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Interactive ad-hoc analysis on
evolving graphs

Current systems focus on
streaming or temporal analysis

Can benefit significantly from

efficient ad-hoc analytics
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Challenges

How do we enable ad-hoc
queries on dynamic graphs in a
natural and intuitive way?
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Challenges

Ad-hoc queries are

data intensive
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Challenges

Ad-hoc queries are both
interactive and exploratory
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Changes to the graph are relatively
small during ad-hoc analysis

Queries are frequently applied to
multiple windows close-by in time

TEGRA accelerates ad-hoc analytics by

sharing storage and computation
across queries and windows




Challenges

Programming
Timelapse abstraction with simple API
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Timelapse Abstraction

Key idea: lllusion of a series of static graph snapshots
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Enable system to efficiently store & operate on them
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Snapshot Storage
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Fundamental trade-off between storage overhead and retrieval efficiency



Challenges

Storage
Incremental storage for efficient access



Optimizing Storage

Key idea: Leverage persistent data structures
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"The adaptive radix tree: ARTful indexing for main-memory databases”, Leis et. al., ICDE 2013
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Memory Management

Enables management of storage at the leaf level
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Challenges

Computation
Incremental computation model for interactivity & efficiency
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Computation Model

» Generates the same intermediate state for all entities at
every iteration as compared to full re-execution

« Correctness is preserved for any algorithm

« Computation decoupled from state
« Can use any state, not just the previous
« Can share state across queries

* Incremental computations not always useful
« Can switch between incremental and full execution at any iteration

e Uses random forest based model to do so
Details in the paper!



Implementation & Evaluation

= Implemented on Apache Spark
= Drop-in replacement for GraphX

= Fvaluated in a 16 node cluster

= Twitter: 1.47B edges
= UK: 3.73B edges

» Facebook: 5B, 10B, 50B edges More evaluation in
the paper

= Comparisons & Algorithms

= Differential dataflow [SOSP’13], GraphBolt [Eurosys '19], Chlonos
[Chronos, Eurosys ‘14], Aspen [PLDI *19], GraphOne [FAST "19]

= Connected components, Page rank, Belief propagation, and others.



Ad-hoc Retrieval

Retrieval latency with varying amount of state in memory J
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Ad-hoc Analytics

[ Random snapshot, use previous state if available )
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Computation Model Benchmarks

Switch to full Flexibility in state
re-execution J reuse
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Summary

* Ad-hoc analytics important emerging graph workload

* TEGRA enables efficient ad-hoc analytics on evolving graphs
* Simple abstraction
« Compact representation of state
 Share storage and computation

* TEGRA outperforms state-of-the-art solutions

http://www.anand-iyer.com
anand.iyer@berkeley.edu
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