TEGRA: Efficient Ad-Hoc Analytics
on Evolving Graphs

Anand lyer **, Qifan Pu’, Kishan Patel”,
Joseph E. Gonzalez*, lon Stoica*

USENIX NSDI, April 2021

Microsoft:

Research 4 rise

Meet Carol

Network Administrator
ACME Cellular Company

Meet Carol

Istrator

N

Network Adm
ACME Cellular Company

Meet Carol

Network Administrator
ACME Cellular Company

My phone shows
5 bars but the ¢
connection is Battery low
so slow again? | just
re-charged this
morning!

This web
page is not
loading at all

OMG! I've just
been hacked

Meet Carol

Network Administrator
ACME Cellular Company

My phone shows
5 bars but the ¢
connection is Battery low

so slow again? | just
re-charged this
morning!

adngacall A .ﬂiﬂ What is the reason for poor download

‘beenhackea W13} speeds for many users at 2am?

ow Carol does this

ow Carol does this

é What did the network look

like at 9am?

How Carol does this

What did the network look
like at 9am?

— =

ow Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

ow Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

ow Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

ow Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

ow Carol does this

What did the network look
like at 2am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

ow Carol does this

What did the network look
like at 9am?

Which towers were

congested then?

What was the reason for
congestion at these?
How about at 10am?

ow Carol does this

What did the network look
like at 9am?

Which towers were

congested then?

What was the reason for
congestion at these?
How about at 10am?

ow Carol does this

What did the network look
like at 9am?

Which towers were

congested then?

What was the reason for
congestion at these?
How about at 10am?

ow Carol does this

D~ = O \Vertex Property
= B [£dge Property

What did the network look
like at 9am?

Which towers were

congested then?

What was the reason for
congestion at these?
How about at 10am?

ow Carol does this

E = O \Vertex Property
s B [£dge Property

Interactive ad-hoc analysis on
evolving graphs

What did the network look
like at 9am?

Which towers were

congested then?

What was the reason for
congestion at these?
How about at 10am?

ow Carol does this

D~ 2 O \Vertex Property
s ® Edge Property

Interactive ad-hoc analysis on
evolving graphs

Current systems focus on
streaming or temporal analysis

What did the network look
like at 9am?

Which towers were

congested then?

What was the reason for
congestion at these?
How about at 10am?

ow Carol does this

D~ == 0O Vertex Property
S~ B [£dge Property

Interactive ad-hoc analysis on
evolving graphs

Current systems focus on
streaming or temporal analysis

Can benefit significantly from

efficient ad-hoc analytics

What did the network look
like at 2am?

Which towers were

congested then?

What was the reason for
congestion at these?
How about at 10am?

Challenges

How do we enable ad-hoc
queries on dynamic graphs in a
natural and intuitive way?

Programming
Storage L
Performance NetworkX =HGraph A
s ?‘9 NEOL]
e @ JanusGraph

0> 15

A C H E
RAPH @
TITAN

1

Challenges

Ad-hoc queries are

data intensive

Programming
Storage AVG

Performance H.UUD OF rener 3510 08 Furconsil

AUTONOMOUS 4 ﬂ TB
| VEHICLES DATA/DAY*
(AN

™
{
\ \

CONNECTED 5 0 TB
AIRPLANE DATA/DAY

ﬁUZO FA%%&E | PB VibEo/oaY

Challenges

Ad-hoc queries are both
interactive and exploratory

Prog Famim I N g AVERAGE
Storage
Performance

{ [.
4 " { i
. " [0
2 \ / &
. i =
B A i >
e i i
S | =5
S e
R

PERFORMANCE

Changes to the graph are relatively
small during ad-hoc analysis

Changes to the graph are relatively
small during ad-hoc analysis

Queries are frequently applied to
multiple windows close-by in time

Changes to the graph are relatively
small during ad-hoc analysis

Queries are frequently applied to
multiple windows close-by in time

TEGRA accelerates ad-hoc analytics by

sharing storage and computation
across queries and windows

Challenges

Programming
Timelapse abstraction with simple API

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

o o

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

ot

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

A D A D
oe.
B C B C
G, G, Gs
N AN A

Timelapse Abstraction
Key idea: lllusion of a series of static graph snapshots

——

——

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

Logical Time

——

__

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

Logical Time

——

G, G,

b Y A.D i

) © O 0
Gy Gs

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

Logical Time

——

——

G, G;
T
save() D! | A.D
retrieve() o 0 0 06
e, T G

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

Logical Time

——

save() | © ©
retrieve() C 0 0

Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots

Logical Time

——

__ @& <
G, Gs = .‘E merge
. O ¢ ge()

save()

retrieve() M

Enable system to efficiently store & operate on them

Snapshot Storage

Store entire snapshots

A D
B C
G, G,

Snapshot Storage

Store entire snapshots

A D
B C
G G,

+ Efficient retrieval
- Storage overhead J

Snapshot Storage

Store entire snapshots

A D
B C
G, G,

+ Efficient retrieval
- Storage overhead

A

Store only differences

Snapshot Storage

Store entire snapshots

A D
B C
G, G,

+ Efficient retrieval

- Storage overhead
A

Store only differences

+ Efficient storage

- Retrieval overhead/

Snapshot Storage

Store entire snapshots Store only differences
0
B C
Gl GZ 6g1 ng
A D (D)
> © e
B C (©
G3 083
+ Efficient retrieval + Efficient storage
- Staraae overheac - Retrieval overhead

Fundamental trade-off between storage overhead and retrieval efficiency

Challenges

Storage
Incremental storage for efficient access

Optimizing Storage

Key idea: Leverage persistent data structures

digit 1
Adaptive Radix A
Tree

digit 2
R

digit 3

N

[)

