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* How well has the current network infra responded to the COVID stress test?

* How should the network infra evolve in the post-pandemic era?
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 Avyear-long measurement in Facebook’s the backbone network

e Use network risk as an indicator for robustness of the network

* How well has the current network infra responded to the COVID stress test?

* How should the network infra evolve in the post-pandemic era?
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Backbone Network

* Interconnects Point-of-
Presence (PoP) and Data
Center (DC) nodes

* Large scale
* Hundreds of PoPs
* Tens of DC regions (hundreds
of DCs)
e Quality of Service (QoS)
* 4 QoS classes for different
Facebook’s Connectivity Map services




Network Risk

* Failures are frequent
* Fiber cuts, power outages, misconfigurations, etc.
* Device thefts, hurricanes, fires, etc.

* Severe impact

* Congestion, packet loss, long latency, availability drop, etc.
* Risk

* Potential failures in the network

* Anticipate the consequence before bad things happen



Network Risk
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Risk Metrics

Unified metrics Different aspects SLOs of QoS
across teams of failures classes

* Demand loss
* Total loss of all the flows in a QoS class
* Maximum loss across all failure scenarios

* Availability
* Percentage of time a flow is 100% admitted
* Lowest availability among all the flows in a QoS group

* Latency stretch
* Path dilation of a flow against the shortest path weighted by failure probability
* A set of the latency stretches of all the flows in a QoS group
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Risk Simulation System (RSS)

Backbone Q Failure
Controller Generator
TE
decision Failures

Backbone  Topology Risk metrics
Snapshotter  Traffic
Backbone
topology & traffic



RSS Operation Modes - 18k lines of C++ code

- Several years in prod
- System optimizations

* Customized failures \
e Decommission workflow
* Natural disasters > Fine-grained risk simulation
Thousands of failure scenarios
* QoS protection policies ~ 2505 per case

* Protected failures per QoS class J

e Potential failures > Coarse-grained risk simulation

* Failure count with cutoff Millions of failure scenarios

~0.1s per case



Failure Modeling Challenge

* Time To Repair (TTR) of subsea fibers follow

arbitrary distributions

Probability density function

0.15

0.12

0.09

0.06

0.03

0

—Fiber 1
Fibre 2
—Fiber 3
_— l
0 10 20 30 40 50 60 70

Time to repair (TTR)

TTR distribution of three subsea fibers

e Lower bound of TTR

* Physical time constraints for repair

* Secure permits to enter water
* Sailing time to failure site

e Multi-modal

* Distinct parts

» Different failure profiles
* Dependent on depth under water
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Capacity Enhancement

Backbone Capacity

+30%

® Pre-COVID-19 (PO) e Capacity up and down
W Shelter-in-place (P1)  Network growth
#20% | ® Re-opening (P2) * Migrate wavelengths
+10% / * More capacity added
e Turn up dark fibers
Baseline _ * Provision new wavelengths

11/2019 3/2020 7/2020  11/2020 03/2021

Net backbone capacity measured per week
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QoS Downgrade

* Higher risk in QoS 1 (control messages) and QoS 2 (user traffic)
* No significant change in QoS 3 and 4 - non-user traffic
* Hypothetical demand loss related to traffic increase
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Normalized demand loss

QoS Downgrade
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* Opportunities for optimization

e User traffic vs. machine traffic

* A service downgrading QoS classes if possible

" 4

Normalized demand loss

QoS 2 downplayed into 3 & 4
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Failure Statistics Change
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Optical failures

IP failures

Fewer optical failures during lockdown ¢ IP failures remain the same during lockdown
* Reduced human activity * Less impacted by human activity

More optical failures after re-opening * More IP failures after re-opening
* More maintenance work * More maintenance work



Failure Statistics Change
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Automate network operations = reduce human activity

Short-term failure statistics = tradeoff between model stability and agility

* Fewer optical failures during lockdown < IP failures remain the same during lockdown

* Reduced human activity * Less impacted by human activity
* More optical failures after re-opening * More IP failures after re-opening
* More maintenance work * More maintenance work
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Mobility Correlated with Traffic
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Mobility Correlated with Traffic
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* Use offline signals for traffic prediction
 Challenging: complicated interplay of different factors, and case by case
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