
Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, Ion Stoica

1

Caerus: NIMBLE Task Scheduling for
Serverless Analytics

Serverless computing

2

AWS Lambda Azure FunctionsGoogle Cloud Functions IBM Cloud Functions

Fast Scaling

< 1 Second30 ~ 120 Seconds

Fine-grained billing

Per millisecondPer second

3

2017 2021

PyWren (SoCC’17)

Scaling python functions

Serverless analytics

Single-stage functions

Job Execution plan A pool of (infinite)

serverless workers

Deploy

Job completion

time (JCT)

Cost (total duration

of all workers)

Web

severing

2014

IoT

applications

ExCamera (NSDI’17) Sprocket(SoCC’18)

Video processing

gg compiler (ATC’19)

Distributed compiling

NumPyWren

Matrix computation

Locus (NSDI’19)

Mapreduce & SQL-like queries

Starling (Sigmod’20)

SQL query engine

General data analytics

Cloudburst (VLDB’20)

Stateful functions

Inter-job scheduling

Optimization Metrics: average JCT,

cluster utilization, fairness across jobs

4

Serverless scheduling: a new problem

Server-centric users

Serverless users

Intra-job scheduling across tasks

Optimization Metrics: Both JCT and cost

for each individual job

Can existing server-centric intra-job scheduling policies

optimize both JCT and cost in serverless settings?

Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its

upstream stages have finished (Spark)

2

7

15

Map tasks Reduce tasks

Stage barrier12

16

12

12

16

12

2

7

15

Map tasks

Reduce tasks

A MapReduce job with 3 map tasks

and 3 reduce tasks

5

Job completion time: 16 + 15 = 31

Cost (total duration): (12*2+16)+(2+7+15) = 64

Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its

upstream stages have finished (Spark)

12

16

12

2

7

15

Map tasks Reduce tasks

6

Minimizes cost (duration)

Much longer job completion time (1.63X)

Stage barrier

Eager: start a task when ANY output from its

upstream stages is ready (Mapreduce Online)

12

16

12

Trade-off

Job completion time: 16 + 15 = 31

Cost (total duration): (12*2+16)+(2+7+15) = 64

Minimizes job completion time

Much higher cost (1.47X)

Job completion time: 16 + 3 = 19

1

2

3

The part (e.g., data

aggregation) which can

only start after receiving

all the mapper output.

Cost: (12*2+16)+ 16*3 + (1+2+3) = 94

7

NIMBLE scheduling: main idea

• Fully exploit the flexible resource scaling of serverless computing

• Calculate and enforce the best launch time for each individual task

Job completion time: 16 + 3 = 19

Cost (total duration): (12*2+16) + (1+5+12) + (1+2+3) = 64

NIMBLE

(64, 19)

Cost (total duration)

Lazy

(64, 31)

Eager

(94, 19)

Jo
b
 c

o
m

p
le

ti
o
n
 t

im
e

12

16

12

1 1

5 2

12 3

last mapper

finishes

Map tasks Reduce tasks

How to calculate the optimal launch time for each task?

Main idea:

• NIMBLE scheduling requires a precise description of the pipelinablity
across different job stages

8

Challenge 1: Describe pipelinablity

12

16

12

1

5

12

Map tasks Reduce tasks
Can be pipelined with the map stage

1

2

3

Can only start after the map stage finishes

Cannot calculate the optimal task launch

time without sub-stage level information

map

reduce

Stage-level DAG:

How to describe pipelinability at sub-stage level?

• General analytics workloads can have complicated DAGs.
• Within a stage: tasks can consume data from multiple upstream stages

• Across stages: tasks can have cascading dependencies

9

Challenge 2: Arbitrary DAGs

Fetch Table A &

Do online join

Stage 1

Stage 2

Stage 3

Fetch Table B &

Build Hash Table

Fetch Table C &

Build Hash Table

Fetch Table C &

Do online join
Stage 4

Stage 5

Stage 1 (map)

Generate Table A

Stage 2 (map)

Generate Table B

Stage 3 (join)

A INNER JOIN B

Stage 4 (map)

Generate Table C

Stage 5 (join)

(A JOIN B) JOIN C

Query Plan

How to calculate the optimal task launch time for arbitrary DAGs?

• Challenge 1: How to describe pipelinability at sub-stage level?

• Develop a step model to precisely capture the sub-stage level pipelinablity

10

NIMBLE design outline

• Challenge 2: How to calculate the optimal task launch time for
arbitrary DAGs?

