
TEGRA: Efficient Ad-Hoc Analytics
on Evolving Graphs

Anand Iyer ⋆▴, Qifan Pu⬩, Kishan Patel ▪,
Joseph E. Gonzalez▴, Ion Stoica▴

⋆Microsoft Research ▴UC Berkeley ⬩Google ▪Two Sigma

USENIX NSDI, April 2021

Meet Carol

Network Administrator
ACME Cellular Company

Meet Carol

Network Administrator
ACME Cellular Company

Meet Carol

Network Administrator
ACME Cellular Company

What is the reason for poor download
speeds for many users at 9am?

Meet Carol

Network Administrator
ACME Cellular Company

How Carol does this

How Carol does this

What did the network look
like at 9am?

How Carol does this

What did the network look
like at 9am?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

Edge Property
Vertex Property

BS1

UE2

UE1 BS2

UE3

UE4

UE5

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

Interactive ad-hoc analysis on
evolving graphs

Edge Property
Vertex Property

BS1

UE2

UE1 BS2

UE3

UE4

UE5

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?

Interactive ad-hoc analysis on
evolving graphs

Current systems focus on
streaming or temporal analysis

Edge Property
Vertex Property

BS1

UE2

UE1 BS2

UE3

UE4

UE5

How Carol does this

What did the network look
like at 9am?

Which towers were
congested then?

What was the reason for
congestion at these?

How about at 10am?
Can benefit significantly from

efficient ad-hoc analytics

Interactive ad-hoc analysis on
evolving graphs

Current systems focus on
streaming or temporal analysis

Edge Property
Vertex Property

BS1

UE2

UE1 BS2

UE3

UE4

UE5

Programming
Storage

Performance

Challenges How do we enable ad-hoc
queries on dynamic graphs in a

natural and intuitive way?

Programming
Storage

Performance

Challenges Ad-hoc queries are
data intensive

Programming
Storage

Performance

Challenges
Ad-hoc queries are both

interactive and exploratory

Changes to the graph are relatively
small during ad-hoc analysis

Changes to the graph are relatively
small during ad-hoc analysis

Queries are frequently applied to
multiple windows close-by in time

Changes to the graph are relatively
small during ad-hoc analysis

TEGRA accelerates ad-hoc analytics by
sharing storage and computation

across queries and windows

Queries are frequently applied to
multiple windows close-by in time

Challenges

Programming
Timelapse abstraction with simple API

Storage
Incremental storage for efficient access

Computation
Incremental computation model for interactivity & efficiency

Timelapse Abstraction

Key idea: Illusion of a series of static graph snapshots

Timelapse Abstraction

A

B C

G1

Key idea: Illusion of a series of static graph snapshots

Timelapse Abstraction

A

B C

G1

A

B C

D

G2

Key idea: Illusion of a series of static graph snapshots

Timelapse Abstraction

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Key idea: Illusion of a series of static graph snapshots

Timelapse Abstraction

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Key idea: Illusion of a series of static graph snapshots

Timelapse Abstraction

Logical Time

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Key idea: Illusion of a series of static graph snapshots

Timelapse Abstraction

Logical Time

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Key idea: Illusion of a series of static graph snapshots

A

B C

D

G4

A

B C

D

G5

Timelapse Abstraction

Logical Time

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Key idea: Illusion of a series of static graph snapshots

A

B C

D

G4

A

B C

D

G5

save()
retrieve()

Timelapse Abstraction

Logical Time

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

D

BCBA

AAA

B C

D
E

Key idea: Illusion of a series of static graph snapshots

A

B C

D

G4

A

B C

D

G5

save()
retrieve()

diff()
merge()
expand()

Timelapse Abstraction

Logical Time

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

D

BCBA

AAA

B C

D
E

Key idea: Illusion of a series of static graph snapshots

A

B C

D

G4

A

B C

D

G5

Enable system to efficiently store & operate on them

save()
retrieve()

diff()
merge()
expand()

