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Serverless computing
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Serverless analytics
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Serverless scheduling: a new problem

Server-centric users

Intra-job scheduling across tasks
Optimization Metrics: Both /CT and cost
for each individual job

Serverless users

Can existing server-centric intra-job scheduling policies

optimize both JCT and cost in serverless settings?



Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its
upstream stages have finished (Spark)
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Job completion time: 16 + 15 = 3|
Cost (total duration): (12*2+16)+(2+7+15) = 64
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A MapReduce job with 3 map tasks
and 3 reduce tasks
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Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its Eager: start a task when ANY output from its

upstream stages is ready (Mapreduce Online)

upstream stages have finished (Spark)
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Job completion time: 16 + |5 = 31 Job completion time: 16 + 3 = 19
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Minimizes job completion time
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NIMBLE scheduling: main idea

Fully exploit the flexible resource scaling of serverless computing
e Calculate and enforce the best launch time for each individual task

Main idea:
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How to calculate the optimal launch time for each task!?



Challenge |: Describe pipelinablity

* NIMBLE scheduling requires a precise description of the pipelinablity
across different job stages

Stage-level DAG:
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How to describe pipelinability at sub-stage level?



Challenge 2: Arbitrary DAGs

* General analytics workloads can have complicated DAG:s.

* Within a stage: tasks can consume data from multiple upstream stages
* Across stages: tasks can have cascading dependencies
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How to calculate the optimal task launch time for arbitrary DAGs!?



NIMBLE design outline

* Challenge |: How to describe pipelinability at sub-stage level?

* Develop a step model to precisely capture the sub-stage level pipelinablity

* Challenge 2: How to calculate the optimal task launch time for
arbitrary DAGs!?

* Develop a scheduling algorithm which guarantees optimal cost while being
Pareto-optimal between cost and JCT for arbitrary DAGs



Step model

* ldea: Break stages into steps

 Step: largest pipeline-able component within a stage
* Separated by pipeline breakers! (e.g, MIN, MAX, SUM)

Can be pipelined with map '_-_-_-_-_-_-_-_-_-_-_-_-_-_ ----------- )

Map tasks Reduce tasks . PP : Step model: :
.Cannot be pipelined with map : :

I map |

i g—— : :
G = =
T 5 s Jreduee
N o o o N N S N S N S S S M S S J

Step 2
Pipeline-breaker

e
Ie
]

i
L

11
|.A pipeline breaker is an operator that produces the first output only after all its input has been processed



Step model

* ldea: Break stages into steps

 Step: largest pipeline-able component within a stage

* Separated by pipeline breakers! (e.g, MIN, MAX, SUM)
.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map

Step 2
Pipeline-breaker
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= Data dependency within a stage:
* Must be executed sequentially

=3 Data dependency across stages:
 Can be pipelined
* Referred as parent-child step pairs
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Step model

* Example: the step model for a complicated SQL query in TPC-DS benchmark

WITH customer_total_return AS (

SELECT St N
sr_customer_sk AS ctr_customer_sk, age O'
sr_store_sk AS ctr_store_sk,
sum(sr_return_amt) AS ctr_total_return

FROM

join3.sl joing3.s2

store_returns,
date_dim
WHERE
sr_returned_date_sk = d_date_sk
AND d_year = 2000
GROUP BY

sr_customer_sk, - =
sr_store_sk 6 join 2.52
)
ol — — e e e e Sl S S S an G
c_customer_id
FROM 5
customer_total_return CIPL, e o e e
store
4 groupby.sl groupby.s2
WHERE
ctrl.ctr_total_return > ( i
SELECT - - - =
avg(ctr_total_return) * 1.2 3 I In1.51 » I n 1.82
FROM
customer_total_return ctr2 .
WHERE
ctrl.ctr_store_sk = ctr2.ctr_store_sk) 2
AND s_store_sk = ctrl.ctr_store_sk
AND s_state = 'TN'
AND ctrl.ctr_customer_sk = c_customer_sk
ORDER BY
c_customer_id
LIMIT 100;

Step model can efficiently describe pipelinability across a wide range of applications




Basic algorithm for 2-stage map-reduce

e Intuition to calculate the launch time:

* Optimally overlap the parent-child step pair based on the

Historical
data produce and data consume rate <. online ob information

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map
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Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps
* Step 1: Calculate optimal task duration based on Lazy solution

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map
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Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps
* Step 2: Calculate optimal task finish time based on Eager solution

DCan be pipelined with map

. Map tasks Reduce tasks {

.Cannot be pipelined with map
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Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps
 Step 3: Calculate the task launch time t* as:
optimal task finish time - optimal task duration

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map
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Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps

Theorem |:t* ensures optimal cost and finish time for each reduce task.

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map
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From map-reduce to arbitrary DAGs

* Challenges for arbitrary DAGs :
* Within a stage: tasks can consume data from multiple upstream stages
* Across stages: tasks can have cascading dependencies

* Takeaways:

* Bad news: Impossible to design an algorithm that can achieve optimal cost
and JCT simultaneously for arbitrary DAGs

* Good news: Extend the basic algorithm to guarantee optimal cost while
being Pareto-optimal between cost and |CT



Caerus System

* Caerus: a task-level scheduler for serverless analytics which enables
NIMBLE scheduling
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Evaluation results on AVVS
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NIMBLE scheduling can effectively optimize both JCT and cost across all these workloads



Takeaways

* Serverless analytics introduces a new intra-job scheduling problem to
optimize both JCT and cost

* Existing solutions expose a hard tradeoff between these two metrics

* NIMBLE scheduling with a simple idea: to launch each task at its right time
* Step model to capture sub-stage level pipelinablity and data dependencies
* Achieves cost optimality while being Pareto-optimal between cost and JCT

* Caerus: a task-level scheduler for serverless analytics which enables
NIMBLE scheduling in practice
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