the Memcachier trace, this trans-
lates to an average of 1.03 accesses to flash for every hit in
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Hash key again Tried all hash
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Read object
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Figure 5: Algorithm for determining if an object exists in flash.

the flash and an extra memory overhead of 10 bits per item.

Object location. Instead of directly storing the location of
the SSD object, the index contains two separate fields: seg-
ment number and the ID of a predefined hash function. The
segment number represents a contiguous segment in flash
where the object is stored. Hashing the object’s key using
the predefined hash function provides the offset of the object
within the segment. Using a hash function to indicate the
object location in the segment may reduce flash utilization,
because it limits the number of possible positions for placing
an object within a segment. Note that these hash functions
are orthogonal to the hash functions used for the hash-table
lookup. We chose to utilize 16 pre-defined hash functions
(i.e., up to 16 possible positions for an object) since increas-
ing the number of hash functions beyond that provided neg-
ligible improvement in the flash utilization. We explore the
flash utilization in §5.3. Note that since data is written to
flash sequentially, segment sizes of 8 MB or larger achieves
minimal DLWA. We use 512 MB segments in order to reduce
the indexing overhead.

Eviction policy. To avoid the overhead of maintaining a
full eviction queue composed of a doubly-linked list of point-
ers, Flashield uses the CLOCK algorithm [16], similar to
other memory key-value caches [18]. CLOCK approximates
the LRU policy, so to evaluate its impact we ran the top
5 applications in the Memcachier trace in a simulation and
compared the results between CLOCK and LRU. The results
show that by keeping just two bits per object for CLOCK
timestamps, the hit rate decreases by an average of only 0.1%
compared to LRU.

Figure 5 summarizes Flashield’s lookup process. The
lookup key is first hashed to find the corresponding entry
ID in the lookup hash-table, which provides the segment
ID. Then, Flashield performs a key lookup in the segment’s
bloom filter. If the key is found in the bloom filter, Flashield
reads the object from the segment on flash. Since the bloom
filter may cause a false positive, if the object that was read
from flash does not have the same key as the object which is
being looked up, the key will be hashed again and Flashield
will look it up again in the lookup hash-table. Similarly, if
the key is not found in the bloom filter, the key is hashed
again and Flashield performs another lookup in the lookup
hash-table. Flashield will attempt to lookup an object using
all the configured hash functions (16 by default) until the ob-
ject is found. If the object is not found after all attempts, the
object does not exist in flash and Flashield returns a miss.

The hash-table entry format is summarized in Figure 6.



01234567891011121314151617181920

Segment NumberHash
Function ID

Clock

G
ho

st

Figure 6: Hash-table entry format for objects stored on flash.
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Figure 7: Flashield’s architecture. The flash index is an in-memory
hash table. The bloom filters provide fast lookups for object exis-
tence in flash, and the rest of the DRAM is a cache. Most of the
cache objects are stored on flash in segments.

The index contains an extra bit (ghost), that indicates
whether the object is scheduled for deletion from flash. We
describe the purpose of this flag at §4.3.

4 Implementation
This section presents the implementation of Flashield. We

implemented Flashield in C from scratch, except for the
transport, dispatch, request processing, and the hash table
for DRAM objects, which are borrowed from Memcached
1.4.15. Flashield has four main functions: read, write,
move data to flash and evict. Figure 7 depicts the high
level components of Flashield’s architecture. It supports
the generic Memcached protocol, so applications that deploy
Memcached can transparently utilize Flashield.

For reads, Flashield first checks whether the object exists
in the hash table for DRAM objects, which is based on Mem-
cached’s hash table. If not, it checks whether the object ex-
ists in flash using a separate hash table for flash objects. If the
object exists either in DRAM or flash, Flashield returns it,
otherwise the request is counted as a miss. Incoming writes
and updates are always stored in DRAM first. In the case of
updates, the updated object is stored in DRAM, and the old
version is invalidated. Flashield always maintains free space
in the size of a segment in DRAM for incoming writes.