Store entire snapshots

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Snapshot Storage

Store entire snapshots

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Snapshot Storage

+ Efficient retrieval
- Storage overhead

Store entire snapshots

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Store only differences

A

B C

δg1

A D

δg2

C

D
E

δg3

Snapshot Storage

+ Efficient retrieval
- Storage overhead

Store entire snapshots

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Store only differences

A

B C

δg1

A D

δg2

C

D
E

δg3

Snapshot Storage

+ Efficient retrieval
- Storage overhead

+ Efficient storage
- Retrieval overhead

Store entire snapshots

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Store only differences

A

B C

δg1

A D

δg2

C

D
E

δg3

Snapshot Storage

+ Efficient retrieval
- Storage overhead

+ Efficient storage
- Retrieval overhead

Fundamental trade-off between storage overhead and retrieval efficiency

Challenges

Programming
Timelapse abstraction with simple API

Storage
Incremental storage for efficient access

Computation
Incremental computation model for interactivity & efficiency

Optimizing Storage
Key idea: Leverage persistent data structures

“The adaptive radix tree: ARTful indexing for main-memory databases”, Leis et. al., ICDE 2013

The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases

Viktor Leis, Alfons Kemper, Thomas Neumann
Fakultät für Informatik

Technische Universität München

Boltzmannstrae 3, D-85748 Garching

<lastname>@in.tum.de

Abstract—Main memory capacities have grown up to a point

where most databases fit into RAM. For main-memory database

systems, index structure performance is a critical bottleneck.

Traditional in-memory data structures like balanced binary

search trees are not efficient on modern hardware, because they

do not optimally utilize on-CPU caches. Hash tables, also often

used for main-memory indexes, are fast but only support point

queries.

To overcome these shortcomings, we present ART, an adaptive

radix tree (trie) for efficient indexing in main memory. Its lookup

performance surpasses highly tuned, read-only search trees, while

supporting very efficient insertions and deletions as well. At the

same time, ART is very space efficient and solves the problem

of excessive worst-case space consumption, which plagues most

radix trees, by adaptively choosing compact and efficient data

structures for internal nodes. Even though ART’s performance

is comparable to hash tables, it maintains the data in sorted

order, which enables additional operations like range scan and

prefix lookup.

I. INTRODUCTION

After decades of rising main memory capacities, even large
transactional databases fit into RAM. When most data is
cached, traditional database systems are CPU bound because
they spend considerable effort to avoid disk accesses. This
has led to very intense research and commercial activities in
main-memory database systems like H-Store/VoltDB [1], SAP
HANA [2], and HyPer [3]. These systems are optimized for
the new hardware landscape and are therefore much faster. Our
system HyPer, for example, compiles transactions to machine
code and gets rid of buffer management, locking, and latching
overhead. For OLTP workloads, the resulting execution plans
are often sequences of index operations. Therefore, index
efficiency is the decisive performance factor.

More than 25 years ago, the T-tree [4] was proposed as
an in-memory indexing structure. Unfortunately, the dramatic
processor architecture changes have rendered T-trees, like all
traditional binary search trees, inefficient on modern hardware.
The reason is that the ever growing CPU cache sizes and
the diverging main memory speed have made the underlying
assumption of uniform memory access time obsolete. B+-tree
variants like the cache sensitive B+-tree [5] have more cache-
friendly memory access patterns, but require more expensive
update operations. Furthermore, the efficiency of both binary
and B+-trees suffers from another feature of modern CPUs:
Because the result of comparisons cannot be predicted easily,

�

� �

�

�����	

�����	�

�����	�

���	�����

� ���

Fig. 1. Adaptively sized nodes in our radix tree.

the long pipelines of modern CPUs stall, which causes addi-
tional latencies after every second comparison (on average).