[2/ Tl \Y E T

leaf nodes

"The adaptive radix tree: ARTful indexing for main-memory databases”, Leis et. al., ICDE 2013

Optimizing Storage

Key idea: Build a persistent data structure based
distributed dynamic graph store

Vertex=» Property

Optimizing Storage

Key idea: Build a persistent data structure based
distributed dynamic graph store

{"name: Foo”}

Vertex=» Property

Optimizing Storage

Key idea: Build a persistent data structure based
distributed dynamic graph store

{"name: Foo”} {"name: Bar”}

Vertex=» Property

Optimizing Storage

Key idea: Build a persistent data structure based

distributed dynamic graph store

{"name: Foo”}

Vertex=» Property

{"name: Bar”}

Optimizing Storage

Key idea: Build a persistent data structure based
distributed dynamic graph store

. |
{"name: Foo”} ! {"name: Bar”}

Vertex=» Property

Distributed Graph Snapshot Index (DGSI)

- S

\ Partitior/

Distributed Graph Snapshot Index (DGSI)

1 2
!)
=
: L
\ Partitior/

Distributed Graph Snapshot Index (DGSI)

“ S

Snapshot | ; Snapshot 2 %ﬁjATE
T

t

Lo
)
e+
VN

Edge

o)
' >
TIOOIOH M *

|

— !
\ Partitior/

Distributed Graph Snapshot Index (

=

/

Snapshot |
t

\
\
RS-
\

e
1 Snapshot 2 |~/ %E
tz ‘ 1’{'4& _—

I -fl

veEriex
Edge

!
Partitior/

DGSI)

Memory Management

Enables management of storage at the leaf level

Memory Management

Enables management of storage at the leaf level

Snapshot |

Vi

Memory Management

Enables management of storage at the leaf level

Snapshot | Snapshot S

) |

Memory Management

Enables management of storage at the leaf level

Snapshot | Snapshot S

Memory Management

Enables management of storage at the leaf level

Snapshot | Snapshot S

Challenges

Computation
Incremental computation model for interactivity & efficiency

Computation Model

Leverages the characteristics of graph-parallel execution model

Computation Model

Leverages the characteristics of graph-parallel execution model

Computation Model

Leverages the characteristics of graph-parallel execution model

" Graph

o o

Computation Model

Leverages the characteristics of graph-parallel execution model

" Graph

o0 o¢

Computation Model

Leverages the characteristics of graph-parallel execution model

" Graph

- A
A B
G]_ Glo Gll

Computation Model

Leverages the characteristics of graph-parallel execution model

" Graph

» N
A B
Gl G]_O Gll Glz

Computation Model

Leverages the characteristics of graph-parallel execution model

" Graph Result

» N
A B
Gl Glo Gll 612 R1

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Time

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Time

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Time

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Time

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Time

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

A
; - -
i A B
G, : G,° Gy
Q T
£
|_
A S D Ay
B C C
v GZ GZO

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

» N
A B
G, : G,° Gy
£ T
|_
A S D Ay
B C C
v GZ GZO
diff()

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

» N
A B
G, : G,° Gy
Q T
£
|_
A S D YN D) O
B C C B
v GZ GZO Gzl
diff()

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Time

Computation Model

Leverages the characteristics of graph-parallel execution model

m Computation Timelapse

Time

Computation Model

Leverages the characteristics of graph-parallel execution model

Computation Timelapse

Time

-
i

Seo

Computation Model

Leverages the characteristics of graph-parallel execution model

Computation Timelapse

Time

Computation Model

» Generates the same intermediate state for all entities at
every iteration as compared to full re-execution

« Correctness is preserved for any algorithm

« Computation decoupled from state
« Can use any state, not just the previous
« Can share state across queries

* Incremental computations not always useful
« Can switch between incremental and full execution at any iteration

e Uses random forest based model to do so
Details in the paper!

Implementation & Evaluation

= Implemented on Apache Spark
= Drop-in replacement for GraphX

= Fvaluated in a 16 node cluster

= Twitter: 1.47B edges
= UK: 3.73B edges

» Facebook: 5B, 10B, 50B edges More evaluation in
the paper

= Comparisons & Algorithms

= Differential dataflow [SOSP’13], GraphBolt [Eurosys '19], Chlonos
[Chronos, Eurosys ‘14], Aspen [PLDI *19], GraphOne [FAST "19]

= Connected components, Page rank, Belief propagation, and others.

Ad-hoc Retrieval

Retrieval latency with varying amount of state in memory J

«=DD «==GraphOne ==Aspen ==TEGRA

E °
o 100 . s
=
= 145 x
S 10
.9
b
g S ———

1 T

200 400 600 800 1000

Snapshots in memory

Ad-hoc Analytics

[Random snapshot, use previous state if available)

B TEGRA m GraphBolt m DD m Chlonos

100
O
qE) 8-30 X
i: 10 I| | | |
c('o «00 *’QQ %’QQ. R 4 «Q,Q
&% \) &% \) &2 \)
43\ 4;\ 4‘\
& & &

Computation Model Benchmarks

Switch to full Flexibility in state
re-execution J reuse
M Fully Incremental From last

Time (s)
Time (s)

120 :
100
80
40 .
0

Switching OFF Switching ON

SO N b~ O 00O O

PR

Summary

* Ad-hoc analytics important emerging graph workload

* TEGRA enables efficient ad-hoc analytics on evolving graphs
* Simple abstraction
« Compact representation of state
 Share storage and computation

* TEGRA outperforms state-of-the-art solutions

http://www.anand-iyer.com
anand.iyer@berkeley.edu

http://www.cs.berkeley.edu/~api