Flashield uses a configurable number of worker threads
that process the client requests in parallel. To maintain
enough free space on DRAM, Flashield uses a dedicated
cleaner thread that works in the background and is not on
the critical path for normal request (read/write) processing.
In addition, Flashield let the operator configure a flash write
limit to guarantee a certain target lifetime. When the free
space on DRAM drops below a segment size, if there are
enough objects that meet a threshold for their flashiness score
and the flash write rate limit was not reached, the cleaner
copies them into a segment buffer. When the buffer is full,
the cleaner writes the segment to flash and then frees the
space the objects occupied in DRAM. Objects are moved to

flash in an order based on their flashiness score. When the
SSD is full, the cleaner will remove the last segment from
flash based on FIFO order.

For eviction, Flashield maintains a global priority rank
for all objects, whether they are stored in DRAM or flash.
Objects are evicted from Flashield based on this global pri-
ority. By default the priority is an approximation of LRU
using CLOCK. If the next object for eviction is in DRAM,
Flashield simply evicts it. If the next object for eviction is
in flash, Flashield marks it as a ghost object, and it will be
evicted when its segment is removed from flash. Note that
the movement of data from DRAM into flash is decoupled
from eviction. They are conducted in parallel and use differ-
ent metrics to rank objects. Objects that are moved between
the flash and DRAM always keep their global priority rank-
ing. When there are not enough objects in DRAM that meet
a threshold for their flashiness score, or the flash write rate
reached its limit, the cleaner will evict items from DRAM to
maintain sufficient free space.

The rest of the section describes in detail how Flashield
moves objects into flash, and the implementation of
Flashield’s classifier and eviction algorithm.

4.1 Writing Objects to Flash
Flashield constructs a flash-bound segment in DRAM, by

greedily trying to find space for the objects in the segment
one-by-one. The output bits of the pre-determined hash func-
tions provide different possible insertion points in the seg-
ment for each object. Flashield first assembles a group of ob-
jects that need to be moved to flash based on the their flashi-
ness. It then tries to insert the objects from this group based
on their size. Larger objects go first, because they require
more contiguous space than smaller objects. In this process,
some objects will not have available space in the segment.
Flashield skips these objects and tries to insert them again
next time it creates a new segment. We evaluate the resulting
segment utilization in § 5.3.

4.2 Classifier Implementation
Flashield’s flashiness score is computed based on two fea-

tures for each object. Since these features depend on infor-
mation across multiple object accesses, the features for an
object are only generated after an object has been read at
least once. If an object has never been read, its flashiness
score is automatically equal to zero.

Flashield periodically trains a separate classifier for each
application. For the commercial traces we used, we found
that a training period of one hour at the beginning of the
trace was sufficient.

The naı̈ve way to train the classifier would be to update
the features at each access to the DRAM. However, this ap-
proach may oversample certain objects, which can create an
unbalanced classifier. For example, if a small set of objects
account for 99% of all accesses, multiple sets of features
would be created for these objects, and the flashiness esti-



mation would be biased towards popular objects.
To tackle this problem, we implemented a sampling tech-

nique that generates a single sample for each object, cho-
sen uniformly over all of its accesses during the training pe-
riod. Instead of updating the features at each object access,
Flashield does it only with a probability of 1

n , where n is the
number of times the object was read and updated so far.

To illustrate this sampling technique, consider the follow-
ing example. Suppose an object was written for the first time,
and then read. Its feature vector is:

[
1,0

]
(number of past

reads, number of past updates). Since the number of reads
and updates is equal to 1, the feature vector generated by its
first read will be the feature we use for training at a proba-
bility of 1. If the object is updated (feature vector is now:[
1,1

]
), Flashield will keep the second set of features with a

probability of 1
2 , since the number of reads and updates is

equal to 2. This is equal to uniformly sampling the features
from the first or second access. Each subsequent access will
be sampled at a uniform probability of 1

n , and the probability
of prior accesses to be sampled will also be uniform.

