
Whiz: Data-driven Analytics
Execution

Robert Grandl*, Arjun Singhvi*, Raajay Viswanathan, Aditya Akella

* = co-primary authors

Problem Statement
Data analytics frameworks are used in diverse settings to analyze large datasets

Underlying compute-centric execution engines hinder performance and efficiency:
- Intermediate data unawareness
- Static parallelism and intermediate data partitioning
- Compute-driven scheduling
- Compute-based intermediate data organization

How do we overcome all these limitations of
compute-centric execution engines?

Whiz

Data Analytics Frameworks 101

Diverse analytics frameworks exist today (e.g., batch, stream, graph)

Graph
Framework

Stream
Framework

Batch
Framework

SQL Query Input Tables

Execution
Engine

Physical Graph

Logical Graph

Logical
Graph
Stage

Internal Planner

Physical Graph

Physical
Graph
Task

. .

BA

Logical Graph

Map Reduce

A1

An

1
2

m
1
2

m
Tasks

Intermediate
Data Partitions

1

1

m

m

B1

Bm

Intermediate
Data Partitions

Tasks

Physical Graph
Stage A (Example: Map) Stage B (Example: Reduce)

Analytics Limitation #1: Data Opacity + Compute Rigidity

BA

Logical Graph

Map Reduce

A1

An

1
2

m

1
2

m
Tasks

Intermediate
Data Partitions

1

1

m

m

B1

Bm

Intermediate
Data Partitions

Tasks

Physical Graph
Stage A (Example: Map) Stage B (Example: Reduce)

Execution engine handles management
of all intermediate data and how it is
accessed

Analytics Limitation #1: Data Opacity + Compute Rigidity

BA

Logical Graph

Map Reduce

A1

An

1
2

m

1
2

m
Tasks

Intermediate
Data Partitions

1

1

m

m

B1

Bm

Intermediate
Data Partitions

Tasks

Physical Graph
Stage A (Example: Map) Stage B (Example: Reduce)

Execution engine handles management
of all intermediate data and how it is
accessed

Execution engine has limited runtime
visibility into intermediate data

Analytics Limitation #1: Data Opacity + Compute Rigidity

BA

Logical Graph

Map Reduce

A1

An

1
2

m

1
2

m
Tasks

Intermediate
Data Partitions

1

1

m

m

B1

Bm

Intermediate
Data Partitions

Tasks

Physical Graph
Stage A (Example: Map) Stage B (Example: Reduce)

Execution engine handles management
of all intermediate data and how it is
accessed

Execution engine has limited runtime
visibility into intermediate data

Cannot change the processing logic of a
task depending on intermediate data

Analytics Limitation #2: Static Execution Structure

BA

Logical Graph

Map Reduce

A1

An

1
2

m

1
2

m
Tasks

Intermediate
Data Partitions

1

m

B1

Bm

Intermediate
Data Partitions

Tasks

Physical Graph
Stage A (Example: Map) Stage B (Example: Reduce)

Task parallelism and intermediate data
partitioning strategy needed by
execution engine is often static

Data skew can lead to degraded
performance

Inadaptable to resource changes

Analytics Limitation #3: Compute-driven Scheduling
Logical Graph

Map Reduce

BA

Stage B (Example: Reduce)

?
When to schedule

tasks?Tasks
Intermediate

Data Partitions

Physical DAG

A1

An

1
2

m

1
2

m

Stage A (Example: Map)

Analytics Limitation #3: Compute-driven Scheduling
Logical Graph

Map Reduce

BA

Decisions regarding when to schedule
tasks of downstream stage are based
on static compute structure

For example: Schedule after x% of the
upstream tasks are completed
(commutative+associative logic)

Tasks

1

1

m

m

B1

Bm

Intermediate
Data Partitions

Stage B (Example: Reduce)

Tasks
Intermediate

Data Partitions

Physical DAG

A1

An

1
2

m

1
2

m

Stage A (Example: Map)

Analytics Limitation #3: Compute-driven Scheduling
Logical Graph

Map Reduce

BA

Decisions regarding when to schedule
tasks of downstream stage are based
on static compute structure

For example: Schedule after x% of the
upstream tasks are completed
(commutative+associative logic)

May lead to compute idling waiting for
remaining data to be available

Tasks

1

1

m

m

B1

Bm

Intermediate
Data Partitions

Stage B (Example: Reduce)

Tasks
Intermediate

Data Partitions

Physical DAG

A1

An

1
2

m

1
2

m

Stage A (Example: Map)

Analytics Limitations: Root Causes

Compute-centric nature of execution engines

Early binds
to a

physical
execution graph

Intermediate data
organization and exchange

tied to the
physical graph

Task
computation

logic determined
a priori

Tight coupling
between intermediate

data and compute

Intermediate
data

agnosticity

Tukwila(sigmod99), Optimus(eurosys13) …. Optimus(eurosys13) , RIOS(socc18)…Hurricane(eurosys18), Crail(atc19) ….

