
dShark: A General, Easy to Program and Scalable Framework for
Analyzing In-network Packet Traces

Da Yu†, Yibo Zhu§, Behnaz Arzani§, Rodrigo Fonseca†, Tianrong Zhang§, Karl Deng§, Lihua Yuan§

†Brown University §Microsoft

Abstract
Distributed, in-network packet capture is still the last resort
for diagnosing network problems. Despite recent advances
in collecting packet traces scalably, effectively utilizing per-
vasive packet captures still poses important challenges. Arbi-
trary combinations of middleboxes which transform packet
headers make it challenging to even identify the same packet
across multiple hops; packet drops in the collection system
create ambiguities that must be handled; the large volume
of captures, and their distributed nature, make it hard to do
even simple processing; and the one-off and urgent nature
of problems tends to generate ad-hoc solutions that are not
reusable and do not scale. In this paper we propose dShark to
address these challenges. dShark allows intuitive groupings
of packets across multiple traces that are robust to header
transformations and capture noise, offering simple streaming
data abstractions for network operators. Using dShark on
production packet captures from a major cloud provider, we
show that dShark makes it easy to write concise and reusable
queries against distributed packet traces that solve many com-
mon problems in diagnosing complex networks. Our evalu-
ation shows that dShark can analyze production traces with
more than 10 Mpps throughput on a commodity server, and
has near-linear speedup when scaling out on multiple servers.

1 Introduction
Network reliability is critical for modern distributed systems
and applications. For example, an ISP outage can cause
millions of users to disconnect from the Internet [45], and a
small downtime in the cloud network can lead to millions of
lost revenue. Despite the advances in network verification and
testing schemes [18, 26, 27, 34, 44], unfortunately, network
failures are still common and are unlikely to be eliminated
given the scale and complexity of today’s networks.

As such, diagnosis is an integral part of a network opera-
tor’s job to ensure high service availability. Once a fault that
cannot be automatically mitigated happens, operators must
quickly analyze the root cause so that they can correct the
fault. Many tools have been developed to ease this process.

We can group existing solutions into host-based [40,56,57],
and in-network tools [44, 68]. While able to diagnose sev-
eral problems, host-based systems are fundamentally limited
in visibility, especially in cases where the problem causes
packets not to arrive at the edge. On the other hand, most
in-network systems are based on aggregates [32], or on strong
assumptions about the topology [56]. Switch hardware im-

provements have also been proposed [21,28,42,56]. However,
it is unlikely the commodity switches will quickly adopt these
features and replace all the existing switches soon.

Because of these limitations, in today’s production net-
works, operators have in-network packet captures as the last
resort [50,68]. They provide a capture of a packet at each hop,
allowing for gathering a full view of packets’ paths through
the network. Analyzing such “distributed” traces allows one
to understand how a packet, a flow, or even a group of flows
were affected as they traversed each switch along their path.
More importantly, most, if not all, commodity switches sup-
port various packet mirroring functionalities.

In this paper, we focus on making the analysis of in-
network packet captures practical. Despite the diagnosing
potential, this presents many unsolved challenges. As a major
cloud provider, although our developers have implemented a
basic analysis pipeline similar to [68], which generates some
statistics, it falls short as our networks and fault scenarios
get more complicated. Multi-hop captures, middleboxes, the
(sometimes) daunting volume of captures, and the inevitable
loss in the capture pipeline itself make it hard for operators to
identify the root problem.

The packets usually go through a combination of header
transformations (VXLAN, VLAN, GRE, and others) applied
repeatedly and in different orders, making it hard to even
parse and count packets correctly. In addition, the packet
captures, which are usually generated via switch mirroring
and collector capturing, are noisy in practice. This is because
the mirrored packets are normally put in the lowest priority
to avoid competing with actual traffic and do not have any
retransmission mechanisms. It is pretty common for the mir-
rored packet drop rate to be close to the real traffic drop rate
being diagnosed. This calls for some customized logic that
can filter out false drops due to noise.

These challenges often force our operators to abandon the
statistics generated by the basic pipeline and develop ad-hoc
programs to handle specific faults. This is done in haste, with
little consideration for correctness guarantees, performance,
or reusability, and increasing the mean time to resolution.

To address these challenges, we design dShark, a scalable
packet analyzer that allows for the analysis of in-network
packet traces in near real-time and at scale. dShark provides
a streaming abstraction with flexible and robust grouping of
packets: all instances of a single packet at one or multiple
hops, and all packets of an aggregate (e.g., flow) at one or
multiple hops. dShark is robust to, and hides the details
of, compositions of packet transformations (encapsulation,



tunneling, or NAT), and noise in the capture pipeline. dShark
offers flexible and programmable parsing of packets to define
packets and aggregates. Finally, a query (e.g., is the last hop
of a packet the same as expected?) can be made against these
groups of packets in a completely parallel manner.

The design of dShark is inspired by an observation that a
general programming model can describe all the typical types
of analysis performed by our operators or summarized in prior
work [56]. Programming dShark has two parts: a declarative
part, in JSON, that specifies how packets are parsed, summa-
rized, and grouped, and an imperative part in C++ to process
groups of packets. dShark programs are concise, expressive,
and in languages operators are familiar with. While the execu-
tion model is essentially a windowed streaming map-reduce
computation, the specification of programs is at a higher level,
with the ‘map’ phase being highly specialized to this context:
dShark’s parsing is designed to make it easy to handle mul-
tiple levels of header transformations, and the grouping is
flexible to enable many different types of queries. As shown
in §4, a typical analysis can be described in only tens of lines
of code. dShark compiles this code, links it to dShark’s scal-
able and high-performance engine and handles the execution.
With dShark, the time it takes for operators to start a specific
analysis can be shortened from hours to minutes.

dShark’s programming model also enables us to heavily
optimize the engine performance and ensures that the opti-
mization benefits all analyses. Not using a standard runtime,
such as Spark, allows dShark to integrate closely with the
trace collection infrastructure, pushing filters and parsers very
close to the trace source. We evaluate dShark on packet
captures of production traffic, and show that on a set of com-
modity servers, with four cores per server, dShark can execute
typical analyses in real time, even if all servers are capturing
1500B packets at 40Gbps line rate. When digesting faster
capturing or offline trace files, the throughput can be further
scaled up nearly linearly with more computing resources.

We summarize our contributions as follows: 1) dShark is
the first general and scalable software framework for analyz-
ing distributed packet captures. Operators can quickly express
their intended analysis logic without worrying about the de-
tails of implementation and scaling. 2) We show that dShark
can handle header transformations, different aggregations,
and capture noise through a concise, yet expressive declar-
ative interface for parsing, filtering, and grouping packets.
3) We show how dShark can express 18 diverse monitoring
tasks, both novel and from previous work. We implement
and demonstrate dShark at scale with real traces, achieving
real-time analysis throughput.

2 Motivation

dShark provides a scalable analyzer of distributed packet
traces. In this section, we describe why such a system is
needed to aid operators of today’s networks.

2.1 Analysis of In-network Packet Traces
Prior work has shown the value of in-network packet traces
for diagnosis [50, 68]. In-network packet captures are widely
supported, even in production environments which contain
heterogeneous and legacy switches. These traces can be
described as the most detailed “logs” of a packet’s journey
through the network as they contain per-packet/per-switch
information of what happened.

It is true that such traces can be heavyweight in practice.
For this reason, researchers and practitioners have continu-
ously searched for replacements to packet captures diagnosis,
like flow records [13, 14], or tools that allow switches to
“digest” traces earlier [21, 42, 56]. However, the former nec-
essarily lose precision, for being aggregates, while the latter
requires special hardware support which in many networks is
not yet available. Alternatively, a number of tools [5, 20, 53]
have tackled diagnosis of specific problems, such as packet
drops. However, these also fail at diagnosing the more general
cases that occur in practice (§3), which means that the need
for traces has yet to be eliminated.

Consequently, many production networks continue to em-
ploy in-network packet capturing systems [59, 68] and enable
them on-demand for diagnosis. In theory, the operators, using
packet traces, can reconstruct what happened in the network.
However, we found that this is not simple in practice. Next,
we illustrate this using a real example.

2.2 A Motivating Example
In 2017, a customer on our cloud platform reported an un-
expected TCP performance degradation on transfers to/from
another cloud provider. The customer is in the business of
providing real-time video surveillance and analytics service,
which relies on stable network throughput. However, every
few hours, the measured throughput would drop from a few
Gbps to a few Kbps, which would last for several minutes,
and recover by itself. The interval of the throughput drops
was non-deterministic. The customer did a basic diagnosis
on their end hosts (VMs) and identified that the throughput
drops were caused by packet drops.

This example is representative – it is very common for
network traffic to go through multiple different components
beyond a single data center, and for packets to be transformed
multiple times on the way. Often times our operators do not
control both ends of the connections.