After collecting the samples for an hour, we measure the
number of times each of the objects is hit in the subsequent
hour. This number is used as the target function for the train-
ing. After these two periods, Flashield trains the classifier
using these training samples and labels.

4.3 Eviction
Flashield uses the CLOCK algorithm to rank objects for

eviction. Instead of keeping precise priority rank, each object
has only two CLOCK bits in its hash table entry that signify
priority. In order to approximate LRU, when the object is
read, its bits are all set to 1. MFU (Most Frequently Used) is
approximated by incrementing the bits by 1 at each read.

When a set operation inserts an object into the cache, it
may trigger an eviction. On eviction, Flashield walks round-
robin through each object entry in the index, decrementing
its CLOCK value by one. It stops the walk when it reaches
an entry that has a CLOCK value of zero. This object is cho-
sen as the next victim for eviction. If the victim object is
in DRAM, its space is freed and may be reused for the in-
coming value. In case there is sufficient space after freeing
the victim, eviction stops, otherwise the process repeats as
needed. If the object is in flash, Flashield cannot delete it
immediately from flash, since fine-grained writes to the SSD
would incur high DLWA. Instead, the entry is marked as a
ghost object, which acts as a hint to the flash cleaning pro-
cess. Later, when the on-flash segment that the object resides
is about to be overwritten, the ghost object will not be pre-
served, effectively freeing the storage as part of the bulk flash
cleaning process. Even so, a ghost object is still accessible if
it is the most current value associated with a particular key,
so long as the flash cleaning process has not yet overwritten
its segment on flash. In a sense, ghost objects approximate
the bottom of the global eviction rank (including both flash
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Figure 8: Flashield’s process of allocating and deleting a segment
to and from flash.

and DRAM); non-ghost objects, are considered to be at the
top of the global eviction rank and we call them hot objects.

Flashield triggers a segment deletion once a new segment
is allocated and ready to be moved from DRAM to flash,
given that the flash is full and the configured write rate limit
was not exceeded. The cleaner removes the last segment
from flash in FIFO order. During segment erasure, its ghost
objects are removed from the cache, while hot objects are re-
inserted into the DRAM. Figure 8 summarizes this process.

Moving objects from flash back to DRAM will trigger
evictions; left unchecked this can create two issues. First,
hit rates could suffer if objects are prematurely evicted from
DRAM without proving they are flashy. Second, if too many
flashy objects are evicted it can contribute to write amplifica-
tion. Flashield guards against this with a hot data threshold
(HDT), which ensures that in the limit enough objects can
be discarded during cleaning to free up sufficient space on
flash, without placing too much pressure on eviction. With-
out HDT, the cleaner could re-allocate low ranked objects, at
the expense of higher ranked objects residing in the DRAM.

The HDT is defined as DRAM+ SSD · hot, where DRAM
is the available object storage in DRAM, SSD is the total size
of the SSD, and hot is the percentage of SSD that is allocated
for hot objects. Flashield strives to maintain the HDT, even
when an incoming object has sufficient space in DRAM. To
do so, whenever the amount of hot data exceeds the HDT,
Flashield triggers a new eviction, which marks additional ob-
jects as ghost if they reside on flash. By default, hot is 70%,
so about 30% of the objects on flash are ghost objects.

