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® In-memory key-value store, simple GET/SET interface
® Used by web services to off load work from databases

® Given its crucial role, Memcached must be able to sustain high network load
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Memcached suffers from known kernel
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BMC: Key idea

Enable a Memcached server to respond to get requests without executing the whole network stack
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BMC: in-kernel proxy

Enable a Memcached server to respond to get requests without executing the whole network stack

Filters memcached packets in order to:
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Implementation

Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Benefits of eBPF

® Safety through static analysis
¢ JIT compilation

® Network driver attach point (XDP)
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Implementation

eBPF

Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Limitations of eBPF

Static analysis doesn't scale to complex application logic

Only a limited number of BPF instructions can be analyzed
Loops must have static bounds

No dynamic memory allocation
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Dealing with eBPF’s limitations

® Bounding data (memcached keys/data/packets)
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Dealing with eBPF’s limitations

® Bounding data (memcached keys/data/packets)
® Using a rolling hash function (FNV-1a)

® Partitioning complex functions
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Experimental setup

Two clients generate memcached worload:
® 100 million distinct memcached keys

® Zipf key distribution
® 16-byte keys and 32-byte values
30:1 GET/SET ratio

Generator 1 m

)

fi: | Intel XL710 40Gb NIC

8-core Intel Xeon E5-2650 @ 2.6Gh

)

D Netronome Agilio CX 40Gb NIC

Generator 2 ﬁ

Server under test:
® Linux 5.3.0
® Memcached 1.5.19 with 10 GB of memory
® BMC with 2.5 GB of memory
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Throughput

® Up to 18x compared to vanilla Memcached

® Up to 6x compared to MemcachedSR
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Throughput

® Up to 18x compared to vanilla Memcached
® Up to 6x compared to MemcachedSR

® No observable deterioration with a worst-case workload
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Receive-Process-Reply latency

® Median of memcached hits and misses with BMC is respectively 21.8 and 21.6 ps
® 2.11 ps for a BMC cache hit

® Memcached operations are about 1 ps faster when not running BMC
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Fig 1: with BMC Fig 2: without BMC
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Comparison to kernel-bypass: Seastar

Seastar / Memcached
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Comparison to kernel-bypass: throughput

® Up to 5x higher throughput on favorable workload

® Better performance scaling on mixed workload
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Comparison to kernel-bypass: CPU usage

® Up to 5x higher throughput on favorable workload
® Better performance scaling on mixed workload

® 3x times less CPU resources to achieve similar throughput
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Conclusion

BMC

uses in-kernel caching to serve Memcached requests after they have been received
by the network driver

works with unmodified software on commodity hardware

offers significant throughput improvement

introduces negligible overhead

On-going work: Optimized eviction algorithm
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Thank you

For more questions:

yoann.ghigoff@inria.fr
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