In this specific case (Figure 1), the customer traffic leaves
the other cloud provider, X’s network, goes through the ISP
and reaches one of our switches that peers with the ISP (À).
To provide a private network with the customer, the traffic is
first tagged with a customer-specific 802.1Q label (Á). Then,
it is forwarded in our backbone/WAN in a VXLAN tunnel
(Â). Once the traffic arrives at the destination datacenter
border (Ã), it goes through a load balancer (SLB), which
uses IP-in-IP encapsulation (Ä,Å), and is redirected to a
VPN gateway, which uses GRE encapsulation (Æ, Ç), before



X

GW ISP

ISP-Y 
Switch

Cloud 
Edge

Cloud 
WAN

Y(us)

Server

Datacenter

④

③

⑥

⑦

③
④

③②①
Gateway

SLB

Server

T2

T1 T0

Outside our networks

Ingress flow
Egress flow

switch/router mirror w/ERSPAN

③②①

VLAN VXLAN

GRE

IP-in-IP ⑤

⑧

Outside flow
switch/router mirror w/GRE

Figure 1: The example scenario. We collect per-hop traces in our network (Y and ISP-Y-switch) and do not have the traces outside our
network except the ingress and egress of ISP-Y-switch. The packet format of each numbered network segment is listed in Table 1.

Number
Header Format

Headers Added after Mirroring Mirrored Headers

À ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP
Á ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP
Â ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP
Ã ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP
Ä ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
Å ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
Æ ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP
Ç ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

Table 1: The packet formats in the example scenario. Different switch models may add different headers before sending out the mirrored
packets, which further complicates the captured packet formats.

reaching the destination server. Table 1 lists the corresponding
captured packet formats. Note that beyond the differences
in the encapsulation formats, different switches add different
headers when mirroring packets (e.g., ERSPAN vs GRE).
On the return path, the traffic from the VMs on our servers
is encapsulated with VXLAN, forwarded to the datacenter
border, and routed back to X.

When our network operators are called up for help, they
must answer two questions in a timely manner: 1) are the
packets dropped in our network? If not, can they provide any
pieces of evidence? 2) if yes, where do they drop? While
packet drops seem to be an issue with many proposed solu-
tions, the operators still find the diagnosis surprisingly hard
in practice.

Problem 1: many existing tools fail because of their spe-
cific assumptions and limitations. As explained in §2.1,
existing tools usually require 1) full access to the network
including end hosts [5, 20]; 2) specific topology, like the
Clos [53], or 3) special hardware features [21, 32, 42, 56]. In
addition, operators often need evidence for “the problem is
not because of” a certain part of the network (in this example,
our network but not ISP or the other cloud network), for prun-
ing the potential root causes. However, most of those tools
are not designed to solve this challenge.

Since all these tools offer little help in this scenario, net-
work operators have no choice but to enable in-network cap-
turing and analyze the packet traces. Fortunately, we already
deployed Everflow [68], and are able to capture per-hop traces
of a portion of flows.

Problem 2: the basic trace analysis tools fall short for the
complicated problems in practice. Even if network opera-
tors have complete per-hop traces, recovering what happened
in the network is still a challenge. Records for the same pack-
ets spread across multiple distributed captures, and none of
the well-known trace analyzers such as Wireshark [2] has the
ability to join traces from multiple vantage points. Grouping
them, even for the instances of a single packet across multiple
hops, is surprisingly difficult, because each packet may be
modified or encapsulated by middleboxes multiple times, in
arbitrary combinations.

Packet capturing noise further complicates analysis. Mir-
rored packets can get dropped on their way to collectors or
dropped by the collectors. If one just counts the packet oc-
currence on each hop, the real packet drops may be buried in
mirrored packet drops and remain unidentified. Again, it is
unclear how to address this with existing packet analyzers.

Because of these reasons, network operators resort to de-
veloping ad-hoc tools to handle specific cases, while still
suffering from the capturing noise.

Problem 3: the ad-hoc solutions are inefficient and usu-
ally cannot be reused. It is clear that the above ad-hoc tools
have limitations. First, because they are designed for specific
cases, the header parsing and analysis logic will likely be
specific. Second, since the design and implementation have
to be swift (cloud customers are anxiously waiting for miti-
gation!), reusability, performance, and scalability will likely
not be priorities. In this example, the tool developed was
single threaded and thus had low throughput. Consequently,



operators would capture several minutes worth of traffic and
have to spend multiples of that to analyze it.

After observing these problems in a debugging session in
production environment, we believe that a general, easy-to-
program, scalable and high-performance in-network packet
trace analyzer can bring significant benefits to network opera-
tors. It can help them understand, analyze and diagnose their
network more efficiently.

3 Design Goals
Motivated by many real-life examples like the one in §2.2,
we derive three design goals that we must address in order to
facilitate in-network trace analysis.

3.1 Broadly Applicable for Trace Analysis
In-network packet traces are often used by operators to iden-
tify where network properties and invariants have been vi-
olated. To do so, operators typically search for abnormal
behavior in the large volume of traces. For different diagnosis
tasks, the logic is different.

Unfortunately, operators today rely on manual processing
or ad-hoc scripts for most of the tasks. Operators must first
parse the packet headers, e.g., using Wireshark. After parsing,
operators usually look for a few key fields, e.g., 5-tuples,
depending on the specific diagnosis tasks. Then they apply
filters and aggregations on the key fields for deeper analysis.
For example, if they want to check all the hops of a certain
packet, they may filter based on the 5-tuple plus the IP id field.
To check more instances and identify a consistent behavior,
operators may apply similar filters many times with slightly
different values, looking for abnormal behavior in each case.
It is also hard to join instances of the same packet captured in
different points of the network.

Except for the initial parsing, all the remaining steps vary
from case to case. We find that there are four types of aggre-
gations used by the operators. Depending on the scenario,
operators may want to analyze 1) each single packet on a spe-
cific hop; 2) analyze the multi-hop trajectory of each single
packet; 3) verify some packet distributions on a single switch
or middlebox; or 4) analyze complicated tasks by correlating
multiple packets on multiple hops. Table 2 lists diagnosis ap-
plications that are commonly used and supported by existing
tools. We classify them into above four categories.

dShark must be broadly applicable for all these tasks – not
only these four aggregation modes, but also support different
analysis logic after grouping, e.g., verifying routing properties
or localizing packet drops.

3.2 Robust in the Wild
dShark must be robust to practical artifacts in the wild, espe-
cially header transformations and packet capturing noise.
Packet header transformations. As shown in §2.2, these
are very common in networks, due to the deployment of
various middleboxes [49]. They become one of the main

obstacles for existing tools [43, 56, 69] to perform all of the
diagnosis logic (listed in Table 2) in one shot. As we can see
from the table, some applications need to be robust to header
transformations. Therefore, dShark must correctly group the
packets as if there is no header transformation. While pars-
ing the packet is not hard (indeed, tools like Wireshark can
already do that), it is unclear how operators may specify the
grouping logic across different header formats. In particular,
today’s filtering languages are often ambiguous. For example,
the “ip.src == X” statement in Wireshark display filter may
match different IP layers in a VXLAN-in-IP-in-IP packet and
leads to incorrect grouping results. dShark addresses this by
explicitly indexing multiple occurrences of the same header
type (e.g., IP-in-IP), and by adding support to address the
innermost ([-1]), outermost ([0]), and all ([:]) occurrences of
a header type.
Packet capturing noise. We find that it is challenging to
localize packet drops when there is significant packet captur-
ing noise. We define noise here as drops of mirrored packets
in the network or in the collection pipeline. Naı̈vely, one
may just look at all copies of a packet captured on all hops,
check whether the packet appears on each hop as expected.
However, 1% or even higher loss in the packet captures is
quite common in reality, as explained in §2.2 as well as in
[61]. With the naı̈ve approach, every hop in the network will
have 1% false positive drop rate in the trace. This makes
localizing any real drop rate that is comparable or less than
1% challenging because of the high false positive rate.

Therefore, for dShark, we must design a programming
interface that is flexible for handling arbitrary header trans-
formations, yet can be made robust to packet capturing noise.

3.3 Fast and Scalable
The volume of in-network trace is usually very large. dShark
must be fast and scalable to analyze the trace. Below we list
two performance goals for dShark.
Support real-time analysis when collocating on collectors.
Recent efforts such as [68] and [50] have demonstrated that
packets can be mirrored from the switches and forwarded
to trace collectors. These collectors are usually commodity
servers, connected via 10Gbps or 40Gbps links. Assuming
each mirrored packet is 1500 bytes large, this means up to
3.33M packets per second (PPS). With high-performance net-
work stacks [1,52,61], one CPU core is sufficient to capture at
this rate. Ideally, dShark should co-locate with the collecting
process, reuse the remaining CPU cores and be able to keep
up with packet captures in real-time. Thus, we set this as the
first performance goal – with a common CPU on a commodity
server, dShark must be able to analyze at least 3.33 Mpps.
Be scalable. There are multiple scenarios that require higher
performance from dShark: 1) there are smaller packets even
though 1500 bytes is the most typical packet size in our pro-
duction network. Given 40Gbps capturing rate, this means
higher PPS; 2) there can be multiple trace collectors [68] and



Group
pattern Application Analysis logic In-nw

ck. only
Header
transf.