Ghost objects can still be accessed after they were marked
as ghosts, since they are not immediately removed from
flash. If a ghost object is accessed, it is not considered a
ghost anymore and Flashield marks it as a hot object (the
ghost bit is set to zero). Since Flashield always maintains
the HDT, switching a ghost object from ghost to hot may
trigger an eviction. To avoid unnecessary DRAM evictions,
Flashield will not evict low ranking objects from DRAM in
such case, but only walk through flash objects to mark ob-



Figure 9: Flashield’s eviction process.

jects as ghosts.
Although the cleaner is responsible for maintaining

enough free space in DRAM (by allocating new segments
to flash), in rare occasions the DRAM may not have enough
free space to accommodate an incoming write. This may
happen when the flash write rate limit is reached, or if the
number of objects with flashiness score above the threshold
is not enough for forming a new segment. In such scenario,
Flashield will trigger a special eviction where it will walk
through the DRAM objects only, and will evict low ranking
objects from DRAM to accommodate the incoming write.

Figure 9 demonstrates Flashield’s flow chart when a set
operation inserts new object to the cache.

Delete operations in Flashield do not incur writes to flash.
If the object is in DRAM, it is simply deleted. If it resides
in flash, it is not immediately removed from flash, since that
would incur DLWA. It is also not marked as a ghost, be-
cause ghost objects can still be accessed. Instead, Flashield
deletes the object’s lookup entry. During segment eviction,
the cleaning process identifies deleted objects by comparing
the segment ID in their corresponding lookup entry with the
evicted segment ID, and will not preserve them. Building on
that, Flashield handles update operations as a delete opera-
tion followed by a new insertion.

5 Evaluation
In this section we evaluate the end-to-end performance

of Flashield compared to existing systems. Unfortunately,
to the best of our knowledge, there are no public traces of
large-scale key-value caches. We use real-world traces of an
entire week, provided by Memcachier, a widely used Mem-
cached service provider. Since the Memcachier traces are
fairly sparse in terms of their request rate, we ran a set of
synthetic microbenchmarks to stress the performance of the
system to measure its throughput and latency.

5.1 End-to-end Performance
We compare the end-to-end hit rate and write amplifica-

tion of Flashield to RIPQ and the victim cache policy, by re-
running real-world applications from the Memcachier traces.
Since no public implementation of RIPQ is available [38],
we are forced to run and compare a simulation of the three
systems. Each one of the policies uses the same amount of
memory that was allocated in the Memcachier trace, with a

Flashield RIPQ Victim Cache
App Hit % CLWA Hit % CLWA Hit % CLWA

a 98.8% 5.8 98.5% 151.9 99.3% 4536.3
b 98.6% 2.8 98.8% 4.4 98.9% 21.7
c 83.1% 0.4 83.1% 2.9 93.3% 3.7
d 98.1% 0.2 98.7% 12.4 99.3% 34.0
e 96.0% 0.8 96.0% 1.6 96.2% 1.3
f 90.1% 0.2 91.3% 1.8 94.4% 2.4
g 97.3% 0.5 97.3% 1.4 97.4% 1.0

Table 5: Hit rates and CLWA of Flashield using a threshold of one
future read, RIPQ and victim cache.

Flashield 1 Flashield 10 Flashield 100
App Hit % CLWA Hit % CLWA Hit % CLWA

a 98.8% 5.8 99.0% 9.2 98.9% 5.0
b 98.6% 2.8 98.6% 2.7 95.2% 0.0
c 83.1% 0.4 83.1% 0.4 83.0% 0.4
d 98.1% 0.2 98.1% 0.2 98.1% 0.2
e 96.0% 0.8 95.9% 0.7 95.9% 0.7
f 90.1% 0.2 85.5% 0.0 85.2% 0.0
g 97.3% 0.5 97.3% 0.5 97.3% 0.5

Table 6: Hit rates and CLWA of Flashield using a flashiness pre-
diction threshold of 1, 10 and 100 future reads.

ratio of 1:7 of DRAM and SSD. We run Flashield with a
threshold of one future read. In other words, objects that are
predicted to have at least one future read are deemed suffi-
ciently flash-worthy. Since Flashield utilizes a separate SVM
for each application, we compare the results of individual ap-
plications. To run RIPQ with 8 insertion points, and there-
fore at least 8 different segments on flash, we only run ap-
plications that were allocated a sufficient amount of memory
by Memcachier.

