
BMC: Accelerating Memcached using Safe In-kernel
Caching and Pre-stack Processing

Yoann Ghigoff1,2,3 Julien Sopena2 Kahina Lazri1 Antoine Blin4 Gilles Muller3

1Orange Labs 2LIP6 – Sorbonne University 3Inria 4Gandi

Networked Systems Design and Implementation, 12–14 April, 2021

Memcached

Load
balancer

DatabasesWeb
servers

1/11

Memcached

Load
balancer

DatabasesWeb
servers Memcached

• In-memory key-value store, simple GET/SET interface
• Used by web services to off load work from databases
• Given its crucial role, Memcached must be able to sustain high network load

1/11

Observations

Memcached suffers from known kernel
overheads:

• Concurrent data structures (e.g.
sockets) used by multiple threads

• System calls

• Per-packet TCP/IP processing

1 2 3 4 5 6 7 8
0

10

20

30

40

50

of threads

C
P
U

us
ag
e
(%

)

sys_epoll_wait sys_recvfrom sys_sendmsg

2/11

Observations

Memcached suffers from known kernel
overheads:

• Concurrent data structures (e.g.
sockets) used by multiple threads

• System calls

• Per-packet TCP/IP processing

1 2 3 4 5 6 7 8
0

200
400
600
800

1,000
1,200

of threads

T
hr
ou

gh
pu

t
(K

R
eq
/s
)

vanilla Memcached

2/11

Observations

Memcached suffers from known kernel
overheads:

• Concurrent data structures (e.g.
sockets) used by multiple threads

• System calls

• Per-packet TCP/IP processing

1 2 3 4 5 6 7 8
0

200
400
600
800

1,000
1,200

of threads

T
hr
ou

gh
pu

t
(K

R
eq
/s
)

vanilla Memcached MemcachedSR

2/11

Observations

Memcached suffers from known kernel
overheads:

• Concurrent data structures (e.g.
sockets) used by multiple threads

• System calls

• Per-packet TCP/IP processing

1.25 Mpps

13.5 Mpps

Memcached

Socket API

Network
stack

Network
stack

Network
stack

Network
stack

Network
driver

Network
driver

Network
driver

Network
driver

RX
core

RX
core

RX
core

RX
core

Network interface card

2/11

Observations

Memcached suffers from known kernel
overheads:

• Concurrent data structures (e.g.
sockets) used by multiple threads

• System calls

• Per-packet TCP/IP processing

1.25 Mpps

13.5 Mpps

≈ 2.5 M dropped

≈ 9.75 M dropped

Memcached

Socket API

Network
stack

Network
stack

Network
stack

Network
stack

Network
driver

Network
driver

Network
driver

Network
driver

RX
core

RX
core

RX
core

RX
core

Network interface card

2/11

BMC: Key idea

Enable a Memcached server to respond to get requests without executing the whole network stack

Memcached

Socket API

Network
stack

Network
stack

Network
stack

Network
stack

BMC BMC BMC BMC

Network
driver

Network
driver

Network
driver

Network
driver

RX
core

RX
core

RX
core

RX
core

Network interface card

3/11

BMC: in-kernel proxy

Enable a Memcached server to respond to get requests without executing the whole network stack

Filters memcached packets in order to:

1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

1

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Set TCP

Set

2

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Set TCP

Set

Set

2

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Set TCP

Set

Set

2

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Set TCP

Set

Error

2

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Invalidate

Set TCP

2

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Invalidate

Set TCP

Set

2

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Invalidate

Set TCP

Set

2

NIC

BMC

Memcached

Network
stack

Miss

Get UDP

3

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Invalidate

Set TCP

Set

2

NIC

BMC

Memcached

Network
stack

Miss

Get UDP

Hit

3

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Invalidate

Set TCP

Set

2

NIC

BMC

Memcached

Network
stack

Miss

Get UDP

Hit

Write

3

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

NIC

BMC

Memcached

Network
stack

Get UDP

Hit

1

NIC

BMC

Memcached

Network
stack

Invalidate

Set TCP

Set

2

NIC

BMC

Memcached

Network
stack

Miss

Get UDP

Hit

Write

3

Filters memcached packets in order to:
1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application

3/11

Implementation

eBPF
Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Benefits of eBPF
• Safety through static analysis
• JIT compilation
• Network driver attach point (XDP)