• Develop a scheduling algorithm which guarantees optimal cost while being
Pareto-optimal between cost and JCT for arbitrary DAGs

• Idea: Break stages into steps
• Step: largest pipeline-able component within a stage

• Separated by pipeline breakers1 (e.g., MIN, MAX, SUM)

11

Step model

12

16

12

1 1

5 2

12 3

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map
map

reduce

Stage model:

r.s1 r.s2

m.s1

reduce

Step model:

map

Step 1 Step 2

Pipeline-breaker

1. A pipeline breaker is an operator that produces the first output only after all its input has been processed

• Idea: Break stages into steps
• Step: largest pipeline-able component within a stage

• Separated by pipeline breakers1 (e.g., MIN, MAX, SUM)

12

Step model

12

16

12

1 1

5 2

12 3

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map
map

reduce

Stage model:

r.s1 r.s2

m.s1

reduce

Step model:

map

Step 1 Step 2

Pipeline-breaker

Data dependency within a stage:
• Must be executed sequentially

Data dependency across stages:
• Can be pipelined

• Referred as parent-child step pairs

1. A pipeline breaker is an operator that produces the first output only after all its input has been processed

• Example: the step model for a complicated SQL query in TPC-DS benchmark

13

Step model

Step model can efficiently describe pipelinability across a wide range of applications

map1

map2

join1.s1 join1.s2

groupby.s1

join2.s1

groupby.s2

join2.s2

map3

map4

join3.s1 join3.s2 rest

Stage No.

1

2

3

4

5

6

7

8

• Intuition to calculate the launch time:
• Optimally overlap the parent-child step pair based on the

data produce and data consume rate

14

Basic algorithm for 2-stage map-reduce

1

2

3

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map

12

16

12

1

5

12

Parent-child step

pair

Historical

+ online job information

• Optimal launch time in three simple steps

• Step 1: Calculate optimal task duration

15

Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map

12

16

12

1

5

12

1

2

3

optimal duration

based on Lazy solution

• Optimal launch time in three simple steps

• Step 2: Calculate optimal task finish time

16

Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map

12

16

12

1

2

3

optimal finish time

based on Eager solution

• Optimal launch time in three simple steps

• Step 3: Calculate the task launch time t* as:

optimal task finish time

17

Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map

12

16

12

optimal finish time

optimal duration

1 1

5 2

12 3

t*

- optimal task duration

• Optimal launch time in three simple steps

18

Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map

12

16

12

1 1

5 2

12 3

Theorem 1: t* ensures optimal cost and finish time for each reduce task.

19

From map-reduce to arbitrary DAGs

• Challenges for arbitrary DAGs :
• Within a stage: tasks can consume data from multiple upstream stages

• Across stages: tasks can have cascading dependencies

• Takeaways:
• Bad news: Impossible to design an algorithm that can achieve optimal cost

and JCT simultaneously for arbitrary DAGs

• Good news: Extend the basic algorithm to guarantee optimal cost while
being Pareto-optimal between cost and JCT

20

Caerus System

Step Model

Builder

Input Estimator

NIMBLE

Scheduling

Worker functions

Runtime

Profiler

Caerus Scheduler

Serverless Data Analytics Framework

E
x

ec
u

ti
o
n

 p
la

n

/
U

se
r

co
d

e

Online info.

update

Task

Invocation

Compiler

Runtime

CodeGenerator

• Caerus: a task-level scheduler for serverless analytics which enables
NIMBLE scheduling

Data Analytics Framework with Caerus

21

Evaluation results on AWS

JCT (1.1-2.2X improvement) Cost (1.2-1.6X improvement)

TPC-DS

(4 queries)

BigData

(3 queries)

0.5

1

1.5

2

Q1 Q16 Q94 Q95

N
o

r
m

.
J

C
T

Lazy Eager NIMBLE

NIMBLE

0.5

1

1.5

2

Q1 Q16 Q94 Q95

N
o

r
m

.
C

o
st

Lazy Eager NIMBLE

NIMBLE

0.5

1

1.5

2

Q3A Q3B Q3C

N
o
r
m

.
J
C

T

Lazy Eager NIMBLE

NIMBLE

0.5

1

1.5

2

Q3A Q3B Q3C

N
o
r
m

.
C

o
st

Lazy Eager NIMBLE

NIMBLE

NIMBLE scheduling can effectively optimize both JCT and cost across all these workloads

• Serverless analytics introduces a new intra-job scheduling problem to
optimize both JCT and cost
• Existing solutions expose a hard tradeoff between these two metrics

• NIMBLE scheduling with a simple idea: to launch each task at its right time
• Step model to capture sub-stage level pipelinablity and data dependencies

• Achieves cost optimality while being Pareto-optimal between cost and JCT

• Caerus: a task-level scheduler for serverless analytics which enables
NIMBLE scheduling in practice

22

Takeaways

Thank you! Contact email:
hongzhangblaze@gmail.com