These problems of traditional search trees were tackled by
recent research on data structures specifically designed to be
efficient on modern hardware architectures. The k-ary search
tree [6] and the Fast Architecture Sensitive Tree (FAST) [7]
use data level parallelism to perform multiple comparisons
simultaneously with Singe Instruction Multiple Data (SIMD)
instructions. Additionally, FAST uses a data layout which
avoids cache misses by optimally utilizing cache lines and
the Translation Lookaside Buffer (TLB). While these opti-
mizations improve search performance, both data structures
cannot support incremental updates. For an OLTP database
system which necessitates continuous insertions, updates, and
deletions, an obvious solution is a differential file (delta)
mechanism, which, however, will result in additional costs.

Hash tables are another popular main-memory data struc-
ture. In contrast to search trees, which have O(log n) access
time, hash tables have expected O(1) access time and are
therefore much faster in main memory. Nevertheless, hash
tables are less commonly used as database indexes. One reason
is that hash tables scatter the keys randomly, and therefore only
support point queries. Another problem is that most hash tables
do not handle growth gracefully, but require expensive reor-
ganization upon overflow with O(n) complexity. Therefore,
current systems face the unfortunate trade-off between fast
hash tables that only allow point queries and fully-featured,
but relatively slow, search trees.

A third class of data structures, known as trie, radix tree,
prefix tree, and digital search tree, is illustrated in Figure 1.

Adaptive Radix
Tree

Optimizing Storage

Vertex Property

Key idea: Build a persistent data structure based
distributed dynamic graph store

Optimizing Storage

{”name: Foo”}

Vertex Property

Key idea: Build a persistent data structure based
distributed dynamic graph store

Optimizing Storage

{”name: Foo”} {”name: Bar”}

Vertex Property

Key idea: Build a persistent data structure based
distributed dynamic graph store

Optimizing Storage

Snapshot I

{”name: Foo”} {”name: Bar”}

Vertex Property

Key idea: Build a persistent data structure based
distributed dynamic graph store

Optimizing Storage

Snapshot I

{”name: Foo”} {”name: Bar”}

Snapshot J

Vertex Property

Key idea: Build a persistent data structure based
distributed dynamic graph store

Distributed Graph Snapshot Index (DGSI)

Partition

Distributed Graph Snapshot Index (DGSI)

Snapshot 2Snapshot 1

Ve
rt

ex

t1 t2

Partition

Distributed Graph Snapshot Index (DGSI)

Snapshot 2Snapshot 1

Ve
rt

ex

t1 t2

Snapshot 2Snapshot 1
t1 t2

Ed
ge

Partition

Distributed Graph Snapshot Index (DGSI)

Snapshot 2Snapshot 1

Ve
rt

ex

t1 t2

Snapshot 2Snapshot 1
t1 t2

Ed
ge

Partition

Snapshot ID Management

Memory Management

Enables management of storage at the leaf level

Memory Management

Snapshot 1

v1

Enables management of storage at the leaf level

Memory Management

Snapshot S

vv

Snapshot 1

v1

Enables management of storage at the leaf level

Memory Management

Snapshot S

vv…Snapshot 1

v1

Enables management of storage at the leaf level

Memory Management

Snapshot S

vv…Snapshot 1

v1

Enables management of storage at the leaf level

Challenges

Programming
Timelapse abstraction with simple API

Storage
Incremental storage for efficient access

Computation
Incremental computation model for interactivity & efficiency

Computation Model
Leverages the characteristics of graph-parallel execution model

Computation Model
Leverages the characteristics of graph-parallel execution model

A

B C

G1

Graph

Computation Model
Leverages the characteristics of graph-parallel execution model

A

B C

G1

Graph Computation

Computation Model
Leverages the characteristics of graph-parallel execution model

A

B C

G1
0

A

B C

G1

Graph Computation

Computation Model
Leverages the characteristics of graph-parallel execution model

A

B C

G1
0

A

A B
G1

1

A

B C

G1

Graph Computation

Computation Model
Leverages the characteristics of graph-parallel execution model

