
Breaking the Transience-Equilibrium Nexus:
A New Approach to Datacenter Packet Transport

Shiyu Liu, Ahmad Ghalayini,
Mohammad Alizadeh*, Balaji Prabhakar, Mendel Rosenblum, Anirudh Sivaraman+

Stanford University *MIT +NYU

April 12, 2021

1

Evolution of Data Center Congestion Control (CC)
Algorithms & Transport Protocols

• On-Ramp: a simple mechanism that cloud users can deploy on their
own to improve performance, with no in-network support

2

DCTCP

Homa,
HPCC, …

In-network support

Performance

More

Be
tt

er

On-Ramp

Data center CC &

transport p
rotocols

tim
e

Our method

• Focus primarily on detecting and handling transient congestion
• Most CCs perform well in the long term: high throughput, fairness, etc.
• Transient, like incast, is difficult to handle since senders must react very quickly

and forcefully to prevent packet drops
• which is in conflict with the stable convergence of CC

3

Why decoupling the handling of transience and equilibrium?

𝛽 = 0.8𝛽 = 0.2

12 servers send TIMELY long flows to 1 server.
2 flows start at t=0. The other 10 flows start at t=200ms.

Transience-equilibrium tension
Without rich congestion signals, there is a strong trade-off between

a packet transport’s equilibrium & transience performance.

4

Why decoupling the handling of transience and equilibrium?

𝛽 = 0.8𝛽 = 0.2

12 servers send TIMELY long flows to 1 server.
2 flows start at t=0. The other 10 flows start at t=200ms.

• On-Ramp reacts quickly and
forcefully to transient congestion,
while still keeps the stable
convergence during equilibrium.

• On-Ramp also enhances the
performance of existing CC in
equilibrium
• by making them more robust

to the choice of CC algorithm
parameters (gain)

• How? On-Ramp compacts the
state space in the network
• More in the paper…

𝛽 = 0.2, OR threshold 𝑇 = 30𝜇𝑠 𝛽 = 0.8, OR threshold 𝑇 = 30𝜇𝑠 5

Our proposal of On-Ramp
• On-Ramp: if the one-way delay (OWD) of the most-

recently acked packet > threshold 𝑇, the sender
temporarily holds back the packets from this flow.
• Pause: reduce the path queuing delays as quickly as possible
• A gate-keeper of packets at the edge of the network
• Decoupling transience from equilibrium congestion control
• Clock sync (e.g. Huygens) makes OWD measurement possible

• Can be coupled with existing CCs, requires only end-
host modifications.

• In addition to public cloud, On-Ramp can also improve
network-assisted CC.

6Image source: https://streets.mn/2014/06/02/metering-motoring/

https://streets.mn/2014/06/02/metering-motoring/

Outline

• Design
• Strawman proposal
• Final version

• Implementation
• Evaluation
• Google Cloud
• CloudLab
• ns-3
• Facebook cluster

7

Strawman proposal for On-Ramp

• For a flow, if the measured 𝑂𝑊𝐷 > 𝑇, the sender pauses this flow
until 𝑡+,- + 𝑂𝑊𝐷 − 𝑇
• Hope: drain the queue down to 𝑇
• With feedback delay 𝜏: pause much

longer than needed
• Queue undershoots 𝑇
• May cause under-utilization

8

Final version of On-Ramp
• Need to pause less. Two factors to

consider:
• Feedback delay: it is possible the sender

also paused this flow when the green pkt
was in flight, but the latest signal “OWD of
the green pkt” hasn’t seen the effects of
these pauses

• Concurrency: to account for the
contributions to OWD from other senders

• The rule of pausing needs to account for
these
• Details in the paper…

9

Paused for “𝑃!"#$%&$'((” during this RTT

Latest signal

Strawman On-Ramp Final version of On-Ramp

Two long-lived CUBIC flows sharing a link

10

Outline

• Design
• Strawman proposal
• Final version

• Implementation
• Evaluation
• Google Cloud
• CloudLab
• ns-3
• Facebook cluster

11

Implementation

• Linux kernel modules
• End-host modifications only
• Easy to deploy

• ns-3
• Emulate the NIC implementation
• Built on top of the open-source

HPCC simulator

12

Outline

• Design
• Strawman proposal
• Final version

• Implementation
• Evaluation
• Google Cloud
• CloudLab
• ns-3
• Facebook cluster

13

Evaluation Highlights (more in the paper)

• Traffic loads:
• Background: WebSearch, FB_Hadoop, GoogleSearchRPC, load = 40% ~ 80%
• Incast: Fanout=40, each flow=2KB or 500KB, load = 2% or 20%

• VMs in Google Cloud (50 VMs)
• On-Ramp improves the 99% request completion time (RCT) of incast traffic of CUBIC by 2.8×

and BBR by 5.6×

• Bare-metal cloud in CloudLab (100 servers)
• On-Ramp improves the 99% RCT of CUBIC by 4.1×

• ns-3 simulation (320 servers)
• On-Ramp improves RCTs to varying degrees depending on the workload under DCQCN,

TIMELY, DCTCP and HPCC

• In all three environments
• On-Ramp also improves the flow completion time (FCT) of non-incast background traffic

14

Evaluation in Facebook: Highlights
(more in the paper)

• Two racks in a Facebook production cluster
• Traffic loads: Computation traffic (RPC-type) + Storage traffic (NVMe-over-TCP)

15

0
200
400
600
800

1000
1200

CUBIC CUBIC
+ OR
30us

CUBIC
+ OR
15us

DCTCP

Computation RPC
latency (us)

173
Million

663558 133 1621
0

50,000,000

100,000,000

150,000,000

200,000,000

CUBIC CUBIC
+ OR
30us

CUBIC
+ OR
15us

DCTCP

Packet drops
(in about 5min run)

265 264 261 256

0
50

100
150
200
250
300

CUBIC CUBIC
+ OR
30us

CUBIC
+ OR
15us

DCTCP

Storage throughput
(Gbps)

More in the paper

• The importance of using one-way delay vs. round-trip time
• Network and CPU overhead of On-Ramp
• Co-existence of On-Ramp and non-On-Ramp traffic
• The granularity of control by On-Ramp
• ……

16

Conclusion

• On-Ramp allows public cloud users to take cloud network performance
into their own hands
• No need to change either the VM hypervisor or the network infrastructure
• Can couple with existing congestion-control algorithms

• On-Ramp’s improvements hold even in more customizable environments
like an on-prem cloud or a cloud with SmartNICs

• On-Ramp contains two ideas:
• Using synced clocks to improve network performance
• Decoupling the handling of transience & equilibrium

17

