

From Conception to Retirement: a Lifetime Story of a 3-Year-Old Wireless Beacon System in the Wild

Yi Ding^{1,2}, Ling Liu³, Yu Yang⁴, Yunhuai Liu⁵, Desheng Zhang⁴, Tian He²

Alibaba Group¹, University of Minnesota², Shanghai Jiao Tong University³, Rutgers University⁴, Peking University⁵

Heatmap of *aBeacon* in Shanghai City

On-Demand Delivery (food/grocery)

A \$107 Billion Market

3× Rider Sharing in 2019

- ResearchAndMarkets.com

Delivery Process

Why Accurate Arrival Time Matters?

Industry State-of-Arts

Academy State-of-Arts

Infrastructure-based:

- Wi-Fi [NSDI 13, 16]
- LED [MobiSys 2017]
- **RFID** [NSDI 15]
- QR Code [IoT Journal 2018] Limitations:
- Deployment cost (All)
- Need hardware modification (LED)
- Restriction on smartphone hardware (RFID)
- Need manual effort (QR Code).

BLE Beacon

t₁: Arrive

RFID

- Easy to deploy
- Accurate enough
- Transparent to couriers
- Acceptable cost (<\$10 each)

Infrastructure-free:

- Acoustic [MobiSys 11]
- Magnetic [MobiSys 18-1]
- IMU [MobiSys 18-2]
- Electromagnetic [MobiCom 18] Limitations:
- Need site survey and updating
- Cannot be applied to dynamic environment

Shanghai Pudong International Airport

aBeacon System – Alibaba Beacon System

110,000+ couriers

12,000+ shops

Deployment Timeline

Advertised

Lifetime Cost

Encapsulation

 $\leq 3 \text{ yr}$

\$11 each

_

 $2 \sim 3 \text{ yr}$

\$10 each

Water, Dust, Shock Proof

 $\leq 3 \text{ yr}$

\$10 each

Dust Proof Only

Customized beacon devices:

- Less cost (\$8 each)
- Longer lifetime (>=2 years)

Performance: Utility (overdue ratio reduction)

Impact of Floor

Observation: aBeacon is more beneficial in higher floors and basements

Performance: Reliability

(how many arrival events can be detected among all events?)

Impact of Staying Duration

Impact of Smartphone Hardware

Performance: Reliability

(how many arrival events can be detected among all events?)

Lesson Learned: Reliability in the Wild

Even for arrival detection, the reliability is far from guaranteed in the wild due to multiple factors.

Android	iOS	
Reliability	Reliability	
75%	85%	

Impact of Staying Duration

Impact of Smartphone Hardware

Performance: Lifetime (the lifetime of each device)

Implication for Building Industrial Systems

	System Evolution	Reliability	Lifetime
Lessons	Physical devices fail earlier than expected.	Wireless beacon devices are NOT reliable (for regulation).	Device lifetime are significantly affected by the environment.
Implication	Adopt existing devices.	Hybrid solutions (BLE+GPS+Manual Report)	Adaptive battery design.

Next Generation of aBeacon: aBeacon+

Data Release

Data Size: 31,131 couriers at 2,466 shops in one month.

Permanent link: https://tianchi.aliyun.com/dataset/dataDetail?dataId=76359#

Shanghai Pudong nternational Airport

Thanks All Yi Ding dingx447@umn.edu, dy207346@alibaba-inc.com

References

- [MobiSys 11] Tarzia, Stephen P., Peter A. Dinda, Robert P. Dick, and Gokhan Memik. "Indoor localization without infrastructure using the acoustic background spectrum." In *ACM MobiSys*, pp. 155-168. 2011.
 - [NSDI 13] Shen, Guobin, Zhuo Chen, Peichao Zhang, Thomas Moscibroda, and Yongguang Zhang. "Walkie-Markie: Indoor pathway mapping made easy." In *10th {USENIX} {NSDI} 13*, pp. 85-98. 2013.
 - [NSDI 15] Adib, Fadel, Zachary Kabelac, and Dina Katabi. "Multi-person localization via {RF} body reflections." In 12th {USENIX} ({NSDI} 15), pp. 279-292. 2015.
 - [NSDI 16] Vasisht, Deepak, Swarun Kumar, and Dina Katabi. "Decimeter-level localization with a single WiFi access point." In *13th {USENIX} ({NSDI} 16)*, pp. 165-178. 2016.
- [MobiSys 2017] Wei, Yu-Lin, Chang-Jung Huang, Hsin-Mu Tsai, and Kate Ching-Ju Lin. "Celli: Indoor positioning using polarized sweeping light beams." In *ACM MobiSys*, pp. 136-147. 2017.
- [IoT Journal 2018] Jeon, Kang Eun, James She, Perm Soonsawad, and Pai Chet Ng. "Ble beacons for internet of things applications: Survey, challenges, and opportunities." *IEEE Internet of Things Journal* 5, no. 2 (2018): 811-828.
 - [MobiCom 18] Lu, Chris Xiaoxuan, Yang Li, Peijun Zhao, Changhao Chen, Linhai Xie, Hongkai Wen, Rui Tan, and Niki Trigoni. "Simultaneous localization and mapping with power network electromagnetic field." In *ACM MobiCom* pp. 607-622. 2018.
 - [MobiSys 18-1] Shen, Sheng, Mahanth Gowda, and Romit Roy Choudhury. "Closing the gaps in inertial motion tracking." In *Proceedings of the 24th ACM MobiSys*, pp. 429-444. 2018.
 - [MobiSys 18-2] Tian, Zhao, Yu-Lin Wei, Wei-Nin Chang, Xi Xiong, Changxi Zheng, Hsin-Mu Tsai, Kate Ching-Ju Lin, and Xia Zhou. "Augmenting indoor inertial tracking with polarized light." In *ACM MobiSys*, pp. 362-375. 2018.