Table 5 presents the results comparing Flashield and
RIPQ. The results show that Flashield achieves significantly
lower CLWA than RIPQ and victim cache. The median
CLWA of Flashield is 0.54, the median of RIPQ is 2.85 and
the median of victim cache is 3.67. Even though Flashield
uses a low threshold for flashiness of one future read, it still
prevents a large number of writes that are not a good fit for
SSD from being written to flash. Flashield and RIPQ have an
almost identical hit rate. Both have a lower hit rate than vic-
tim cache, but victim cache suffers from significantly higher
CLWA (and since it does not handle DLWA, also a much
higher overall write amplification).

Table 6 compares Flashield with different flashiness pre-
diction thresholds n. While the results vary from application
to application, generally speaking, the higher the threshold
the lower the CLWA and the lower the hit rate. Note that
in some applications, such as in application a, this trade off
does not hold, since we train the classifier individually on
each application, and each application performs differently.

Table 7 depicts the results when we vary the ratio of
DRAM and SSD, while keeping the total amount of memory
constant for each application. The results show that if we re-
duce the amount of DRAM too much, the hit rate drops. This
is due to the fact that when the DRAM is low, objects do not



DRAM 1:15 DRAM 1:7 DRAM 1:3
App Hit % CLWA Hit % CLWA Hit % CLWA

a 99.0% 5.1 99.0% 4.6 99.0% 2.6
b 98.3% 3.1 98.6% 4.1 98.8% 4.9
c 81.4% 0.4 83.2% 0.4 92.7% 0.8
d 97.6% 1.2 98.4% 0.9 98.9% 2.2
e 95.7% 0.7 96.0% 0.8 96.2% 0.9
f 89.0% 0.2 91.0% 0.3 94.3% 0.4
g 97.2% 0.5 97.3% 0.5 97.3% 0.5

Table 7: Hit rates and CLWA of Flashield using a threshold of 1,
with varying ratios of DRAM and SSD. The results use a smaller
segment size (2 MB).

Flashield Memcached

SSD
Hits

DRAM
Hits

Misses Hits Misses

Throughput (IOPS) 150K 270K 239K 275K 287K
Latency (µs) 106 13.5 19 13 12

Table 8: Throughput and latency of SSD hits, DRAM hits and
cache misses for Flashield and Memcached.

have sufficient time to prove themselves as flashy enough to
be moved to SSD before they are evicted from DRAM. Note
that we used a smaller segment size in these runs, in order to
be able to display results for a 1:15 ratio of DRAM.

5.2 Microbenchmarks
We drive Flashield’s implementation with microbench-

marks to stress the performance of the system, and com-
pare its latency and throughput with Memcached. We use
4-core 3.4 GHz Intel Xeon E3-1230 v5 (with 8 total hard-
ware threads), 32 GB of DDR4 DRAM at 2133 MHz with a
480 GB Intel 535 Series SSD. All experiments are compiled
and run using the stock kernel, compiler, and libraries on De-
bian 8.4 AMD64. The microbenchmark requests are based
on random keys, with an average object size of 257 bytes,
which is the average object size of the top 20 application
in the Memcachier trace. We disabled the operating system
buffer cache to guarantee that SSD reads are routed directly
to the SSD drive. Since the performance of SSD and DRAM
is an order of magnitude different, we separately measured
SSD and DRAM hits. Finally, we measured the latency and
throughput of Memcached 1.4.15 as a baseline.