Query
LOC

One
packet
on one

hop

Loop-free detection [21]
Detect forwarding loop

Group: same packet(ipv4[0].ipid, tcp[0].seq) on one hop
Query: does the same packet appear multiple times on the same hop No No 8

Overloop-free detection [69]
Detect forwarding loop involving tunnels

Group: same packet(ipv4[0].ipid, tcp[0].seq) on tunnel endpoints
Query: does the same packet appear multiple times on the same endpoint Yes Yes 8

One
packet on
multiple

hops

Route detour checker
Check packet’s route in failure case

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: is valid detour in the recovered path(ipv4[:].ttl) No Yes* 49

Route error
Detect wrong packet forwarding

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: get last correct hop in the recovered path(ipv4[:].ttl) No* Yes* 49

Netsight [21]
Log packet’s in-network lifecycle

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: recover path(ipv4[:].ttl) No* Yes* 47

Hop counter [21]
Count packet’s hop

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: count record No* Yes* 6

Multiple
packets

on
one
hop

Traffic isolation checker [21]
Check whether hosts are allowed to talk

Group: all packets at dst ToR(SWITCH=dst ToR)
Query: have prohibited host(ipv4[0].src) No No 11

Middlebox(SLB, GW, etc) profiler
Check correctness/performance of middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: is middlebox correct(related fields) Yes Yes 18†

Packet drops on middleboxes
Check packet drops in middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: exist ingress and egress trace Yes Yes 8

Protocol bugs checker(BGP, RDMA, etc) [69]
Identify wrong implementation of protocols

Group: all BGP packets at target switch(SWITCH=tar SW)
Query: correctness(related fields) of BGP(FLTR: tcp[-1].src|dst=179) Yes Yes* 23‡

Incorrect packet modification [21]
Check packets’ header modification

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post the modifier
Query: is modification correct (related fields) Yes Yes* 4�

Waypoint routing checker [21, 43]
Make sure packets (not) pass a waypoint

Group: all packets at waypoint switch(SWITCH=waypoint)
Query: contain flow(ipv4[-1].src+dst, tcp[-1].src+dst) should (not) pass Yes No 11

DDoS diagnosis [43]
Localize DDoS attack based on statistics

Group: all packets at victim’s ToR(SWITCH=vic ToR)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No Yes* 18

Multiple
packets

on
multiple

hops

Congested link diagestion [43]
Find flows using congested links

Group: all packets(ipv4[-1].ipid, tcp[-1].seq) pass congested link
Query: list of flows(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 14

Silent black hole localizer [43, 69]
Localize switches that drop all packets

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

Silent packet drop localizer [69]
Localize random packet drops

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

ECMP profiler [69]
Profile flow distribution on ECMP paths

Group: all packets at ECMP ingress switches(SWITCH in ECMP)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* No 18

Traffic matrix [43]
Traffic volume between given switch pairs

Group: all packets at given two switches(SWITCH in tar SW)
Query: total volume of overlapped flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 21

Table 2: We implemented 18 typical diagnosis applications in dShark. “No*” in column “in-network checking only” means this application can also be done
with end-host checking with some assumptions. “Yes*” in column “header transformation” needs to be robust to header transformation in our network, but, in
other environments, it might not. “ipv4[:].ttl” in the analysis logic means dShark concatenates all ivp4’s TTLs in the header. It preserves order information even
with header transformation. Sorting it makes path recovery possible. †We profiled SLB. ‡We focused on BGP route filter. �We focused on packet encapsulation.

3) for offline analysis, we hope that dShark can run faster than
the packet timestamps. Therefore, dShark must horizontally
scale up within one server, or scale out across multiple servers.
Ideally, dShark should have near-linear speed up with more
computing resources.

4 dShark Design

dShark is designed to allow for the analysis of distributed
packet traces in near real time. Our goal in its design has been
to allow for scalability, ease of use, generality, and robustness.
In this section, we outline dShark’s design and how it allows
us to achieve these goals. At a high level, dShark provides a
domain-specific language for expressing distributed network
monitoring tasks, which runs atop a map-reduce-like infras-
tructure that is tightly coupled, for efficiency, with a packet
capture infrastructure. The DSL primitives are designed to

enable flexible filtering and grouping of packets across the
network, while being robust to header transformations and
capture noise that we observe in practice.

4.1 A Concrete Example
To diagnose a problem with dShark, an operator has to write
two related pieces: a declarative set of trace specifications
indicating relevant fields for grouping and summarizing pack-
ets; and an imperative callback function to process groups of
packet summaries.

Here we show a basic example – detecting forwarding
loops in the network with dShark. This means dShark must
check whether or not any packets appear more than once
at any switch. First, network operators can write the trace
specifications as follows, in JSON:
1 {
2 Summary: {



3 Key: [SWITCH, ipId, seqNum],
4 Additional: []
5 },
6 Name: {
7 ipId: ipv4[0].id,
8 seqNum: tcp[0].seq
9 },

10 Filter: [
11 [eth, ipv4, ipv4, tcp]: { // IP-in-IP
12 ipv4[0].srcIp: 10.0.0.1
13 }
14 ]
15 }

The first part, “Summary”, specifies that the query will
use three fields, SWITCH, ipId and seqNum. dShark builds
a packet summary for each packet, using the variables spec-
ified in “Summary”. dShark groups packets that have the
same “key” fields, and shuffles them such that each group is
processed by the same processor.

SWITCH, one of the only two predefined variables in
dShark,1 is the switch where the packet is captured. Trans-
parent to operators, dShark extracts this information from the
additional header/metadata (as shown in Table 1) added by
packet capturing pipelines [59, 68].

Any other variable must be specified in the “Name” part,
so that dShark knows how to extract the values. Note the
explicit index “[0]” – this is the key for making dShark robust
to header transformations. We will elaborate this in §4.3.

In addition, operators can constrain certain fields to a given
value/range. In this example, we specify that if the packet
is an IP-in-IP packet, we will ignore it unless its outermost
source IP address is 10.0.0.1.

In our network, we assume that ipId and seqNum can iden-
tify a unique TCP packet without specifying any of the 5-tuple
fields.2 Operators can choose to specify additional fields.
However, we recommend using only necessary fields for bet-
ter system efficiency and being more robust to middleboxes.
For example, by avoiding using 5-tuple fields, the query is
robust to any NAT that does not alter ipId.

The other piece is a query function, in C++:
1 map<string, int> query(const vector<Group>& groups) {
2 map<string, int> r = {{"loop", 0}, {"normal", 0}};
3 for (const Group& group : groups) {
4 group.size() > 1 ?
5 (r["loop"]++) : (r["normal"]++);
6 }
7 return r;
8 }

The query function is written as a callback function, taking
an array of groups and returning an arbitrary type: in this
case, a map of string keys to integer values. This is flexible
for operators – they can define custom counters like in this ex-
ample, get probability distribution by counting in predefined
bins, or pick out abnormal packets by adding entries into the
dictionary. In the end, dShark will merge these key-value
pairs from all query processor instances by unionizing all

1The other predefined variable is TIME, the timestamp of packet capture.
2In our network and common implementation, IP ID is chosen indepen-

dently from TCP sequence number. This may not always be true [58].

traces

parser1

parser m

…

grouper 1

grouper 2

grouper n

processor 1

processor 2

processor 3

processor i+1

processor i

…

…
result 

aggregator

output

Compile & link

dShark program

Figure 2: dShark architecture.
keys and summing the values of the same keys. Operators
will get a human-readable output of the final key-value pairs.

In this example, the query logic is simple. Since each
packet group contains all copies of a packet captured/mirrored
by the same switch, if there exist two packet summaries in one
group, a loop exists in the network. The query can optionally
refer to any field defined in the summary format. We also
implemented 18 typical queries from the literature and based
on our experience in production networks. As shown in
Table 2, even the most complicated one is only 52 lines long.
For similar diagnosis tasks, operators can directly reuse or
extend these query functions.

