Breaking the Transience-Equilibrium Nexus:
A New Approach to Datacenter Packet Transport

Shiyu Liu, Ahmad Ghalayini,
Mohammad Alizadeh*, Balaji Prabhakar, Mendel Rosenblum, Anirudh Sivaraman®

Stanford University *MIT *NYU

April 12, 2021

Evolution of Data Center Congestion Control (CC)
Algorithms & Transport Protocols

Performance
A

Better
—

Homa, W\
HPCC, .
On-Ramp
A
e 0
e O
2
09" 0
RS
» In-network support
More

* On-Ramp: a simple mechanism that cloud users can deploy on their
own to improve performance, with no in-network support

Our method

* Focus primarily on detecting and handling transient congestion
* Most CCs perform well in the long term: high throughput, fairness, etc.

* Transient, like incast, is difficult to handle since senders must react very quickly
and forcefully to prevent packet drops
e which is in conflict with the stable convergence of CC

Why decoupling the handling of transience and equilibrium?

12 servers send long flows to 1 server.
2 flows start at t=0. The other 10 flows start at t=200m:s.

- 1600 —2606 | T - 1600 . T
= 1400 |~ik-¢ - ¢ = L link. . ikl | 2 1400} =a bl link 61%. utilized.
= 1200 e 150 link fully utgllzed < 1200 | § link 61/o utlllzed
= 1000 e
O | R
S 400 el st rmet 237 238 ------ 239 0
, O 200 || T T o
O O O AAAAAA ll““““‘l“l““
195 200 205 210 215 220 225 230 235 240 195 200 205 210 215 220 225 230 235 240
Time (ms) Time (ms)
£ =0.2 f =0.8

Without rich congestion signals, there is a strong trade-off between
a packet transport’s equilibrium & transience performance.

Why decoupling the handling of transience and equilibrium?

12 servers send

long flows to 1 server.

2 flows start at t=0. The other 10 flows start at t=200m:s.

- 1600 —206 | |
31400 T a0 L link fullv. utilized
= 1200 | A 150 --link fully utitized
< 1000} | . -
© 800}
> 600 |-
'0—:3 400 |-
g o -
195 200 205 210 215 220 225 230 235 240
Time (ms)
B =0.2
- 1600 | 2006 | |
31400 gt pisg L link fullv. utilized
< 1200 _ link fully utglllzed
< 1000
< 800
2 600
'0—:3 400
5 e L
195 200 205 210 215 220 225 230 235 240
Time (ms)

f = 0.2, OR threshold T = 30us

1600
1400 |-
1200 |-
1000 -

b link 61%»-u-t5ilized»—

800

5 'o
AQO) [il < 25 tremeet 237 238 ------ 239 0
200 | oroefile o oo A My N i o

AAAAAA llll“““““l““

0
195 200 205 210 215 220225 230 235 240
Time (ms)

B =08

Queuing delay (us)

1600 | 2006 T T
1400 |- gty IR)
1200 § 150 link ﬁully utztllzed
1000 ; : :

800
600
400
200

5 : ; : . :
195 200 205 210 215 220225 230 235 240
Time (ms)

f = 0.8, OR threshold T = 30us

Queuing delay (us)

On-Ramp reacts quickly and
forcefully to transient congestion,
while still keeps the stable
convergence during equilibrium.

On-Ramp also enhances the
performance of existing CCin
equilibrium

by making them more robust

to the choice of CC algorithm
parameters (gain)

* How? On-Ramp
in the network
* More in the paper...

Our proposal of On-Ramp

ACK turn-around time

* On-Ramp: if the one-way delay (OWD) of the most-
recently acked packet > threshold T, the sender
temporarily holds back the packets from this flow.

* Pause: reduce the path queuing delays as quickly as possible
* A gate-keeper of packets at the edge of the network

* Decoupling transience from equilibrium congestion control

* Clock sync (e.g. Huygens) makes OWD measurement possible

P t(receiver, R)

P t(sender, S)

e Can be coupled with existing CCs, requires only end-
host modifications.

* |In addition to public cloud, On-Ramp can also improve
network-assisted CC.