Table 8 presents the throughput and latency of the mi-
crobenchmark experiment. Note that in the case of both
Memcachier and Facebook, Memcached is not CPU bound,
but rather memory capacity bound [14, 15]. The latency and
throughput of DRAM hits in Flashield are very similar to
the latency and throughput of Memcached. While the aver-
age latency of SSD hits is significantly higher than DRAM,
their latencies become similar when deploying over the net-
work (network access times are typically 100 µs or more).
The miss latency of Flashield is similar to the latency of
DRAM hits, because all of Flashield’s lookup indices are
stored in DRAM, and the only case it needs to access flash in
a miss is when one of the in-memory bloom filters returns a
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Figure 10: Utilization of a 512 MB segment on flash when
Flashield tries to allocate space with a varying number of objects
from the Memcachier trace. As Flashield tries to allocate more ob-
jects, it achieves higher utilization.

false positive. The write throughput and latency of Flashield
were identical to Memcached, because writes always enter
Flashield’s DRAM.

5.3 Utilization on Flash
When moving data from DRAM to flash, Flashield tries

to allocate space for objects in different possible insertion
points in the flash segment, using pre-defined hash functions.
If none of the insertion point references to sufficient conti-
gious free space for the object, Flashield skips the object and
will try to insert it during the next segment allocation.

Figure 10 depicts the utilization of Flashield’s flash alloca-
tion algorithm. To measure the utilization, we ran Flashield’s
allocation algorithm on the Memcachier traces with different
number of hash functions over a segment size of 512 MB.
The allocation greedily tries to allocate space to more data
and measures the resulting utilization. Note that after the
segment reaches about 60% utilization, its utilization curve
gradient decreases, since when Flashield tries to allocate ob-
jects there is a higher probability of collisions with other ex-
isting objects in the segment. Using 16 hash functions, it
takes about 1 GB of objects to reach a 99% utilization, and
on average each object needs to be hashed 8.2 times until it
finds an insertion point with enough space.

6 Related Work
There are two types of prior research. There are several

prior SSD-based key-value caches for specific workloads
(e.g., photo cache, graph database), but all of them suffer
from low flash lifetime under a general-purpose key-value
workload with small keys and variable objects without lever-
aging specialized hardware. There is also a large number of
prior SSD-based persistent key-value stores. Unlike caches,
persistent stores do not maintain an admission control and
eviction policies and do not suffer from CLWA, hence their
write amplification problems are less severe.
SSD-based Key Value Caches Facebook’s flash-based
photo cache evolved from McDipper [19] to BlockCache [2],
and then to RIPQ [38], trying to improve hit rates while
maintaining low write amplification. McDipper uses a sim-
ple FIFO policy, which causes it to suffer from low hit



rates. BlockCache improves cache hit rates by leveraging
the SLRU policy which co-locates similarly prioritized con-
tent on flash, but incurs much higher write amplifcation than
McDipper. RIPQ achieves even higher hit rates than Block-
Cache, while keeping its write amplication comparable to
McDipper [2]. RIPQ performs insertions with priority-aware
memory blocks, and uses virtual blocks to track the increased
priority value when an item is accessed. However, in a
general purpose key-value service like Memcachier, RIPQ
suffers from more than 5× higher write amplification than
Flashield, and up to 150× on specific applications. Further-
more, RIPQ’s in-memory index map occupies 22 bytes per
entry, consuming a very large amount of DRAM. Flashield’s
novel index requires less than 4 bytes of DRAM per ob-
ject. TAO [11], Facebook’s graph data store, uses a limited
amount of flash as a victim cache for data stored in DRAM.
Therefore, it suffers from a high rate of writes, because items
which are not frequently accessed are written into flash and
evicted soon after.

Twitter has explored SSD-based caching for its data center
cache with Fatcache [21], a modified version of Memcached
that buffers small writes and utilizes FIFO as an eviction pol-
icy. Flashield has better write amplification than Fatcache,
since not all write requests are written to flash, and higher hit
rates, because it uses eviction policies similar to LRU, which
provide a higher hit rate than FIFO. Moreover, Fatcache’s in-
memory index requires 32 bytes (or more) per entry, which
is 8× larger than Flashield.

