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• In-memory key-value store, simple GET/SET interface
• Used by web services to off load work from databases
• Given its crucial role, Memcached must be able to sustain high network load
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Observations

Memcached suffers from known kernel
overheads:

• Concurrent data structures (e.g.
sockets) used by multiple threads

• System calls

• Per-packet TCP/IP processing
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• System calls
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BMC: Key idea

Enable a Memcached server to respond to get requests without executing the whole network stack
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BMC: in-kernel proxy

Enable a Memcached server to respond to get requests without executing the whole network stack

Filters memcached packets in order to:

1 Serve get requests on behalf of the application

2 Ensure cache coherence as simply as possible

3 Perform cache updates transparently to the application
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Implementation

eBPF
Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Benefits of eBPF
• Safety through static analysis
• JIT compilation
• Network driver attach point (XDP)
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Implementation

eBPF
Linux’s extended version of BPF. The eBPF infrastructure offers the ability to run user-supplied
programs inside the kernel.

Limitations of eBPF
Static analysis doesn’t scale to complex application logic

• Only a limited number of BPF instructions can be analyzed
• Loops must have static bounds
• No dynamic memory allocation
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Dealing with eBPF’s limitations

• Bounding data (memcached keys/data/packets)

• Using a rolling hash function (FNV-1a)

• Partitioning complex functions
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Experimental setup

Two clients generate memcached worload:
• 100 million distinct memcached keys
• Zipf key distribution
• 16-byte keys and 32-byte values
• 30:1 GET/SET ratio

Intel XL710 40Gb NIC

Netronome Agilio CX 40Gb NIC

8-core Intel Xeon E5-2650 @ 2.6Ghz

Generator 1

Generator 2

Server under test:
• Linux 5.3.0
• Memcached 1.5.19 with 10 GB of memory
• BMC with 2.5 GB of memory
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Throughput

• Up to 18x compared to vanilla Memcached
• Up to 6x compared to MemcachedSR

• No observable deterioration with a worst-case workload
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Receive-Process-Reply latency

• Median of memcached hits and misses with BMC is respectively 21.8 and 21.6 µs
• 2.11 µs for a BMC cache hit
• Memcached operations are about 1 µs faster when not running BMC
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Comparison to kernel-bypass: Seastar
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Comparison to kernel-bypass: throughput

• Up to 5x higher throughput on favorable workload
• Better performance scaling on mixed workload

• 3x times less CPU resources to achieve similar throughput
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Comparison to kernel-bypass: CPU usage

• Up to 5x higher throughput on favorable workload
• Better performance scaling on mixed workload
• 3x times less CPU resources to achieve similar throughput
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Conclusion

BMC

– uses in-kernel caching to serve Memcached requests after they have been received
by the network driver

– works with unmodified software on commodity hardware
– offers significant throughput improvement
– introduces negligible overhead

On-going work: Optimized eviction algorithm
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Thank you

For more questions:

yoann.ghigoff@inria.fr
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