Image source: https://streets.mn/2014/06/02/metering-motoring/ 6

https://streets.mn/2014/06/02/metering-motoring/

Outline

* Implementation

e Fvaluation

* Google Cloud

* CloudLab

* ns-3

* Facebook cluster

Strawman proposal for On-Ramp

* For a flow, if the measured OWD > T, the sender pauses this flow
until tyo, + OWD —T

* Hope: drain the queue down to T Queueing “rcwal Queue scen
. delay] dueue by sender
* With feedback delay 7: pause much 4 W o
longer than needed OR threshold T 1 A S

 Queue undershoots T
* May cause under-utilization

Final version of On-Ramp

* Need to pause less. Two factors to
consider:

* Feedback delay: it is possible the sender
also paused this flow when the green pkt

was in flight, but the latest signal “OWD of

the green pkt” hasn’t seen the effects of
these pauses

e Concurrency: to account for the
contributions to OWD from other senders

* The rule of pausing needs to account for
these

e Details in the paper...

ACK turn-around time

P t(receiver, R)

P t(sender, S)

Latest signal

Paused for “P; gstprtrTT during this RTT

OWD (us)

rate (Gbps)

500
400
300
200
100

Two long-lived CUBIC flows sharing a link

Strawman On-Ramp

0 1] |
0.002 0.004 0.006 0.008 0.010

time (s) +lel

time (s)

OWD (us)

rate (Gbps)

Final version of On-Ramp

500
400 |-
200 LK. R N B
100 [

oL ; ; ; ;
0.002 0.004 0.006 0.008 0.010

time (s) +lel

time (s)

10

Outline

* Design
e Strawman proposal
* Final version

e Fvaluation

* Google Cloud

* CloudLab

* ns-3

* Facebook cluster

Implementation

e Linux kernel modules
* End-host modifications only

Sender

Pause decision

On-Ramp
controller

* Easy to deploy
Per flow queueing
Enforce pausing

Sniff ACKs

* ns-3
* Emulate the NIC implementation

 Built on top of the open-source
HPCC simulator

Tx timestamp
& pkt header

Data pkt
OR=ACK

Receiver

Send ACKs with
Rx timestamps

Rx timestamp
& pkt header

12

Outline

* Design
e Strawman proposal
* Final version

* Implementation

* Evaluation
e Google Cloud
* CloudLab
° ns-3
* Facebook cluster

13

Evaluation H Ighllghts (more in the paper)

 Traffic loads:
* Background: WebSearch, FB_Hadoop, GoogleSearchRPC, load = 40% ~ 80%
* Incast: Fanout=40, each flow=2KB or 500KB, load = 2% or 20%

VMs in Google Cloud (50 Vms)

* On-Ramp improves the 99% request completion time (RCT) of incast traffic of CUBIC by 2.8x
and BBR by 5.6x

Bare-metal cloud in CloudLab (100 servers)
* On-Ramp improves the 99% RCT of CUBIC by 4.1x

ns-3 simulation (320 servers)

* On-Ramp improves RCTs to varying degrees depending on the workload under DCQCN,
TIMELY, DCTCP and HPCC

In all three environments
* On-Ramp also improves the flow completion time (FCT) of non-incast background traffic

14

Evaluation in Facebook: Highlights

(more in the paper)

* Two racks in a Facebook production cluster
 Traffic loads: Computation traffic (RPC-type) + Storage traffic (NVMe-over-TCP)

Computation RPC Storage throughput Packet drops
latency (us) (Gbps) (in about 5min run)
173
1200 300 265 264 261 56 200,000,000 million
1000 250
150,000,000
800 200
600 150 100,000,000
400 100
50,000,000
200 - >0 663558 133 1621
CUBIC CUBIC CUBIC DCTCP CUBIC CUBIC CUBIC DCTCP CUBIC CUBIC CUBIC DCTCP
+ OR +OR +0OR +OR +O0OR +OR
30us 15us 30us 15us 30us 15us

15

More in the paper

* The importance of using one-way delay vs. round-trip time
* Network and CPU overhead of On-Ramp
e Co-existence of On-Ramp and non-On-Ramp traffic

* The granularity of control by On-Ramp

Conclusion

* On-Ramp allows public cloud users to take cloud network performance
into their own hands
* No need to change either the VM hypervisor or the network infrastructure
e Can couple with existing congestion-control algorithms

* On-Ramp’s improvements hold even in more customizable environments
like an on-prem cloud or a cloud with SmartNICs

* On-Ramp contains two ideas:
e Using synced clocks to improve network performance
e Decoupling the handling of transience & equilibrium