A couple of systems try to support SSD-based caches by
modifying the SSD’s Flash Translation Layer (FTL). Dura-
cache [26] tries to extend the life of the SSD cache, by dy-
namically increasing the flash device’s error correction ca-
pabilities. Shen et al [37] allow the cache to directly map
keys to the device itself, and remove the overhead of the flash
garbage collector. Unlike these systems, Flashield addresses
CLWA without any changes in the flash device.

Other than key-value caches, there are several systems that
utilize flash as a block-level cache for disk storage [4,22,23,
33, 35, 40]. Unlike Flashield, storage blocks in these sys-
tems are always written to flash, and are fixed-sized (typ-
ically kilobytes in size). For this reason, they use a naive
(inefficient) in-memory index to map from block’s key to a
location in flash. These properties make them impractical for
general purpose key-value workloads with a variable and on
average small object sizes.

Cheng et al [12] present an offline analysis of the trade-off
between write amplification and eviction policies in block-
level caches. They generalize Belady’s MIN algorithm to
flash-based caches, and demonstrate that LRU-based evic-
tion is far from the optimal oracle eviction policy. However,
they do not provide an online algorithm and an implementa-
tion that reduces write amplification of SSD-based caches.
SSD-based Key Value Stores Since these systems are per-
sistent stores, all objects must be eventually written to flash,

and thus they do not maintain an admission control and evic-
tion policies, which are necessary for cache systems like
Flashield. Consequently, persistent key-value stores do not
suffer from CLWA and its implications, so their lifetime con-
straints are less severe than in a cache workload. However,
they still strive to minimize write amplification for perfor-
mance, since they must still suffer write amplification costs
to compact data and update their indexes.

Systems such as LevelDB [5] and RocksDB [9] store the
entire dataset and index on flash using Log-structure Merge-
trees (LSM), and buffer writes to flash in DRAM to avoid
DLWA. To enable efficient lookups, LSM-trees continuously
perform a background compaction process that sorts and re-
writes key-value pairs to flash, creating a major write am-
plification, particularly for workloads like key-value caches.
WiscKey [27] reduces write amplification by separating keys
and values. Keys are kept sorted in the LSM-tree, while val-
ues are stored separately in a log, which is helpful for work-
loads with large value sizes. PebblesDB [34] aims to reduce
write amplification during compaction by using Fragmented
Log-Structured Merge Trees (FLSM), avoiding rewriting
data in the same tree level. In addition, NVMKV [28] is
a key-value store that relies on advanced FTL capabilities
(advanced multi-block writes) to deliver higher performance
and lower write amplification. SILT [25] is a flash key-value
database that minimizes the index stored in memory by uti-
lizing three basic key-value stores. Objects are inserted first
to a write-optimized store, and then re-written and merged
into increasingly more memory-efficient stores. The major-
ity of the objects are stored in the most memory-efficient
store, making the average index cost per key low. However,
unlike Flashield, SILT is not optimized for write amplifica-
tion, and assumes values are fixed-length.

7 Conclusions
SSD faces unique challenges to its adoption for key-value

cache use cases, since the small object sizes and the frequent
rate of evictions and updates create excessive writes and era-
sures. Flashield is the first key-value cache that uses DRAM
as a filter for objects that are not ideal for SSD. Flashield
profiles objects using lightweight machine learning, and dy-
namically learns and predicts which objects are the best fit
for flash. It introduces a novel in-memory index for variable
sized objects with an overhead of less than 4 bytes per object,
without sacrificing the flash write and read amplifictions.

The ideas in this paper can be extended to other use cases.
For example, non-volatile memory (NVM) faces durabil-
ity challenges too, especially when used as a replacement
for DRAM, and may also require an admission policy [17].
This is also the case in multi-tiered storage systems, where
cheaper storage layers offer more capacity at the expense of
decreased performance. Finally, dealing with the durability
of flash becomes an ever more pressing issue, as its density
increases (and its ability to tolerate writes decreases).
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