

WiForce: Wireless Sensing and Localization of Contact Forces on a Space Continuum

Agrim Gupta, Cedric Girerd, Manideep Dunna, Qiming Zhang, Raghav Subbaraman, Tania K. Morimoto, Dinesh Bharadia NSDI 2021

Need for a sensory layer like skin

Sensor Skins enable force sensing across the robot length

Emerging use-cases of sensor skins

 $Image\ Source: \ Highly\ dexterous\ 2-module\ soft\ robot\ for\ intra-organ\ navigation\ in\ minimally\ invasive\ surgery,\ Abidi\ et\ al.$

Wired sensing of force profile

Sensing surface covered with discrete force sensors

Wired sensing of force profile

Wired sensing of force profile

Current solutions have prohibitive wiring requirements

Problems with sensing wires

Need for wireless force sensing

Emerging applications necessitate wireless force sensing

WiForce designs a wireless force sensor that achieves sub-Newton force accuracy and mm accurate localization

Naïve wireless feedback solution

Can we design wireless force sensors without power hungry electronics?

Combining sensing and communication

Encoding force onto the reflected signals doesn't require power hungry electronics

Encoding force into wireless signal reflections

Mechanical perspective: Two parallel air-separated beams

$$F_c = f(L_1, L_2), I_c = g(L_1, L_2)$$

Contact lengths caused by applied force, gets encoded onto the reflected signals

How are contact lengths measured wirelessly?

Phase Accumulated ∝ Travelled Length

Handling interference caused by two-sided reflections

Two swords in one sheath don't fit together

How to give two frequency shifts without the switches being simultaneously ON?

Doing one at a time toggling

We can not measure lengths from the two ends simultaneously with this solution

Interleaving the off times creates continuous modulation

Interleaving the off times creates continuous modulation

One antenna to sense them all

Two sided phases can be read with just one antenna reducing the form factor

Putting it all together: implementation of the reader

Wireless experimental setup

Force magnitude and location CDFs

Tissue phantom testing setup

Tissue phantom setup

Multi-sensor and Fingertip touch force detection

Multi Sensor experiment setup

Related works

Force Sensitive Resistors, Unmousepad: 2009

Electrode Resistance Tomography (ERT), Hyosang Lee et al. 2018-20

WiForce

Future directions

WiForce achieves sub-N, mm level accuracy in sensing & localizing forces, fully wireless, multi-sensors scalable

- 1. Designing creative communication+sensing solutions for related quantities to force
- 2. Enabling new HCI usecases for AR/VR with WiForce
- 3. Combined wireless tracking with WiForce can enable a new robotics wireless sensor suite

Feel free to contact me at agg003@eng.ucsd.edu for more information about our research!

http://wcsng.ucsd.edu/force_sensing