4.2 Architecture
The architecture of dShark is inspired by both how opera-
tors manually process the traces as explained in 3.1, and
distributed computing engines like MapReduce [15]. Under
that light, dShark can be seen as a streaming data flow system
specialized for processing distributed network traces. We
provide a general and easy-to-use programming model so
that operators only need to focus on analysis logic without
worrying about implementation or scaling.

dShark’s runtime consists of three main steps: parse, group
and query (Figure 2). Three system components handle each
of the three steps above, respectively. Namely,
• Parser: dShark consumes network packet traces and

extracts user-defined key header fields based on different
user-defined header formats. Parsers send these key
fields as packet summaries to groupers. The dShark
parsers include recursive parsers for common network
protocols, and custom ones can be easily defined.
• Grouper: dShark groups packet summaries that have

the same values in user-defined fields. Groupers receive
summaries from all parsers and create batches per group
based on time windows. The resulting packet groups are
then passed to the query processors.
• Query processor: dShark executes the query provided

by users and outputs the result for final aggregation.
dShark pipeline works with two cascading MapReduce-

like stages: 1) first, packet traces are (mapped to be) parsed
in parallel and shuffled (or reduced) into groups; 2) query
processors run analysis logic for each group (map) and finally
aggregate the results (reduce). In particular, the parser must



handle header transformations as described in §3.2, and the
grouper must support all possible packet groupings (§3.1).
All three components are optimized for high performance and
can run in a highly parallel manner.
Input and output to the dShark pipeline. dShark ingests
packet traces and outputs aggregated analysis results to op-
erators. dShark assumes that there is a system in place to
collect traces from the network, similar to [68]. It can work
with live traces when collocating with trace collectors, or run
anywhere with pre-recorded traces. When trace files are used,
a simple coordinator (§5.4) monitors the progress and feeds
the traces to the parser in chunks based on packet timestamps.
The final aggregator generates human-readable outputs as the
query processors work. It creates a union of the key-value
pairs and sums up values output by the processors (§5).
Programming with dShark. Operators describe their analy-
sis logic with the programming interface provided by dShark,
as explained below (§4.3). dShark compiles operators’ pro-
grams into a dynamic-linked library. All parsers, groupers
and query processors load it when they start, though they
link to different symbols in the library. dShark chooses this
architecture over script-based implementation (e.g., Python
or Perl) for better CPU efficiency.

4.3 dShark Programming Model
As shown in the above example, the dShark programming
interface consists of two parts: 1) declarative packet trace
specifications in JSON, and 2) imperative query functions
(in C++). We design the specifications to be declarative to
make common operations like select, filter and group fields
in the packet headers straightforward to the operators. On
the other hand, we make the query functions imperative to
offer enough degrees of freedom for the operators to define
different diagnosis logic. This approach is similar to the
traditional approach in databases of embedding imperative
user-defined functions in declarative SQL queries. Below we
elaborate on our design rationale and on details not shown in
the example above.
“Summary” in specifications. A packet summary is a byte
array containing only a few key fields of a packet. We intro-
duce packet summary for two main goals: 1) to let dShark
compress the packets right after parsing while retaining the
necessary information for query functions. This greatly bene-
fits dShark’s efficiency by reducing the shuffling overhead and
memory usage; 2) to let groupers know which fields should be
used for grouping. Thus, the description of a packet summary
format consists of two lists. The first contains the fields that
will be used for grouping and the second of header fields that
are not used as grouping keys but are required by the query
functions. The variables in both lists must be defined in the
“Name” section, specifying where they are in the headers.
“Name” in specifications. Different from existing lan-
guages like Wireshark filter or BPF, dShark requires an ex-
plicit index when referencing a header, e.g., “ipv4[0]” instead

of simply “ipv4”. This means the first IPv4 header in the
packet. This is for avoiding ambiguity, since in practice a
packet can have multiple layers of the same header type due
to tunneling. We also adopt the Python syntax, i.e., “ipv4[-1]”
to mean the last (or innermost) IPv4 header, “ipv4[-2]” to
mean the last but one IPv4 header, etc.

With such header indexes, the specifications are both robust
to header transformations and explicit enough. Since the
headers are essentially a stack (LIFO), using negative indexes
would allow operators to focus on the end-to-end path of
a packet or a specific tunnel regardless of any additional
header transformation. Since network switches operate based
on outer headers, using 0 or positive indexes (especially 0)
allows operators to analyze switch behaviors, like routing.
“Filter” in specifications. Filters allow operators to prune
the traces. This can largely improves the system efficiency if
used properly. We design dShark language to support adding
constraints for different types of packets. This is inspired by
our observation in real life cases that operators often want
to diagnose packets that are towards/from a specific middle-
box. For instance, when diagnosing a specific IP-in-IP tunnel
endpoint, e.g., 10.0.0.1, we only care IP-in-IP packets whose
source IP is 10.0.0.1 (packets after encapsulation), and com-
mon IP packets whose destination IP is 10.0.0.1 (packets
before encapsulation). For convenience, dShark supports “*”
as a wildcard to match any headers.
Query functions. An operator can write the query functions
as a callback function that defines the analysis logic to be
performed against a batch of groups. To be generally applica-
ble for various analysis tasks, we choose to prefer language
flexibility over high-level descriptive languages. Therefore,
we allow operators to program any logic using the native C++
language, having as input an array of packet groups, and as
output an arbitrary type. The query function is invoked at the
end of time windows, with the guarantee that all packets with
the same key will be processed by the same processor (the
same semantics of a shuffle in MapReduce).

In the query functions, each Group is a vector containing a
number of summaries. Within each summary, operators can
directly refer the values of fields in the packet summary, e.g.,
summary.ipId is ipId specified in JSON. In addition, since
it is in C++, operators can easily query our internal service
REST APIs and get control plane metadata to help analysis,
e.g., getting the topology of a certain network. Of course,
this should only be done per a large batch of batches to avoid
a performance hit. This is a reason why we design query
functions to take a batch of groups as input.

4.4 Support For Various Groupings
To show that our programming model is general and easy to
use, we demonstrate how operators can easily specify the four
different aggregation types, which we extend to grouping in
dShark, listed in §3.1.
Single-packet single-hop grouping. This is the most basic



switch A

Real drop 
probability: a

collectors

X

X

Noise drop 
probability: b

packet

External
network

α

β

Figure 3: Packet capturing noise may interfere with the drop local-
ization analysis.

Case Probability w/o E2E info w/ E2E info

No drop (1−a)(1−b) Correct Correct
Real drop a(1−b) Correct Correct
Noise drop (1−a)b Incorrect Correct

Real + Noise drop ab Incorrect Incorrect

Table 3: The correctness of localizing packet drops. The two types
of drops are independent because the paths are disjoint after A.

grouping, which is used in the example (§4.1). In packet
summary format, operators simply specify the “key” as a set
of fields that can uniquely identify a packet, and from which
switch (SWITCH) the packet is collected.
Multi-packet single-hop grouping. This grouping is help-
ful for diagnosing middlebox behaviors. For example, in our
data center, most software-based middleboxes are running on
a server under a ToR switch. All packets which go into and
out of the middleboxes must pass through that ToR. In this
case, operators can specify the “key” as SWITCH and some
middlebox/flow identifying fields (instead of identifying each
packet in the single-packet grouping) like 5-tuple. We give
more details in §6.1.
Single-packet multi-hop grouping. This can show the
full path of each packet in the network. This is particularly
useful for misrouting analysis, e.g., does the traffic with a
private destination IP range that is supposed to stay within
data centers leak to WAN? For this, operators can just set
packet identifying fields as the key, without SWITCH, and
use the [-1] indexing for the innermost IP/TCP header fields.
dShark will group all hops of each packet so that the query
function checks whether each packet violates routing policies.
The query function may have access to extra information,
such as the topology, to properly verify path invariants.
Multi-packet multi-hop grouping. As explained in §3.2,
loss of capture packets may impact the results of localizing
packet drops, by introducing false positives. In such scenarios
dShark should be used with multi-packet multi-hop group-
ings, which uses the 5-tuple and the sequence numbers as the
grouping keys, without ipId. This has the effect of grouping
together transport-level retransmissions. We next explain the
rationale for this requirement.

4.5 Addressing Packet Capture Noise
To localize where packets are dropped, in theory, one could
just group all hops of each packet, and then check where in
the network the packet disappears from the packet captures on
the way to its destination. In practice, however, we find that
the noise caused by data loss in the captures themselves, e.g.,

drops on the collectors and/or drops in the network on the
way to the collector, will impact the validity of such analysis.

We elaborate this problem using the example in Figure 3
and Table 3. For ease of explanation we will refer the to paths
of the mirrored packets from each switch to the collector as
β type paths and the normal path of the packet as α type
paths. Assume switch A is at the border of our network and
the ground truth is that drop happens after A. As operators,
we want to identify whether the drop happens within our
network. Unfortunately, due to the noise drop, we will find A
is dropping packets with probability b in the trace. If the real
drop probability a is less than b, we will misblame A. This
problem, however, can be avoided if we correlate individual
packets across different hops in the network as opposed to
relying on simple packet counts.

