BMC: Accelerating Memcached using Safe In-kernel
Caching and Pre-stack Processing

2

Yoann Ghigofft23 Julien Sopena Kahina Lazri! Antoine Blin* Gilles Muller3

10range Labs 2LIP6 — Sorbonne University 3Inria 4Gandi

Networked Systems Design and Implementation, 12-14 April, 2021

Memcached

\4

L

Load
balancer

P

Ty
Web
servers

Databases

T

1/11

Memcached

»
N S(sze:rs Memcached Databases
L
Load AT
balancer
e) >
Ll

® In-memory key-value store, simple GET/SET interface
® Used by web services to off load work from databases

® Given its crucial role, Memcached must be able to sustain high network load

1/11

50
Memcached suffers from known kernel X 40 -
overheads: & 30 -
3
Concurrent data structures (e.g. S 20 -
sockets) used by multiple threads z
5 10}
System calls 0 \ \ | | | | \

1 2 3 4 5 6 7 8
of threads

sys_epoll _wait ['sys recvfrom | sys sendmsg

2/11

w
? 1,200 |-
& 1,000 |-
Memcached suffers from known kernel X 800
. +
overheads: 5 600 |-
Concurrent data structures (e.g. L%o 400 |-
sockets) used by multiple threads e 200 I I I I I
E N | | | | | I |
System calls 1 5 3 4 5 6 7 8

of threads

B vanilla Memcached

2/11

0
§ 1,200 |-
x 1,000 |-
Memcached suffers from known kernel X 800
. +
overheads: 5 600 |-
Concurrent data structures (e.g. L%o 400 |-
sockets) used by multiple threads e 200+ II I I I I
s 0 [| I | | | | | I | I
System calls 1 5 3 4 5 6 7 8

of threads
B vanilla Memcached BMemcachedSR

2/11

Memcached suffers from known kernel
overheads:

Concurrent data structures (e.g.
sockets) used by multiple threads

System calls

Per-packet TCP/IP processing

| Memcached |(— 1.25 Mpps

Socket APl | — — — — — —

Network Network Network Network
stack stack stack stack
Network Network Network Network
driver driver driver driver
'd T N\ T N\ 'd T N\ 'd T N\
RX RX RX RX

| Network interface card |

T

135 M
3.5 Mpps 2/11

| Memcached |(— 1.25 Mpps

_______ Socket AP —— ~ 2.5 M dropped

Memcached suffers from known kernel

overheads: Network Network Network Network

Concurrent data structures (e.g. stack stack stack stack

sockets) used by multiple threads

System calls Network Network Network Network
driver driver driver driver
Per-packet TCP/IP processing T T T T
4 N\ N\ 4 1\ 4 N\
RX RX RX RX

| Network interface card |(— ~ 9.75 M dropped
T
13.5 Mpps

2/11

BMC: Key idea

Enable a Memcached server to respond to get requests without executing the whole network stack

| Memcached

Socket APl |- — — — — —

Network Network Network Network
stack stack stack stack
Bmc | Bmc | Bmc | Bmc !
Network Network Network Network
driver driver driver driver

| Network interface card |

3/11

BMC: in-kernel proxy

Enable a Memcached server to respond to get requests without executing the whole network stack

Filters memcached packets in order to:

3/11

BMC: in-kernel proxy

Memcached

(] nic

Get UDP

Filters memcached packets in order to:
Serve get requests on behalf of the application

3/11

BMC: in-kernel proxy

Memcached

(] nic

Get UDP

Filters memcached packets in order to:
Serve get requests on behalf of the application

3/11

BMC: in-kernel proxy

Memcached

(| w~Nc []

Get UDP V

Filters memcached packets in order to:
Serve get requests on behalf of the application

3/11

BMC: in-kernel proxy

Memcached Memcached

-

Network
stack

BMC

(| ~nc [] [n~nc]

Set TCP

Get UDP Y
Filters memcached packets in order to:
Serve get requests on behalf of the application

Ensure cache coherence as simply as possible

3/11

BMC: in-kernel proxy

Memcached Memcached
| Set

Network
stack

BMC

(| ~nc [] [n~nc]

Set TCP

Get UDP Y
Filters memcached packets in order to:
Serve get requests on behalf of the application

Ensure cache coherence as simply as possible

3/11

BMC: in-kernel proxy

Memcached Memcached

=

Network
stack

BMC

(| ~nc [] [n~nc]

Set TCP

Get UDP Y
Filters memcached packets in order to:
Serve get requests on behalf of the application

Ensure cache coherence as simply as possible

3/11

BMC: in-kernel proxy

Memcached Memcached

=l

Network
Error Stack

BMC

(| ~nc [] [n~nc]

Set TCP

Get UDP Y
Filters memcached packets in order to:
Serve get requests on behalf of the application

Ensure cache coherence as simply as possible

3/11

BMC: in-kernel proxy

Memcached Memcached

-

Network
stack

BMC

Invalidate
[)

(| ~nc [] [n~nc]

Get UDP V Set TCP

Filters memcached packets in order to:
Serve get requests on behalf of the application

Ensure cache coherence as simply as possible

3/11

BMC: in-kernel proxy

Memcached Memcached
| Set

Network
stack

BMC

Invalidate
[)

(| ~nc [] [n~nc]

Get UDP V Set TCP

Filters memcached packets in order to:
Serve get requests on behalf of the application

Ensure cache coherence as simply as possible

3/11

BMC: in-kernel proxy

Memcached Memcached Memcached
-’P Set

Network
stack

BMC

Invalidate
[)

(| ~nc [] (] ~nc] [nNnc

Get UDP Y Set TCP Get UDP

Filters memcached packets in order to:

Serve get requests on behalf of the application
Ensure cache coherence as simply as possible

Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

Memcached Memcached Memcached
-’P Set

Network
stack

BMC

Invalidate
[)

(| ~nc [] (] ~nc] [nNnc

Get UDP Y Set TCP Get UDP

Filters memcached packets in order to:

Serve get requests on behalf of the application
Ensure cache coherence as simply as possible

Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

Memcached Memcached Memcached
E j D
—)Set —)—
Network Network
stack stack
BMC BMC
== <—
Inyglidate > (7]

(| ~nc [] (] ~nc] [nNnc

Get UDP Y Set TCP Get UDP

Filters memcached packets in order to:
Serve get requests on behalf of the application
Ensure cache coherence as simply as possible

Perform cache updates transparently to the application

3/11

BMC: in-kernel proxy

Memcached Memcached Memcached
E j D
—)Set —)—
Network Network
stack stack
BMC BMC
> = <—
Inyglidate > (7]

(| ~nc [] (] ~nc] [nNnc [

Get UDP Y Set TCP Get UDP Y

Filters memcached packets in order to:
Serve get requests on behalf of the application
Ensure cache coherence as simply as possible

Perform cache updates transparently to the application

3/11

Implementation

Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Benefits of eBPF

® Safety through static analysis
¢ JIT compilation

® Network driver attach point (XDP)

4/11

Implementation

eBPF

Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Limitations of eBPF

Static analysis doesn't scale to complex application logic

Only a limited number of BPF instructions can be analyzed
Loops must have static bounds

No dynamic memory allocation

4/11

Dealing with eBPF’s limitations

® Bounding data (memcached keys/data/packets)

5/11

Dealing with eBPF’s limitations

® Bounding data (memcached keys/data/packets)
® Using a rolling hash function (FNV-1a)

5/11

Dealing with eBPF’s limitations

® Bounding data (memcached keys/data/packets)
® Using a rolling hash function (FNV-1a)

® Partitioning complex functions

[Memcached
[Network stack
BMC | Miss

hash_keys] [invalidate_cache] BMC

BMC | Hit

prepare_packet
write_ reply

|

Network Device Driver]

5/11

Experimental setup

Two clients generate memcached worload:
® 100 million distinct memcached keys

® Zipf key distribution
® 16-byte keys and 32-byte values
30:1 GET/SET ratio

Generator 1 m

)

fi: | Intel XL710 40Gb NIC

8-core Intel Xeon E5-2650 @ 2.6Gh

)

D Netronome Agilio CX 40Gb NIC

Generator 2 ﬁ

Server under test:
® Linux 5.3.0
® Memcached 1.5.19 with 10 GB of memory
® BMC with 2.5 GB of memory

6/11

Throughput

® Up to 18x compared to vanilla Memcached

® Up to 6x compared to MemcachedSR

1 2 3 4 5 6 7 8
of cores

Throughput (MReq/s)
O N WA O
T

Bvanilla Memcached alone IMemcachedSR alone
MemcachedSR IBMC

7/11

Throughput

® Up to 18x compared to vanilla Memcached
® Up to 6x compared to MemcachedSR

® No observable deterioration with a worst-case workload

Q

g 300 [

o

<

= 200

3

o

=

@ 100 |- I I I

9 I

E 0 | [| | | | | |
1 2 3 4 5 6 7 8

of cores
I MemcachedSR alone | MemcachedSR with BMC

7/11

Receive-Process-Reply latency

® Median of memcached hits and misses with BMC is respectively 21.8 and 21.6 ps
® 2.11 ps for a BMC cache hit

® Memcached operations are about 1 ps faster when not running BMC

25 |- -
20 |- -
15 - -
10 - -

Time (ps)

211 —— ! ! C 1 !
BMC Memcached Memcached Memcached Memcached
hit hit miss hit miss

Fig 1: with BMC Fig 2: without BMC

8/11

Comparison to kernel-bypass: Seastar

Seastar / Memcached

| Memcached | ________ D_PEK ________
————— Socket API - - - = = -—l--—-——-F-—-=-4=-=-=4 - -
Network Network Network Network

stack stack stack stack

emc ' 'Bmc! Bmc! | Bmc!

Network Network Network Network

driver driver driver driver

RX RX RX

core core core

| Network interface card | Network interface card

9/11

Comparison to kernel-bypass: throughput

® Up to 5x higher throughput on favorable workload

® Better performance scaling on mixed workload

5 5

v

~

g 4l 4

o

23 30

o

a

2o 2

0

3

-

"0¥ ,L,L,L,L,L, oL L,L,L,L,L,L,L,4

1 2
of cores # of cores
Fig 1: UDP only Fig 2: UDP and TCP

Seastar | MemcachedSR BBMC

10/11

Comparison to kernel-bypass: CPU usage

® Up to 5x higher throughput on favorable workload
® Better performance scaling on mixed workload

® 3x times less CPU resources to achieve similar throughput

~ 100 — —
N

o 80|

&

& 60|

wn

S 40

[e}

(9

S5 20|

a

(@] 0¥_L‘L_L!#l4 -]

100 250 500 1000 2500 5000 7500
Clients load (KReq/s)

Seastar cores IBMC cores | MemcachedSR cores

10/11

Conclusion

BMC

uses in-kernel caching to serve Memcached requests after they have been received
by the network driver

works with unmodified software on commodity hardware

offers significant throughput improvement

introduces negligible overhead

On-going work: Optimized eviction algorithm

11/11

Thank you

For more questions:

yoann.ghigoff@inria.fr

	Motivation
	BMC
	Implementation
	Evaluation
	Ongoing work
	Closing

