Caerus: NIMBLE Task Scheduling for Serverless Analytics

Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, Ion Stoica

Serverless computing

Serverless analytics

Serverless scheduling: a new problem

Can existing server-centric intra-job scheduling policies optimize both JCT and cost in serverless settings?

Trade-off: Lazy vs. Eager

A MapReduce job with 3 map tasks and 3 reduce tasks

Reduce tasks

Trade-off: Lazy vs. Eager

NIMBLE scheduling: main idea

Fully exploit the <u>flexible resource scaling</u> of serverless computing
Calculate and enforce the <u>best launch time</u> for <u>each individual task</u>

How to calculate the optimal launch time for each task?

Challenge I: Describe pipelinablity

Can be pipelined with the map stage

• NIMBLE scheduling requires a precise description of the pipelinablity across different job stages

Cannot calculate the optimal task launch time without <u>sub-stage level</u> information

How to describe pipelinability at <u>sub-stage level</u>?

Challenge 2: Arbitrary DAGs

- General analytics workloads can have complicated DAGs.
 - Within a stage: tasks can consume data from multiple upstream stages
 - Across stages: tasks can have cascading dependencies

How to calculate the optimal task launch time for arbitrary DAGs?

NIMBLE design outline

- Challenge I: How to describe pipelinability at sub-stage level?
- Develop a **step model** to precisely capture the sub-stage level pipelinablity

- Challenge 2: How to calculate the optimal task launch time for arbitrary DAGs?
- Develop a scheduling algorithm which guarantees optimal cost while being Pareto-optimal between cost and JCT for arbitrary DAGs

Step model

• Idea: Break stages into steps

- Step: largest pipeline-able component within a stage
- Separated by pipeline breakers¹ (e.g., MIN, MAX, SUM)

Step model

• Idea: Break stages into steps

- Step: largest pipeline-able component within a stage
- Separated by pipeline breakers¹ (e.g., MIN, MAX, SUM)

Map tasks Reduce tasks

Can be pipelined with map

Cannot be pipelined with map

Step model

• Example: the step model for a complicated SQL query in TPC-DS benchmark

Step model can efficiently describe pipelinability across a wide range of applications

- Intuition to calculate the launch time:
 - Optimally overlap the <u>parent-child step pair</u> based on the <u>data produce and data consume rate</u>

Historical + online job information

- Optimal launch time in three simple steps
 - Step 1: Calculate optimal task duration based on Lazy solution

- Optimal launch time in three simple steps
 - Step 2: Calculate optimal task finish time based on Eager solution

• Optimal launch time in three simple steps

• Step 3: Calculate the task launch time t* as:

optimal task finish time - optimal task duration

• Optimal launch time in three simple steps

Theorem I: t* ensures optimal cost and finish time for each reduce task.

From map-reduce to arbitrary DAGs

• Challenges for arbitrary DAGs :

- Within a stage: tasks can consume data from multiple upstream stages
- Across stages: tasks can have cascading dependencies

• Takeaways:

- Bad news: Impossible to design an algorithm that can achieve optimal cost and JCT simultaneously for arbitrary DAGs
- Good news: Extend the basic algorithm to guarantee optimal cost while being Pareto-optimal between cost and JCT

Caerus System

• Caerus: a task-level scheduler for serverless analytics which enables NIMBLE scheduling

Data Analytics Framework with Caerus

Evaluation results on AWS

NIMBLE scheduling can effectively optimize both JCT and cost across all these workloads

- Serverless analytics introduces a new intra-job scheduling problem to optimize both JCT and cost
 - Existing solutions expose a hard tradeoff between these two metrics
- NIMBLE scheduling with a simple idea: to launch each task at its right time
 - Step model to capture sub-stage level pipelinablity and data dependencies
 - Achieves cost optimality while being Pareto-optimal between cost and JCT
- Caerus: a task-level scheduler for serverless analytics which enables NIMBLE scheduling in practice