Specifically, we propose two mechanisms to help dShark
avoid miss-detecting where the packet was dropped:
Verifying using the next hop(s). If the β type path dropping
packets is that from a switch in the middle of the α path,
assuming that the probability that the same packet’s mirror
is dropped on two β paths is small, one can find the packet
traces from the next hop(s) to verify whether A is really the
point of packet drop or not. However, this mechanism would
fail in the “last hop” case, where there is no next hop in the
trace. The “last hop” case is either 1) the specific switch is
indeed the last on the α path, however, the packets may be
dropped by the receiver host, or 2) the specific switch is the
last hop before the packet goes to external networks that do
not capture packet traces. Figure 3 is such a case.
Leveraging information in end-to-end transport. To ad-
dress the “last hop” issue, we leverage the information pro-
vided by end-to-end transport protocols. For example, for
TCP flows, we can verify a packet was dropped by counting
the number of retransmissions seen for each TCP sequence
number. In dShark, we can just group all packets with the
same TCP sequence number across all hops together. If there
is indeed a drop after A, the original packet and retransmitted
TCP packets (captured at all hops in the internal network)
will show up in the group as packets with different IP IDs,
which eliminates the possibility that the duplicate sequence
number is due to a routing loop. Otherwise, it is a noise drop
on the β path.

This process could have false positives as the packet could
be dropped both on the β and α path. This occurs with
probability of only a×b – in the “last hop” cases like Figure 3,
the drops on β and α path are likely to be independent since
the two paths are disjoint after A. In practice, the capture
noise b is� 100%. Thus any a can be detected robustly.

Above, we focused on describing the process for TCP
traffic as TCP is the most prominent protocol used in data
center networks [6]. However, the same approach can be
applied to any other reliable protocols as well. For example,
QUIC [31] also adds its own sequence number in the packet
header. For general UDP traffic, dShark’s language also



allows the operators to specify similar identifiers (if exist)
based on byte offset from the start of the payload.

5 dShark Components and Implementation
We implemented dShark, including parsers, groupers and
query processors, in >4K lines of C++ code. We have de-
signed each instance of them to run in a single thread, and
can easily scale out by adding more instances.

5.1 Parser
Parsers recursively identify the header stack and, if the header
stack matches any in the Filter section, check the constraints
on header fields. If there is no constraint found or all con-
straints are met, the fields in the Summary and Name sections
are extracted and serialized in the form of a byte array. To
reduce I/O overhead, the packet summaries are sent to the
groupers in batches.
Shuffling between multiple parsers and groupers: When
working with multiple groupers, to ensure grouping correct-
ness, all parsers will have to send packet summaries that
belong to the same groups to the same grouper. Therefore,
parsers and groupers shuffle packet summaries using a consis-
tent hashing of the “key” fields. This may result in increased
network usage when the parsers and groupers are deployed
across different machines. Fortunately, the amount of band-
width required is typically very small – as shown in Table 2,
common summaries are only around 10B, more than 100×
smaller than an original 1500B packet.

For analyzing live captures, we closely integrate parsers
with trace collectors. The raw packets are handed over to
parsers via memory pointers without additional copying.

5.2 Grouper
dShark then groups summaries that have the same keys. Since
the grouper does not know in advance whether or not it is safe
to close its current group (groupings might be very long-lived
or even perpetual), we adopt a tumbling window approach.
Sizing the window presents trade-offs. For query correct-
ness, we would like to have all the relevant summaries in the
same window. However, too large of a window increases the
memory requirements.

dShark uses a 3-second window – once three seconds (in
packet timestamps) passed since the creation of a group, this
group can be wrapped up. This is because, in our network,
packets that may be grouped are typically captured within
three seconds.3 In practice, to be robust to the noise in packet
capture timestamps, we use the number of packets arriving
thereafter as the window size. Within three seconds, a parser
with 40Gbps connection receives no more than 240M packets
even if all packets are as small as 64B. Assuming that the
number of groupers is the same as or more than parsers,
we can use a window of 240M (or slightly more) packet

3The time for finishing TCP retransmission plus the propagation delay
should still fall in three seconds.

summaries. This only requires several GB of memory given
that most packet summaries are around 10B large (Table 2).

5.3 Query Processor
The summary groups are then sent to the query processors in
large batches.
Collocating groupers and query processors: To minimize
the communication overhead between groupers and query
processors, in our implementation processors and groupers
are threads in the same process, and the summary groups are
passed via memory pointers.

This is feasible because the programming model of dShark
guarantees that each summary group can be processed in-
dependently, i.e., the query functions can be executed com-
pletely in parallel. In our implementation, query processors
are child threads spawned by groupers whenever groupers
have a large enough batch of summary groups. This mitigates
thread spawning overhead, compared with processing one
group at one time. The analysis results of this batch of packet
groups are in the form of a key-value dictionary and are sent
to the result aggregator via a TCP socket. Finally, the query
process thread terminates itself.

5.4 Supporting Components in Practice
Below, we elaborate some implementation details that are
important for running dShark in practice.
dShark compiler. Before initiating its runtime, dShark
compiles the user program. dShark generates C++ meta code
from the JSON specification. Specifically, a definition of
struct Summary will be generated based on the fields in the
summary format, so that the query function has access to
the value of a field by referring to Summary.variable name.
The template of a callback function that extracts fields will
be populated using the Name section. The function will
be called after the parsers identify the header stack and the
pointers to the beginning of each header. The Filter section is
compiled similarly. Finally, this piece of C++ code and the
query function code will compile together by a standard C++
compiler and generate a dynamic link library. dShark pushes
this library to all parsers, groupers and query processors.
Result aggregator. A result aggregator gathers the output
from the query processors. It receives the key-value dictionar-
ies sent by query processors and combines them by unionizing
the keys and summing the values of the same keys. It then
generates human-readable output for operators.
Coordinate parsers. dShark parsers consume partitioned
network packet traces in parallel. In practice, this brings a
synchronization problem when they process offline traces. If
a fast parser processes packets of a few seconds ahead of a
slower parser (in terms of when the packets are captured),
the packets from the slower parser may fall out of grouper
moving window (§5.2), leading to incorrect grouping.

To address this, we implemented a coordinator to simulate
live capturing. The coordinator periodically tells all parsers



until which timestamp they should continue processing pack-
ets. The parsers will report their progress once they reach the
target timestamp and wait for the next instruction. Once all
parsers report completion, the coordinator sends out the next
target timestamp. This guarantees that the progress of differ-
ent parsers will never differ too much. To avoid stragglers,
the coordinator may drop parsers that are consistently slower.
Over-provision the number of instances. Although it may
be hard to accurately estimate the minimum number of in-
stances needed (see §6) due to the different CPU overhead
of various packet headers and queries, we use conservative
estimation and over-provision instances. It only wastes negli-
gible CPU cycles because we implement all components to
spend CPU cycles only on demand.

6 dShark Evaluation
We used dShark for analyzing the in-network traces collected
from our production networks4. In this section, we first
present a few examples where we use dShark to check some
typical network properties and invariants. Then, we evaluate
the performance of dShark.

6.1 Case Study
We implement 18 typical analysis tasks using dShark (Ta-
ble 2). We explain three of them in detail below.
Loop detection. To show the correctness of dShark, we per-
form a controlled experiment using loop detection analysis as
an example. We first collected in-network packet traces (more
than 10M packets) from one of our networks and verified that
there is no looping packet in the trace. Then, we developed
a script to inject looping packets by repeating some of the
original packets with different TTLs. The script can inject
with different probabilities.

We use the same code as in §4.1. Figure 4 illustrates the
number of looping packets that are injected and the number
of packets caught by dShark. dShark has zero false negative
or false positive in this controlled experiment.
Profiling load balancers. In our data center, layer-4 soft-
ware load balancers (SLB) are widely deployed under ToR
switches. They receive packets with a virtual IP (VIP) as the
destination and forward them to different servers (called DIP)
using IP-in-IP encapsulation, based on flow-level hashing.
Traffic distribution analysis of SLBs is handy for network
operators to check whether the traffic is indeed balanced.

To demonstrate that dShark can easily provide this, we
randomly picked a ToR switch that has an SLB under it. We
deployed a rule on that switch that mirrors all packets that
go towards a specific VIP and come out. In one hour, our
collectors captured more than 30M packets in total.5

Our query function generates both flow counters and packet

4All the traces we use in evaluation are from clusters running internal
services. We do not analyze our cloud customers traffic without permission.

5An SLB is responsible for multiple VIPs. The traffic volume can vary a
lot across different VIPs.

10% 15% 20%
Loop injection rate

0

50000

100000

150000

200000

Pa
ck

et
 N

um
be

r

98440

147996

198033
inject
detect

Figure 4: Injected loops are all
detected.

