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Problem Statement
Data analytics frameworks are used in diverse settings to analyze large datasets

Underlying compute-centric execution engines hinder performance and efficiency:
- Intermediate data unawareness
- Static parallelism and intermediate data partitioning
- Compute-driven scheduling
- Compute-based intermediate data organization

How do we overcome all these limitations of 
compute-centric execution engines? 

Whiz



Data Analytics Frameworks 101

Diverse analytics frameworks exist today (e.g., batch, stream, graph)
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Analytics Limitation #1: Data Opacity + Compute Rigidity
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task depending on intermediate data



Analytics Limitation #2: Static Execution Structure
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Task parallelism and intermediate data 
partitioning strategy needed by 
execution engine is often static

Data skew can lead to degraded 
performance

Inadaptable to resource changes



Analytics Limitation #3: Compute-driven Scheduling
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Analytics Limitation #3: Compute-driven Scheduling
Logical Graph
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Analytics Limitation #3: Compute-driven Scheduling
Logical Graph
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Analytics Limitations: Root Causes

Compute-centric nature of execution engines
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Execution Engine

Whiz Approach

Make intermediate data and compute equal entities during job execution
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Whiz Key Idea #1: Intermediate Data Visibility

Decoupling enables intermediate data 
awareness

Data Service gathers custom runtime 
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Whiz Key Idea #1: Intermediate Data Visibility

Decoupling enables intermediate data 
awareness

Data Service gathers custom runtime 
properties of intermediate data

Enables driving all aspects of job 
execution based on data properties

Intrinsically provides cross-job 
isolation and avoids I/O hotspots
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Whiz Key Idea #2: Runtime Physical Graph Generation

Decides the task parallelism and task 
sizing based on data properties

- Track intermediate data partition sizes
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Whiz Key Idea #2: Runtime Physical Graph Generation

Decides the task parallelism and task 
sizing based on data properties

- Track intermediate data partition sizes

Enables handling intermediate data 
skew

Allows adapting to resource flux
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Whiz Key Idea #3: Data-driven Computation

Schedule computation based on 
intermediate data properties - when 
data meets pre-defined execution 
predicates

Leads to efficient use of resources
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Whiz Key Idea #3: Data-driven Computation

Schedule computation based on 
intermediate data properties - when 
data meets pre-defined execution 
predicates

Leads to efficient use of resources

Determine exact task logic based on 
intermediate data properties at 
runtime
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Whiz Job Execution Pipeline
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Whiz Data Service
How to organize the intermediate data (from a job stage)?

Uses a linear-time rule based heuristic to pick machines so as to maximally 
ensure load balance, data locality and fault tolerance

Initialize fixed number of intermediate data partitions on each machine 
(chosen so as to minimize scheduling and storage overheads)

Intermediate data organization is no longer tied to compute structure
- Minimizes within-job skew across tasks
- Avoids hotspots 
- Enables rapid task processing
- Minimizes failure recovery time 



Whiz Job Execution Pipeline
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Whiz Execution Service

How to decide the task parallelism and placement?

Groups ready data partitions subject to an upper bound:
• Group local data partitions
• Group each remote partition (spread across multiple machines)
• Group any remaining data partitions 

Each group is processed by a task 

Minimizes cross-task skew and data shuffling
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Whiz Evaluation: Implementation and Setup

Implementation: Modified Tez and YARN

Setup: 50-machine cluster on CloudLab

Workloads: TPC-DS queries (for batch) and Page Rank (for graph)
- Poisson arrivals with 20s inter-arrival time

Metrics:
- Job Completion Time and Factor of Improvement = JCTbaseline/JCTWhiz

- Makespan



Whiz Evaluation: Batch Analytics and Graph Analytics

Whiz improves JCT by a factor 
of 1.4x (1.2x)  on average, and

2.02x (1.75x) on 95th

percentile w.r.t Hadoop (Spark)

Whiz improves JCT by a factor of 
1.33x (1.57x) on average, and 
1.57x (2.24x) on 95th percentile 

w.r.t GraphX (Giraph)

Whiz improves makespan by a factor of 1.2x – 1.4x



Whiz Evaluation: Sources of Improvement

Gains from more rapid processing due to 
data-driven execution and better data management 
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Whiz Evaluation: Sources of Improvement

Gains from more rapid processing due to 
data-driven execution and better data management 

Schedules more tasks 
due to data local tasks

Similar input sizes 
for tasks in a stage

Avoids 
storage hotspots



Whiz Evaluation: Sources of Improvement

Optimal Parallelism @ Runtime



Whiz Evaluation: Sources of Improvement

Execution Predicates Optimal Parallelism @ Runtime



Whiz Evaluation: Sources of Improvement

Execution Predicates Optimal Parallelism @ Runtime

Use of modification 
predicates improves 

performance and 
efficiency

Fault-tolerant data 
organization ensures
minimal performance 

degradation during failures



Summary

Compute-centric execution engines hurt flexibility, performance 
and efficiency

- Tight coupling between compute and intermediate data
- Intermediate data agnosticity

Whiz is a data-driven execution engine that drives all aspects of 
execution based on intermediate data properties

- Makes compute and data equal entities by logically decoupling them 
- Brings in intermediate data visibility
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