4/11

Implementation

eBPF
Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Limitations of eBPF
Static analysis doesn’t scale to complex application logic

• Only a limited number of BPF instructions can be analyzed
• Loops must have static bounds
• No dynamic memory allocation

4/11

Dealing with eBPF’s limitations

• Bounding data (memcached keys/data/packets)

• Using a rolling hash function (FNV-1a)

• Partitioning complex functions

5/11

Dealing with eBPF’s limitations

• Bounding data (memcached keys/data/packets)
• Using a rolling hash function (FNV-1a)

• Partitioning complex functions

5/11

Dealing with eBPF’s limitations

• Bounding data (memcached keys/data/packets)
• Using a rolling hash function (FNV-1a)

• Partitioning complex functions

Network stack

Network Device Driver

write_reply

prepare_packet tx_filter

Trafic Control hook

Memcached

BMC Hit
hash_keys invalidate_cache

rx_filter

XDP hook

BMC
BMC Miss

update_cache

5/11

Experimental setup

Two clients generate memcached worload:
• 100 million distinct memcached keys
• Zipf key distribution
• 16-byte keys and 32-byte values
• 30:1 GET/SET ratio

Intel XL710 40Gb NIC

Netronome Agilio CX 40Gb NIC

8-core Intel Xeon E5-2650 @ 2.6Ghz

Generator 1

Generator 2

Server under test:
• Linux 5.3.0
• Memcached 1.5.19 with 10 GB of memory
• BMC with 2.5 GB of memory

6/11

Throughput

• Up to 18x compared to vanilla Memcached
• Up to 6x compared to MemcachedSR

• No observable deterioration with a worst-case workload

1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7

of cores

T
hr
ou

gh
pu

t
(M

R
eq
/s
)

vanilla Memcached alone MemcachedSR alone
MemcachedSR BMC

7/11

Throughput

• Up to 18x compared to vanilla Memcached
• Up to 6x compared to MemcachedSR
• No observable deterioration with a worst-case workload

1 2 3 4 5 6 7 8
0

100

200

300

of cores

T
hr
ou

gh
pu

t
(K

R
eq
/s
)

MemcachedSR alone MemcachedSR with BMC

7/11

Receive-Process-Reply latency

• Median of memcached hits and misses with BMC is respectively 21.8 and 21.6 µs
• 2.11 µs for a BMC cache hit
• Memcached operations are about 1 µs faster when not running BMC

BMC
hit

Memcached
hit

Memcached
miss

2.11
5

10
15
20
25
30

Fig 1: with BMC

T
im

e
(µ
s)

Memcached
hit

Memcached
miss

Fig 2: without BMC

8/11

Comparison to kernel-bypass: Seastar

Memcached

Socket API

Network
stack

Network
stack

Network
stack

Network
stack

BMC BMC BMC BMC

Network
driver

Network
driver

Network
driver

Network
driver

RX
core

RX
core

RX
core

RX
core

Network interface card

Seastar / Memcached

DPDK

RX
core

RX
core

RX
core

RX
core

Network interface card

9/11

Comparison to kernel-bypass: throughput

• Up to 5x higher throughput on favorable workload
• Better performance scaling on mixed workload

• 3x times less CPU resources to achieve similar throughput

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Fig 1: UDP only
of cores

T
hr
ou

gh
pu

t
(M

R
eq
/s
)

Seastar MemcachedSR BMC

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Fig 2: UDP and TCP
of cores

10/11

Comparison to kernel-bypass: CPU usage

• Up to 5x higher throughput on favorable workload
• Better performance scaling on mixed workload
• 3x times less CPU resources to achieve similar throughput

100 250 500 1000 2500 5000 7500
0

20

40

60

80

100

Clients load (KReq/s)

C
P
U

co
re
s
us
ag
e
(%

)

Seastar cores BMC cores MemcachedSR cores

10/11

Conclusion

BMC

– uses in-kernel caching to serve Memcached requests after they have been received
by the network driver

– works with unmodified software on commodity hardware
– offers significant throughput improvement
– introduces negligible overhead

On-going work: Optimized eviction algorithm

11/11

Thank you

For more questions:

yoann.ghigoff@inria.fr

	Motivation
	BMC
	Implementation
	Evaluation
	Ongoing work
	Closing