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

G1

Graph Computation

Computation Model
Leverages the characteristics of graph-parallel execution model

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

G1

Graph Computation Result

Computation Model
Leverages the characteristics of graph-parallel execution model

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

G1

Graph Computation Result

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

G1

Graph Computation Result

A

B C

D

G2

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

B C

G1

Graph Computation Result

A

B C

D

G2

DA

B

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

B C

G1

Graph Computation Result

A

B C

D

G2

A

B

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

B C

G1

Graph Computation Result

A

B C

D

G2

B

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

B C

G1

diff()

Graph Computation Result

A

B C

D

G2

B

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

B C

G1

diff()

Graph Computation Result

A

B C

D

G2

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

B C

G1

diff()
expand()

Graph Computation Result

A

B C

D

G2

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

A B

A

G2
1

A

B C

G1

diff()
expand()

Graph Computation Result

A

B C

D

G2

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

A B

A

G2
1

A

B C

G1

diff()
expand()

Graph Computation Result

A

B C

D

G2

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

merge()

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

A B

A

G2
1

A

B C

G1

diff()
expand()

Graph Computation Result

A

B C

D

G2

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

merge()

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

A B

A

G2
1

A

A A

A

G2
2

A

B C

G1

diff()
expand()

Graph Computation Result

A

B C

D

G2

Computation Model
Leverages the characteristics of graph-parallel execution model

Ti
m
e

Timelapse

merge()

R1

A

A A

A

B C

G1
0

A

A B
G1

1

A

A A

G1
2

A

B C

D

G2
0

A

A B

A

G2
1

A

A A

A

G2
2

A

A A

A

R2

A

B C

G1

diff()
expand()

Graph Computation Result

A

B C

D

G2

Computation Model

• Generates the same intermediate state for all entities at
every iteration as compared to full re-execution
• Correctness is preserved for any algorithm

• Computation decoupled from state
• Can use any state, not just the previous
• Can share state across queries

• Incremental computations not always useful
• Can switch between incremental and full execution at any iteration
• Uses random forest based model to do so

Details in the paper!

Implementation & Evaluation
§ Implemented on Apache Spark

§Drop-in replacement for GraphX

§ Evaluated in a 16 node cluster
§Twitter: 1.47B edges
§UK: 3.73B edges
§Facebook: 5B, 10B, 50B edges

§ Comparisons & Algorithms
§Differential dataflow [SOSP’13], GraphBolt [Eurosys ‘19], Chlonos

[Chronos, Eurosys ‘14], Aspen [PLDI ‘19], GraphOne [FAST ‘19]
§Connected components, Page rank, Belief propagation, and others.

More evaluation in
the paper

Ad-hoc Retrieval

1

10

100

200 400 600 800 1000

Re
tr

ie
va

l T
im

e
(s

)

Snapshots in memory

DD GraphOne Aspen TEGRA

145 x

Retrieval latency with varying amount of state in memory

Ad-hoc Analytics

1

10

100

Twitt
er-C

C
UK-CC

Twitt
er-P

R
UK-PR

Twitt
er-B

P
UK-BP

Ti
m

e
(s

)
TEGRA GraphBolt DD Chlonos

Random snapshot, use previous state if available

8-30 x

Computation Model Benchmarks

0
20
40
60
80

100
120

Switching OFF Switching ON

Ti
m

e
(s

)

0

2

4

6

8

10

CC PR
Ti

m
e

(s
)

Fully Incremental From last

Switch to full
re-execution

Flexibility in state
reuse

Summary

• Ad-hoc analytics important emerging graph workload

• TEGRA enables efficient ad-hoc analytics on evolving graphs
• Simple abstraction
• Compact representation of state
• Share storage and computation

• TEGRA outperforms state-of-the-art solutions

http://www.anand-iyer.com
anand.iyer@berkeley.edu

http://www.cs.berkeley.edu/~api

