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Evolution of Data Center Congestion Control (CC)
Algorithms & Transport Protocols
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* On-Ramp: a simple mechanism that cloud users can deploy on their
own to improve performance, with no in-network support



Our method

* Focus primarily on detecting and handling transient congestion
* Most CCs perform well in the long term: high throughput, fairness, etc.

* Transient, like incast, is difficult to handle since senders must react very quickly
and forcefully to prevent packet drops
e which is in conflict with the stable convergence of CC



Why decoupling the handling of transience and equilibrium?

12 servers send long flows to 1 server.
2 flows start at t=0. The other 10 flows start at t=200m:s.
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Without rich congestion signals, there is a strong trade-off between
a packet transport’s equilibrium & transience performance.



Why decoupling the handling of transience and equilibrium?

12 servers send

long flows to 1 server.

2 flows start at t=0. The other 10 flows start at t=200m:s.
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On-Ramp reacts quickly and
forcefully to transient congestion,
while still keeps the stable
convergence during equilibrium.

On-Ramp also enhances the
performance of existing CCin
equilibrium

by making them more robust

to the choice of CC algorithm
parameters (gain)

* How? On-Ramp
in the network
* More in the paper...



Our proposal of On-Ramp

ACK turn-around time

* On-Ramp: if the one-way delay (OWD) of the most-
recently acked packet > threshold T, the sender
temporarily holds back the packets from this flow.

* Pause: reduce the path queuing delays as quickly as possible
* A gate-keeper of packets at the edge of the network

* Decoupling transience from equilibrium congestion control

* Clock sync (e.g. Huygens) makes OWD measurement possible

P t(receiver, R)

P t(sender, S)

e Can be coupled with existing CCs, requires only end-
host modifications.

* |In addition to public cloud, On-Ramp can also improve
network-assisted CC.

Image source: https://streets.mn/2014/06/02/metering-motoring/ 6
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Strawman proposal for On-Ramp

* For a flow, if the measured OWD > T, the sender pauses this flow
until tyo, + OWD —T

* Hope: drain the queue down to T Queueing  “rcwal  Queue scen
. delay] dueue by sender
* With feedback delay 7: pause much 4 W o
longer than needed OR threshold T 1 A S

 Queue undershoots T
* May cause under-utilization




Final version of On-Ramp

* Need to pause less. Two factors to
consider:

* Feedback delay: it is possible the sender
also paused this flow when the green pkt

was in flight, but the latest signal “OWD of

the green pkt” hasn’t seen the effects of
these pauses

e Concurrency: to account for the
contributions to OWD from other senders

* The rule of pausing needs to account for
these

e Details in the paper...

ACK turn-around time

P t(receiver, R)

P t(sender, S)

Latest signal

Paused for “P; gstprtrTT during this RTT
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Outline

* Design
e Strawman proposal
* Final version
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Implementation

e Linux kernel modules
* End-host modifications only

Sender

Pause decision

On-Ramp
controller

* Easy to deploy
Per flow queueing
Enforce pausing

Sniff ACKs

* ns-3
* Emulate the NIC implementation

 Built on top of the open-source
HPCC simulator

Tx timestamp
& pkt header

Data pkt
OR=ACK

Receiver

Send ACKs with
Rx timestamps

Rx timestamp
& pkt header
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* Facebook cluster
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Evaluation H Ighllghts (more in the paper)

 Traffic loads:
* Background: WebSearch, FB_Hadoop, GoogleSearchRPC, load = 40% ~ 80%
* Incast: Fanout=40, each flow=2KB or 500KB, load = 2% or 20%

VMs in Google Cloud (50 Vms)

* On-Ramp improves the 99% request completion time (RCT) of incast traffic of CUBIC by 2.8x
and BBR by 5.6x

Bare-metal cloud in CloudLab (100 servers)
* On-Ramp improves the 99% RCT of CUBIC by 4.1x

ns-3 simulation (320 servers)

* On-Ramp improves RCTs to varying degrees depending on the workload under DCQCN,
TIMELY, DCTCP and HPCC

In all three environments
* On-Ramp also improves the flow completion time (FCT) of non-incast background traffic
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Evaluation in Facebook: Highlights

(more in the paper)

* Two racks in a Facebook production cluster
 Traffic loads: Computation traffic (RPC-type) + Storage traffic (NVMe-over-TCP)

Computation RPC Storage throughput Packet drops
latency (us) (Gbps) (in about 5min run)
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More in the paper

* The importance of using one-way delay vs. round-trip time
* Network and CPU overhead of On-Ramp
e Co-existence of On-Ramp and non-On-Ramp traffic

* The granularity of control by On-Ramp



Conclusion

* On-Ramp allows public cloud users to take cloud network performance
into their own hands
* No need to change either the VM hypervisor or the network infrastructure
e Can couple with existing congestion-control algorithms

* On-Ramp’s improvements hold even in more customizable environments
like an on-prem cloud or a cloud with SmartNICs

* On-Ramp contains two ideas:
e Using synced clocks to improve network performance
e Decoupling the handling of transience & equilibrium