DIP1 DIP2 DIP3 DIP4 DIP5 DIP60
5
10
15
20
25
30

Pe
rc
en
ta
ge

pkt
flow

Figure 5: Traffic to an SLB VIP
has been distributed to destina-
tion IPs.

counters of each DIP. Figure 5 shows the result – among the
total six DIPs, DIP5 receives the least packets whereas DIP6
gets the most. Flow-level counters show a similar distribution.
After discussing with operators, we conclude that for this VIP,
load imbalance does exist due to imbalanced hashing, while
it is still in an acceptable range.
Packet drop localizer. Noise can affect the packet drop
localizer. Here we briefly evaluate the effectiveness of using
transport-level retransmission information to reduce false
positives (§4.5). We implemented the packet drop localizer as
shown in Table 2, and used the noise mitigation mechanism
described in §4.5. In a production data center, we deployed
a mirroring rule on all switches to mirror all packets that
originate from or go towards all servers, and fed the captured
packets to dShark. We first compare our approach, which
takes into account gaps in the sequence of switches, and uses
retransmissions as evidence of actual drops, with a naı̈ve
approach, that just looks at the whether the last captured
hop is the expected hop. Since the naı̈ve approach does not
work for drops at the last switch (including ToR and the data
center boundary Tier-2 spine switches), for this comparison
we only considered packets whose last recorded switch were
leaf (Tier-1) switches. The naı̈ve approach reports 5,599
suspected drops while dShark detects 7. The reason for the
difference is drops of mirrored packets, which we estimated
in our log to be approximately 2.2%. The drops detected by
dShark are real, because they generated retransmissions with
the same TCP sequence number.

Looking at all packets (and not only the ones whose traces
terminate at the Tier-1 switches), we replayed the trace while
randomly dropping capture packets with increasing probabili-
ties. dShark reported 5,802, 5,801, 5,801 and 5,784 packet
drops under 0%, 1%, 2% and 5% probabilities respectively.
There is still a possibility that we miss the retransmitted
packet, but, from the result, it is very low (0.3%).

6.2 dShark Component Performance
Next, we evaluate the performance of dShark components
individually. For stress tests, we feed offline traces to dShark
as fast as possible. To represent commodity servers, we use
eight VMs from our public cloud platform, each has a Xeon
16-core 2.4GHz vCPU, 56GB memory and 10Gbps virtual
network. Each experiment is repeated for at least five times
and we report the average. We verify the speed difference
between the fastest run and slowest run is within 5%.
Parser. The overhead of the parser varies based on the layers



of headers in the packets: the more layers, the longer it takes
to identify the whole header stack. The number of fields being
extracted and filter constraints do not matter as much.

To get the throughput of a parser, we designed a controlled
evaluation. Based on the packet formats in Table 1, we gen-
erated random packet traces and fed them to parsers. Each
trace has 80M packets of a given number of header layers.
Common TCP packets have the fewest header layers (three
– Ethernet, IPv4, and TCP). The most complicated one has
eight headers, i.e., Ä in Table 1.

Figure 6 shows that in the best case (parsing a common
TCP packet), the parser can reach nearly 3.5 Mpps. The
throughput decreases when the packets have more header
layers. However, even in the most complicated case, a single-
thread parser still achieves 2.6 Mpps throughput.
Grouper. For groupers, we find that the average number
of summaries in each group is the most impacting factor to
grouper performance. To show this, we test different traces in
which each group will have one, two, four, or eight packets,
respectively. Each trace has 80M packets.

Figure 7 shows that the grouper throughput increases when
each group has more packets. This is because the grouper
uses a hash table to store the groups in the moving window
(§5.2). The more packets in each group, the less group entry
inserts and hash collisions. In the worst case (each packet is
a group by itself), the throughput of one grouper thread can
still reach more than 1.2 Mpps.
Query processor. The query processor performs the query
function written by network operators against each summary
group. Of course, the query overhead can vary significantly
depending on the operators’ needs. We evaluate four typical
queries that represent two main types of analysis: 1) loop
detection and SLB profiler only check the size of each group
(§4.1); 2) the misrouting analysis and drop localization must
examine every packet in a group.

Figure 8 shows that the query throughput of the first type
can reach 17 or 23 Mpps. The second type is significantly
slower – the processor runs at 1.5 Mpps per thread.

6.3 End-to-End Performance
We evaluate the end-to-end performance of dShark by using
a real trace with more than 640M packets collected from
production networks. Unless otherwise specified, we run the
loop detection example shown in §4.1.

Our first target is the throughput requirement in §3: 3.33
Mpps per server. Based on the component throughput, we
start two parser instances and three grouper instances on one
VM. Groupers spawn query processor threads on demand.
Figure 9 shows dShark achieves 3.5 Mpps throughput. This is
around three times a grouper performance (Figure 7), which
means groupers run in parallel nicely. The CPU overhead is
merely four CPU cores. Among them, three cores are used
by groupers and query processors, while the remaining core
is used by parsers. The total memory usage is around 15 GB.

On the same setup, the drop localizer query gets 3.6 Mpps
with similar CPU overhead. This is because, though the query
function for drop localizer is heavier, its grouping has more
packets per group, leading to lighter overhead (Figure 7).

We further push the limit of dShark on a single 16-core
server. We start 6 parsers and 9 groupers, and achieve 10.6
Mpps throughput with 12 out of 16 CPU cores fully occupied.
This means that even if the captured traffic is comprised of
70% 64B small packets and 30% 1500B packets, dShark can
still keep up with 40Gbps live capturing.

Finally, dShark must scale out across different servers.
Compared to running on a single server, the additional over-
head is that the shuffling phase between parsers and groupers
will involve networking I/O. We find that this overhead has
little impact on the performance – Figure 9 shows that when
running two parsers and three groupers on each server, dShark
achieves 13.2 Mpps on four servers and 26.4 Mpps on eight
servers. This is close to the numbers of perfectly linear
speedup 14 Mpps and 28 Mpps, respectively. On a network
with full bisection bandwidth, where traffic is limited by the
host access links, this is explained because we add parsers
and groupers in the same proportion, and the hashing in the
shuffle achieves an even distribution of traffic among them.

7 Discussion and Limitations
Complicated mappings in multi-hop packet traces. In
multi-hop analysis, dShark assumes that at any switch or
middlebox, there exist 1:1 mappings between input and output
packets, if the packet is not dropped. This is true in most
parts of our networks. However, some layer 7 middleboxes
may violate this assumption. Also, IP fragmentation can
also make troubles – some fragments may not carry the TCP
header and break analysis that relies on TCP sequence number.
Fortunately, IP fragmentation is not common in our networks
because most servers use standard 1500B MTU while our
switches are configured with larger MTU.

We would like to point out that it is not a unique problem of
dShark. Most, if not all, state-of-art packet-based diagnosis
tools are impacted by the same problem. Addressing this
challenge is an interesting future direction.
Alternative implementation choices. We recognize that
there are existing distributed frameworks [12,15,64] designed
for big data processing and may be used for analyzing packet
traces. However, we decided to implement a clean-slate de-
sign that is specifically optimized for packet trace analysis.
Examples include the zero-copy data passing via pointers be-
tween parsers and trace collectors, and between groupers and
query processors. Also, existing frameworks are in general
heavyweight since they have unnecessary functionalities for
us. That said, others may implement dShark language and
programming model with less lines of code using existing
frameworks, if performance is not the top priority.
Offloading to programmable hardware. Programmable
hardware like P4 switches and smart NICs may offload dShark



3 4 6 8
Number of header layers

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
(k

pp
s)

3484 3401
3021

2695

Figure 6: Single parser performance with
different packet headers.

1 2 4 8
Avg summary per group

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
(k

pp
s)

1267

1982

2744 2813

Figure 7: Single grouper performance with
different average group sizes.

Loo
p d

ete
cto

r

SLB pr
ofi

ler

Hop
 co

un
ter

Drop
 lo

cal
ize

r

Query functions

0
5000

10000
15000
20000
25000

Th
ro

ug
hp

ut
(k

pp
s) 23323

17034

1588 1549

Figure 8: Single query processor perfor-
mance with different query functions.

1(2
p3

g)

2(4
p6

g)

1o
r3(

6p
9g

)

4(8
p1

2g
)

8(1
6p

24
g)

Number of servers

4
8

12
16
20
24
28

Th
ro

ug
hp

ut
(M

pp
s)

ideal(linear)
dShark

Figure 9: dShark performance scales near linearly.

from CPU for better performance. However, dShark already
delivers sufficient throughput for analyzing 40Gbps online
packet captures per server (§6) in a practical setting. Mean-
while, dShark, as a pure software solution, is more flexible,
has lower hardware cost, and provides operators a program-
ming interface they are familiar with. Thus, we believe that
dShark satisfies the current demand of our operators. That
said, in an environment that is fully deployed with highly
programmable switches,6 it is promising to explore hardware-
based trace analysis like Marple [42].

8 Related Work
dShark, to the best of our knowledge, is the first framework
that allows for the analysis of distributed packet traces in the
face of noise, complex packet transformations, and large net-
work traces. Perhaps the closest to dShark are PathDump [56]
and SwitchPointer [57]. They diagnose problems by adding
metadata to packets at each switch and analyzing them at the
destination. However, this requires switch hardware modifi-
cation that is not widely available in today’s networks. Also,
in-band data shares fate with the packets, making it hard to di-
agnose problems where packets do not reach the destination.