Execution Engine

Whiz Approach

Make intermediate data and compute equal entities during job execution

Logical Compute

Execution Service

Logical Storage

Data Service

by a
clean logical separation between computation and intermediate data

Manages
computation

Manages
intermediate data

Whiz Key Idea #1: Intermediate Data Visibility

Decoupling enables intermediate data
awareness

Data Service gathers custom runtime
properties of intermediate data

Logical Compute Logical Storage

Execution Service Data Service

Job1

intermediate
data

Whiz Key Idea #1: Intermediate Data Visibility

Decoupling enables intermediate data
awareness

Data Service gathers custom runtime
properties of intermediate data

Enables driving all aspects of job
execution based on data properties

Logical Compute Logical Storage

Execution Service Data Service

Job1

intermediate
data

Whiz Key Idea #1: Intermediate Data Visibility

Decoupling enables intermediate data
awareness

Data Service gathers custom runtime
properties of intermediate data

Enables driving all aspects of job
execution based on data properties

Intrinsically provides cross-job
isolation and avoids I/O hotspots

Logical Compute Logical Storage

Execution Service Data Service

Job1 Job2

intermediate
data

Whiz Key Idea #2: Runtime Physical Graph Generation

Decides the task parallelism and task
sizing based on data properties

- Track intermediate data partition sizes

Logical Compute Logical Storage

Execution Service Data Service
intermediate

data
statistics

Whiz Key Idea #2: Runtime Physical Graph Generation

Decides the task parallelism and task
sizing based on data properties

- Track intermediate data partition sizes

Logical Compute Logical Storage

Execution Service Data Service
intermediate

data
statistics

Whiz Key Idea #2: Runtime Physical Graph Generation

Decides the task parallelism and task
sizing based on data properties

- Track intermediate data partition sizes

Enables handling intermediate data
skew

Allows adapting to resource flux
Logical Compute Logical Storage

Execution Service Data Service
intermediate

data
statistics

Whiz Key Idea #3: Data-driven Computation

Schedule computation based on
intermediate data properties - when
data meets pre-defined execution
predicates

Leads to efficient use of resources

Logical Compute Logical Storage

Execution Service Data Service

Job1

data is
ready

Whiz Key Idea #3: Data-driven Computation

Schedule computation based on
intermediate data properties - when
data meets pre-defined execution
predicates

Leads to efficient use of resources

Determine exact task logic based on
intermediate data properties at
runtime

Logical Compute Logical Storage

Execution Service Data Service

Job1

data is
ready

+
data

statistics

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

. .

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

Whiz Data Driven
Execution Engine

. .

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Logical Graph

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

Whiz Data Driven
Execution Engine

. .

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Logical Graph

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

Whiz Data Driven
Execution Engine

. .

Execution and Modification
Predicates Addition

Data Driven Logical Graph

. .

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Logical Graph

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

Whiz Data Driven
Execution Engine

. .

Execution and Modification
Predicates Addition

Data Driven Logical Graph

. .
Logical Graph with Predicates

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Logical Graph

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

Whiz Data Driven
Execution Engine

. .

Execution and Modification
Predicates Addition

Data Driven Logical Graph

. .
Logical Graph with Predicates

Execution predicates
determine when intermediate
data is ready to be consumed

by the downstream stage

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Logical Graph

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

Whiz Data Driven
Execution Engine

. .

Execution and Modification
Predicates Addition

Data Driven Logical Graph

. .
Logical Graph with Predicates

Execution predicates
determine when intermediate
data is ready to be consumed

by the downstream stage

Modification predicates
determine which processing

logic should be chosen
at runtime

Whiz Job Execution Pipeline

Internal Planner

SQL Query Input Tables

Logical Graph

Internal Planner

SQL Query Input Tables

Compute Centric
Execution Engine

Physical Graph

Physical Graph

Logical Graph

Whiz Data Driven
Execution Engine

. .

