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COVID-19: the Theme of 2020

• How well has the current network infra responded to the COVID stress test?
• How should the network infra evolve in the post-pandemic era? 

• A year-long measurement in Facebook’s the backbone network
• Use network risk as an indicator for robustness of the network 
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Backbone Network

• Interconnects Point-of-
Presence (PoP) and Data 
Center (DC) nodes
• Large scale

• Hundreds of PoPs
• Tens of DC regions (hundreds 

of DCs)

• Quality of Service (QoS)
• 4 QoS classes for different 

servicesFacebook’s Connectivity Map
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Network Risk

• Failures are frequent
• Fiber cuts, power outages, misconfigurations, etc.
• Device thefts, hurricanes, fires, etc.

• Severe impact
• Congestion, packet loss, long latency, availability drop, etc.

• Risk
• Potential failures in the network
• Anticipate the consequence before bad things happen
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Risk Metrics

• Demand loss
• Total loss of all the flows in a QoS class
• Maximum loss across all failure scenarios

• Availability
• Percentage of time a flow is 100% admitted
• Lowest availability among all the flows in a QoS group

• Latency stretch
• Path dilation of a flow against the shortest path weighted by failure probability
• A set of the latency stretches of all the flows in a QoS group

Unified metrics 
across teams

Different aspects 
of failures

SLOs of QoS 
classes
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Risk Simulation System (RSS)
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RSS Operation Modes

• Customized failures
• Decommission workflow
• Natural disasters

• QoS protection policies
• Protected failures per QoS class

• Potential failures
• Failure count with cutoff

Fine-grained risk simulation
Thousands of failure scenarios

Coarse-grained risk simulation
Millions of failure scenarios

- 18k lines of C++ code
- Several years in prod
- System optimizations

~ 250s per case

~ 0.1s per case
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Failure Modeling Challenge

• Lower bound of TTR
• Physical time constraints for repair

• Secure permits to enter water
• Sailing time to failure site

• Multi-modal
• Distinct parts

• Different failure profiles
• Dependent on depth under water
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arbitrary distributions

TTR distribution of three subsea fibers
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Capacity Enhancement

• Capacity up and down
• Network growth
• Migrate wavelengths

• More capacity added
• Turn up dark fibers
• Provision new wavelengths
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• Higher risk in QoS 1 (control messages) and QoS 2 (user traffic)
• No significant change in QoS 3 and 4 à non-user traffic
• Hypothetical demand loss related to traffic increase

QoS 1 QoS 2 QoS 3 & 4
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QoS Downgrade

• QoS classes assigned by service
• Opportunities for optimization

• User traffic vs. machine traffic
• A service downgrading QoS classes if possible

1
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Failure Statistics Change

• Fewer optical failures during lockdown
• Reduced human activity

• More optical failures after re-opening
• More maintenance work
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• IP failures remain the same during lockdown
• Less impacted by human activity

• More IP failures after re-opening
• More maintenance work
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Optical failures IP failures

• IP failures remain the same during lockdown
• Less impacted by human activity

• More IP failures after re-opening
• More maintenance work
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• Automate network operations à reduce human activity
• Short-term failure statistics à tradeoff between model stability and agility



Mobility Correlated with Traffic
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Figure 12: Traffic volume and mobility patterns in six US cities during the COVID-19 pandemic.

differences in the probability distributions.

Insights. These findings call for responsive failure modeling.
When special events cause failure characteristics to change,
the failure prediction model should be adjusted to rely more
on recent failure measurement points. However, the model
stability might be at stake with short-term data collection, and
the challenge lies in balancing stability and agility to have
an accurate model. The COVID-19 crisis required us to re-
spond quickly, and the fast development of the pandemic gave
us little time for drastic redesigns of the failure model. The
various failure generation modes in RSS make it adaptive to
different failure models. For instance, our customized failures
in Mode 1 are designed for failure scenarios of particular in-
terests that may deviate from the failure model. We leveraged
this feature to feed RSS with short-term failure statistics for
close monitoring of the network health during COVID-19.
The failure model is hard to change in Modes 2 and 3, hence,
we applied a scaling factor to the failure distributions to gen-
erate more failures. These false positives helped us operate
the network more cautiously during the pandemic. Moving
forward, we are working on more responsive failure modeling
with a sliding window that automatically assigns weights to
different measurement periods.

5.2 Traffic Prediction with External Signals

The risk observations we report throughout this paper use
current production traffic as input, yet RSS can also take
in projected traffic to forecast future risk. At Facebook, we
perform demand forecasting every quarter to predict the traffic
volume in the next 6 months to one year. Our prediction used

to be accurate, but the traffic grew beyond the predicted upper
bound since the pandemic started. At the peak, we saw a 26%
difference between actual and predicted upper-bound traffic.

In our operational experience, we have seen rich examples
of how external non-networking signals can be leveraged to
aid network management. For instance, it is common prac-
tice to strengthen the guard on PoP or DC regions that have
received hurricane warnings, and we keep a close watch on
traffic blackholing in areas with frequent armed conflicts. In
this section we demonstrate that human mobility metrics can
also be used to better predict the traffic volume.

To demonstrate this finding, we use population mobility
data from the SafeGraph [5,41] database built from 20 million
mobile devices. As an approximation of mobility, we sum the
total number of trips that take place in a geographical region
based on aggregated cellphone GPS data, and normalize it
by the population of the trip origin. We consider six major
US cities and plot the variations of traffic and mobility over
time in Figure 12. Interesting findings imply opportunities and
challenges in our proposal of mobility-aided traffic prediction.

Negative correlation between traffic and mobility. Fig-
ure 12 shows the traffic volume and mobility rate normalized
to their corresponding averages during the P0 phase. While
there is a fair amount of overlap between traffic and mobility
in P0 across the cities, we observe a strong negative correla-
tion between traffic and mobility since the start of P1. We see
the general trend that when mobility drops, traffic increases;
and as mobility increases slowly, traffic falls as well. The spo-
radic spikes of mobility and traffic also match well, forming
zigzags in opposite directions. The gap between the traffic
and mobility curves closes down in the P2 phase when the

Chicago Dallas Los Angeles

Miami New York City Seattle
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• Use offline signals for traffic prediction
• Challenging: complicated interplay of different factors, and case by case
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