Other related work that has been devoted to detection and
diagnosis of network failures includes:
Switch hardware design for telemetry [21, 28, 32, 36, 42].
While effective, these work require infrastructure changes that
are challenging or even not possible due to various practical
reasons. Therefore, until these capabilities are mainstream,
the need to for distributed packet traces remains. Our sum-
maries may resemble NetSight’s postcards [21], but postcards
are fixed, while our summaries are flexible, can handle trans-
formations, and are tailored to the queries they serve.
Algorithms based on inference [3, 8, 19, 20, 22, 38, 40, 53,
54,68]. A number of works use anomaly detection to find the

6Unfortunately, this can take some time before happening. In some
environments, it may never happen.

source of failures within networks. Some attempt to cover
the full topology using periodic probes [20]. However, such
probing results in loss of information that often complicates
detecting certain types of problems which could be easily
detected using packet traces from the network itself. Other
such approaches, e.g., [38,40,53,54], either rely on the packet
arriving endpoints and thus cannot localize packet drops, or
assume specific topology. Work such as EverFlow [68] is
complementary to dShark. Specifically, dShark’s goal is to an-
alyze distributed packet captures fed by Everflow. Finally, [7]
can only identify the general type of a problem (network,
client, server) rather than the responsible device.
Work on detecting packet drops. [11, 16, 17, 23–25, 29, 33,
37, 39, 41, 46, 60, 63, 65–67] While these work are often ef-
fective at identifying the cause of packet drops, they cannot
identify other types of problems that often arise in practice
e.g., load imbalance. Moreover, as they lack full visibility
into the network (and the application) they often are unable
to identify the cause of problems for specific applications [6].
Failure resilience and prevention [4,9,10,18,27,30,34,35,
47,48,51,55,62] target resilience or prevention to failures via
new network architectures, protocols, and network verifica-
tion. dShark is complementary to these works. While they
help avoid problematic areas in the network, dShark identifies
where these problems occur and their speedy resolution.

9 Conclusion
We present dShark, a general and scalable framework for
analyzing in-network packet traces collected from distributed
devices. dShark provides a programming model for operators
to specify trace analysis logic. With this programming model,
dShark can easily address complicated artifacts in real world
traces, including header transformations and packet capturing
noise. Our experience in implementing 18 typical diagnosis
tasks shows that dShark is general and easy to use. dShark
can analyze line rate packet captures and scale out to multiple
servers with near-linear speedup.

Acknowledgments
We thank our shepherd, Anja Feldmann, and the anonymous
reviewers for their insightful comments. Da Yu was partly
funded by NSF grant CNS-1320397.

References
[1] Data plane development kit (DPDK). http://dpdk.org/, 2018.

Accessed on 2018-01-25.



[2] Wireshark. http://www.wireshark.org/, 2018. Accessed on
2018-01-25.

[3] ADAIR, K. L., LEVIS, A. P., AND HRUSKA, S. I. Expert network
development environment for automating machine fault diagnosis. In
SPIE Applications and Science of Artificial Neural Networks (1996),
pp. 506–515.

[4] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., MATUS, F.,
PAN, R., YADAV, N., VARGHESE, G., ET AL. CONGA: Distributed
congestion-aware load balancing for datacenters. ACM SIGCOMM
Computer Communication Review 44, 4 (2014), 503–514.

[5] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H., PADHYE,
J., OUTHRED, G., AND LOO, B. T. Closing the network diagnostics
gap with vigil. In Proceedings of the SIGCOMM Posters and Demos
(New York, NY, USA, 2017), SIGCOMM Posters and Demos ’17,
ACM, pp. 40–42.

[6] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H., PADHYE,
J., OUTHRED, G., AND LOO, B. T. 007: Democratically finding the
cause of packet drops. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18) (Renton, WA, 2018),
USENIX Association.

[7] ARZANI, B., CIRACI, S., LOO, B. T., SCHUSTER, A., AND
OUTHRED, G. Taking the blame game out of data centers opera-
tions with netpoirot. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), ACM, pp. 440–453.

[8] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S., MALTZ,
D. A., AND ZHANG, M. Towards highly reliable enterprise network
services via inference of multi-level dependencies. ACM SIGCOMM
Computer Communication Review 37, 4 (2007), 13–24.

[9] BODÍK, P., MENACHE, I., CHOWDHURY, M., MANI, P., MALTZ,
D. A., AND STOICA, I. Surviving failures in bandwidth-constrained
datacenters. In ACM SIGCOMM (2012), pp. 431–442.

[10] CHEN, G., LU, Y., MENG, Y., LI, B., TAN, K., PEI, D., CHENG,
P., LUO, L. L., XIONG, Y., WANG, X., ET AL. Fast and cautious:
Leveraging multi-path diversity for transport loss recovery in data
centers. In USENIX ATC (2016).

[11] CHEN, Y., BINDEL, D., SONG, H., AND KATZ, R. H. An algebraic
approach to practical and scalable overlay network monitoring. ACM
SIGCOMM Computer Communication Review 34, 4 (2004), 55–66.

[12] CHOTHIA, Z., LIAGOURIS, J., DIMITROVA, D., AND ROSCOE, T.
Online reconstruction of structural information from datacenter logs. In
Proceedings of the Twelfth European Conference on Computer Systems
(New York, NY, USA, 2017), EuroSys ’17, ACM, pp. 344–358.

[13] CLAISE, B., TRAMMELL, B., AND AITKEN, P. RFC7011: Specifi-
cation of the IP Flow Information Export (IPFIX) Protocol for the
Exchange of Flow Information. https://tools.ietf.org/
html/rfc7011, Sept. 2013.

[14] CLAISE, B., E. RFC3954: Cisco Systems NetFlow Services Export
Version 9. https://tools.ietf.org/html/rfc3954, Oct.
2004.

[15] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data process-
ing on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.

[16] DUFFIELD, N. Network tomography of binary network performance
characteristics. IEEE Transactions on Information Theory 52, 12
(2006), 5373–5388.

[17] DUFFIELD, N. G., ARYA, V., BELLINO, R., FRIEDMAN, T.,
HOROWITZ, J., TOWSLEY, D., AND TURLETTI, T. Network to-
mography from aggregate loss reports. Performance Evaluation 62, 1
(2005), 147–163.

[18] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M.,
GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. A general
approach to network configuration analysis. In NSDI, 12th USENIX
Symposium on Networked Systems Design and Implementation (2015),
USENIX.

[19] GHASEMI, M., BENSON, T., AND REXFORD, J. RINC: Real-time
Inference-based Network diagnosis in the Cloud. Tech. rep., Prince-
ton University, 2015. https://www.cs.princeton.edu/
research/techreps/TR-975-14.

[20] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., LIU, Z., WANG, V., PANG, B., CHEN, H., ET AL. Pingmesh: A
large-scale system for data center network latency measurement and
analysis. In ACM SIGCOMM (2015), pp. 139–152.

[21] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D., AND
MCKEOWN, N. I know what your packet did last hop: Using packet
histories to troubleshoot networks. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14) (Seattle,
WA, 2014), USENIX Association, pp. 71–85.

[22] HELLER, B., SCOTT, C., MCKEOWN, N., SHENKER, S., WUNDSAM,
A., ZENG, H., WHITLOCK, S., JEYAKUMAR, V., HANDIGOL, N.,
MCCAULEY, J., ET AL. Leveraging SDN layering to systematically
troubleshoot networks. In ACM SIGCOMM HotSDN (2013), pp. 37–
42.

[23] HERODOTOU, H., DING, B., BALAKRISHNAN, S., OUTHRED, G.,
AND FITTER, P. Scalable near real-time failure localization of data
center networks. In ACM KDD (2014), pp. 1689–1698.

[24] HUANG, Y., FEAMSTER, N., AND TEIXEIRA, R. Practical issues
with using network tomography for fault diagnosis. ACM SIGCOMM
Computer Communication Review 38, 5 (2008), 53–58.

[25] KANDULA, S., KATABI, D., AND VASSEUR, J.-P. Shrink: A tool for
failure diagnosis in IP networks. In ACM SIGCOMM MineNet (2005),
pp. 173–178.

[26] KAZEMIAN, P., CHAN, M., ZENG, H., VARGHESE, G., MCKEOWN,
N., AND WHYTE, S. Real time network policy checking using header
space analysis. In NSDI (2013), pp. 99–111.

[27] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In NSDI (2012), vol. 12,
pp. 113–126.

[28] KIM, C., PARAG BHIDE, E. D., HOLBROOK, H., GHANWANI, A.,
DALY, D., HIRA, M., AND DAVIE, B. In-band Network Teleme-
try (INT). https://p4.org/assets/INT-current-spec.
pdf, June 2016.