Execution and Modification
Predicates Addition

Data Driven Logical Graph

. .
Logical Graph with Predicates

Execution predicates
determine when intermediate
data is ready to be consumed

by the downstream stage

Modification predicates
determine which processing

logic should be chosen
at runtime

Incremental
physical graph
generation at

runtime

Whiz Job Execution Pipeline

Logical Compute Logical Storage

Execution Service Data Service

Client

Data-driven Logical Graph submitted via framework

Whiz Job Execution Pipeline

Logical Compute Logical Storage

Execution Service Data Service

ClientLogical graph
and modification

predicates

Data-driven Logical Graph submitted via framework

Whiz Job Execution Pipeline

Logical Compute Logical Storage

Execution Service Data Service

Client Data properties to
be collected and
execution predicates

Logical graph
and modification

predicates

Data-driven Logical Graph submitted via framework

Whiz Job Execution Pipeline

Logical Compute Logical Storage

Execution Service Data Service

Client

Push intermediate
data

Data properties to
be collected and
execution predicates

Logical graph
and modification

predicates

Data-driven Logical Graph submitted via framework

Whiz Job Execution Pipeline

Logical Compute Logical Storage

Execution Service Data Service

Client

Push intermediate
data

Data is ready

Data properties to
be collected and
execution predicates

Logical graph
and modification

predicates

Data-driven Logical Graph submitted via framework

Whiz Job Execution Pipeline

Logical Compute Logical Storage

Execution Service Data Service

Client

Push intermediate
data

Data is ready

Data properties to
be collected and
execution predicates

Logical graph
and modification

predicates

Data-driven Graph submitted via framework

Whiz Data Service
How to organize the intermediate data (from a job stage)?

Uses a linear-time rule based heuristic to pick machines so as to maximally
ensure load balance, data locality and fault tolerance

Initialize fixed number of intermediate data partitions on each machine
(chosen so as to minimize scheduling and storage overheads)

Intermediate data organization is no longer tied to compute structure
- Minimizes within-job skew across tasks
- Avoids hotspots
- Enables rapid task processing
- Minimizes failure recovery time

Whiz Job Execution Pipeline

Logical Compute Logical Storage

Execution Service Data Service

Client

Push intermediate
data

Data is ready

Data properties to
be collected and
execution predicates

Logical graph
and modification

predicates

Data-driven Graph submitted via framework

Whiz Execution Service

How to decide the task parallelism and placement?

Groups ready data partitions subject to an upper bound:
• Group local data partitions
• Group each remote partition (spread across multiple machines)
• Group any remaining data partitions

Each group is processed by a task

Minimizes cross-task skew and data shuffling

Task1 Task2

Task4Task3
Task5

m1

m2

Whiz Evaluation: Implementation and Setup

Implementation: Modified Tez and YARN

Setup: 50-machine cluster on CloudLab

Workloads: TPC-DS queries (for batch) and Page Rank (for graph)
- Poisson arrivals with 20s inter-arrival time

Metrics:
- Job Completion Time and Factor of Improvement = JCTbaseline/JCTWhiz

- Makespan

Whiz Evaluation: Batch Analytics and Graph Analytics

Whiz improves JCT by a factor
of 1.4x (1.2x) on average, and

2.02x (1.75x) on 95th

percentile w.r.t Hadoop (Spark)

Whiz improves JCT by a factor of
1.33x (1.57x) on average, and
1.57x (2.24x) on 95th percentile

w.r.t GraphX (Giraph)

Whiz improves makespan by a factor of 1.2x – 1.4x

Whiz Evaluation: Sources of Improvement

Gains from more rapid processing due to
data-driven execution and better data management

Whiz Evaluation: Sources of Improvement

Gains from more rapid processing due to
data-driven execution and better data management

Schedules more tasks
due to data local tasks

Whiz Evaluation: Sources of Improvement

Gains from more rapid processing due to
data-driven execution and better data management

Schedules more tasks
due to data local tasks

Similar input sizes
for tasks in a stage

Whiz Evaluation: Sources of Improvement

Gains from more rapid processing due to
data-driven execution and better data management

Schedules more tasks
due to data local tasks

Similar input sizes
for tasks in a stage

Avoids
storage hotspots

Whiz Evaluation: Sources of Improvement

Optimal Parallelism @ Runtime

Whiz Evaluation: Sources of Improvement

Execution Predicates Optimal Parallelism @ Runtime

Whiz Evaluation: Sources of Improvement

Execution Predicates Optimal Parallelism @ Runtime

Use of modification
predicates improves

performance and
efficiency

Fault-tolerant data
organization ensures
minimal performance

degradation during failures

Summary

Compute-centric execution engines hurt flexibility, performance
and efficiency

- Tight coupling between compute and intermediate data
- Intermediate data agnosticity

Whiz is a data-driven execution engine that drives all aspects of
execution based on intermediate data properties

- Makes compute and data equal entities by logically decoupling them
- Brings in intermediate data visibility

Whiz: Data-driven Analytics
Execution

Robert Grandl*, Arjun Singhvi*, Raajay Viswanathan, Aditya Akella

* = co-primary authors

Thank You!
asinghvi@cs.wisc.edu

mailto:asinghvi@cs.wisc.edu