[29] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN,
A. C. IP fault localization via risk modeling. In USENIX NSDI (2005),
pp. 57–70.

[30] KUŹNIAR, M., PEREŠÍNI, P., VASIĆ, N., CANINI, M., AND KOSTIĆ,
D. Automatic failure recovery for software-defined networks. In ACM
SIGCOMM HotSDN (2013), pp. 159–160.

[31] LANGLEY, A., RIDDOCH, A., WILK, A., VICENTE, A., KRASIC, C.,
ZHANG, D., YANG, F., KOURANOV, F., SWETT, I., IYENGAR, J.,
BAILEY, J., DORFMAN, J., ROSKIND, J., KULIK, J., WESTIN, P.,
TENNETI, R., SHADE, R., HAMILTON, R., VASILIEV, V., CHANG,
W.-T., AND SHI, Z. The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2017),
SIGCOMM ’17, ACM, pp. 183–196.

[32] LI, Y., MIAO, R., KIM, C., AND YU, M. FlowRadar: A better
NetFlow for data centers. In USENIX NSDI (2016), pp. 311–324.

[33] LIU, C., HE, T., SWAMI, A., TOWSLEY, D., SALONIDIS, T., AND LE-
UNG, K. K. Measurement design framework for network tomography
using fisher information. ITA AFM (2013).

[34] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA, S.,
LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L. Crystal-
net: Faithfully emulating large production networks. In Proceedings of
the 26th Symposium on Operating Systems Principles (2017), ACM,
pp. 599–613.



[35] LIU, J., PANDA, A., SINGLA, A., GODFREY, B., SCHAPIRA, M.,
AND SHENKER, S. Ensuring connectivity via data plane mechanisms.
In USENIX NSDI (2013), pp. 113–126.

[36] LIÚ, Y., MIAO, R., KIM, C., AND YUÚ, M. LossRadar: Fast detection
of lost packets in data center networks. In ACM CoNEXT (2016),
pp. 481–495.

[37] MA, L., HE, T., SWAMI, A., TOWSLEY, D., LEUNG, K. K., AND
LOWE, J. Node failure localization via network tomography. In ACM
SIGCOMM IMC (2014), pp. 195–208.

[38] MAHAJAN, R., SPRING, N., WETHERALL, D., AND ANDERSON, T.
User-level internet path diagnosis. ACM SIGOPS Operating Systems
Review 37, 5 (2003), 106–119.

[39] MATHIS, M., HEFFNER, J., O’NEIL, P., AND SIEMSEN, P. Pathdiag:
Automated TCP diagnosis. In PAM (2008), pp. 152–161.

[40] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trumpet:
Timely and precise triggers in data centers. In Proceedings of the 2016
ACM SIGCOMM Conference (New York, NY, USA, 2016), SIGCOMM
’16, ACM, pp. 129–143.

[41] MYSORE, R. N., MAHAJAN, R., VAHDAT, A., AND VARGHESE,
G. Gestalt: Fast, unified fault localization for networked systems. In
USENIX ATC (2014), pp. 255–267.

[42] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P., ARUN,
V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C. Language-
directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2017), ACM, pp. 85–98.

[43] NARAYANA, S., TAHMASBI, M., REXFORD, J., AND WALKER, D.
Compiling path queries. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16) (Santa Clara, CA,
2016), USENIX Association, pp. 207–222.

[44] NELSON, T., YU, D., LI, Y., FONSECA, R., AND KRISHNAMURTHI,
S. Simon: Scriptable interactive monitoring for sdns. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research (New York, NY, USA, 2015), SOSR ’15, ACM, pp. 19:1–
19:7.

[45] NEWMAN, L. H. How a tiny error shut off the internet for parts of the
us. Wired (Nov 2017). Accessed Jan 1st, 2018.

[46] OGINO, N., KITAHARA, T., ARAKAWA, S., HASEGAWA, G., AND
MURATA, M. Decentralized boolean network tomography based on
network partitioning. In IEEE/IFIP NOMS (2016), pp. 162–170.

[47] PAASCH, C., AND BONAVENTURE, O. Multipath TCP. Communica-
tions of the ACM 57, 4 (2014), 51–57.

[48] PORTS, D. R. K., LI, J., LIU, V., SHARMA, N. K., AND KRISH-
NAMURTHY, A. Designing distributed systems using approximate
synchrony in data center networks. In USENIX NSDI (2015), pp. 43–
57.

[49] RAICIU, C., PAASCH, C., BARRE, S., FORD, A., HONDA, M.,
DUCHENE, F., BONAVENTURE, O., AND HANDLEY, M. How hard
can it be? designing and implementing a deployable multipath TCP.
In 9th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 12) (San Jose, CA, 2012), USENIX Association,
pp. 399–412.

[50] RASLEY, J., STEPHENS, B., DIXON, C., ROZNER, E., FELTER, W.,
AGARWAL, K., CARTER, J., AND FONSECA, R. Planck: Millisecond-
scale monitoring and control for commodity networks. In Proceedings
of the 2014 ACM Conference on SIGCOMM (New York, NY, USA,
2014), SIGCOMM ’14, ACM, pp. 407–418.

[51] REITBLATT, M., CANINI, M., GUHA, A., AND FOSTER, N. Fattire:
Declarative fault tolerance for software-defined networks. In ACM
SIGCOMM HotSDN (2013), pp. 109–114.

[52] RIZZO, L. Netmap: a novel framework for fast packet i/o. In USENIX
ATC (2012).

[53] ROY, A., BAGGA, J., ZENG, H., AND SNEOREN, A. Passive realtime
datacenter fault detection. ACM NSDI (2017).

[54] ROY, A., BAGGA, J., ZENG, H., AND SNEOREN, A. Passive realtime
datacenter fault detection. In ACM NSDI (2017).

[55] SCHIFF, L., SCHMID, S., AND CANINI, M. Ground control to major
faults: Towards a fault tolerant and adaptive SDN control network. In
IEEE/IFIP DSN (2016), pp. 90–96.

[56] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacenter
network debugging with pathdump. In OSDI (2016), pp. 233–248.

[57] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18)
(Renton, WA, 2018), USENIX Association, pp. 453–456.

[58] TOUCH, J. RFC6864: Updated Specification of the IPv4 ID Field.
https://tools.ietf.org/html/rfc6864, Feb. 2013.

[59] WANG, M., LI, B. L., AND LI, Z. sFlow: Towards resource-efficient
and agile service federation in service overlay networks. In IEEE
ICDCS (2004), pp. 628–635.

[60] WIDANAPATHIRANA, C., LI, J., SEKERCIOGLU, Y. A., IVANOVICH,
M., AND FITZPATRICK, P. Intelligent automated diagnosis of client
device bottlenecks in private clouds. In IEEE UCC (2011), pp. 261–
266.

[61] WU, W., AND DEMAR, P. Wirecap: A novel packet capture engine
for commodity nics in high-speed networks. In Proceedings of the
2014 Conference on Internet Measurement Conference (New York, NY,
USA, 2014), IMC ’14, ACM, pp. 395–406.

[62] WUNDSAM, A., MEHMOOD, A., FELDMANN, A., AND MAENNEL,
O. Network troubleshooting with mirror VNets. In IEEE GLOBECOM
(2010), pp. 283–287.

[63] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J., YUAN,
L., KANDULA, S., AND KIM, C. Profiling network performance for
multi-tier data center applications. In USENIX NSDI (2011).

[64] ZAHARIA, M., XIN, R. S., WENDELL, P., DAS, T., ARMBRUST, M.,
DAVE, A., MENG, X., ROSEN, J., VENKATARAMAN, S., FRANKLIN,
M. J., GHODSI, A., GONZALEZ, J., SHENKER, S., AND STOICA,
I. Apache spark: A unified engine for big data processing. Commun.
ACM 59, 11 (Oct. 2016), 56–65.

[65] ZHANG, Y., BRESLAU, L., PAXSON, V., AND SHENKER, S. On the
characteristics and origins of internet flow rates. ACM SIGCOMM
Computer Communication Review 32, 4 (2002), 309–322.

[66] ZHANG, Y., ROUGHAN, M., WILLINGER, W., AND QIU, L. Spatio-
temporal compressive sensing and internet traffic matrices. ACM SIG-
COMM Computer Communication Review 39, 4 (2009), 267–278.

[67] ZHAO, Y., CHEN, Y., AND BINDEL, D. Towards unbiased end-to-
end network diagnosis. ACM SIGCOMM Computer Communication
Review 36, 4 (2006), 219–230.

[68] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN,
R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y., ET AL. Packet-
level telemetry in large datacenter networks. In ACM SIGCOMM
(2015), pp. 479–491.

[69] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN,
R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y., AND ZHENG,
H. Packet-level telemetry in large datacenter networks. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication (New York, NY, USA, 2015), SIGCOMM ’15, ACM,
pp. 479–491.


