Caerus: NIMBLE Task Scheduling for

Serverless Analytics

Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, lon Stoica

drise

7)) Yale University

UC Berkeley

Serverless computing

e Q <D (f)

AWS Lambda Google Cloud Functions Azure Functions IBM Cloud Functions

Fast Scaling Fine-grained billing

-0 ©-@

30 ~ 120 Seconds < | Second Per second Per millisecond

Serverless analytics

ExCamera (NSDI’17) Sprocket(SoCC’8) gg compiler (ATC’19) Locus (NSDI’19)
Video processing Distributed compiling Mapreduce & SQL-like queries

Web loT PyWren (SoCC’17) NumPyWren Cloudburst (VLDB’20) || Starling (Sigmod’20)
severing applications Scaling python functions)| Matrix computation Stateful functions SQL query engine

2014 Single-stage functions 2017 General data analytics 2021
|\ Job completion
time (JCT) W W
Deploy > @5 W @’/
= Cost (total duration @5 W
Job Execution plan /= of all workers) A pool of (infinite)

serverless workers

Serverless scheduling: a new problem

Server-centric users

Intra-job scheduling across tasks
Optimization Metrics: Both /CT and cost
for each individual job

Serverless users

Can existing server-centric intra-job scheduling policies

optimize both JCT and cost in serverless settings?

Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its
upstream stages have finished (Spark)

. Map tasks . Reduce tasks

O T
Al e
Al 2

y D

Job completion time: 16 + 15 = 3|
Cost (total duration): (12*2+16)+(2+7+15) = 64

Stage barrier

__?_9________
JE

|Nl

A MapReduce job with 3 map tasks
and 3 reduce tasks

Map tasks

Reduce tasks

Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its Eager: start a task when ANY output from its

upstream stages is ready (Mapreduce Online)

upstream stages have finished (Spark)

. Map tasks I:l Reduce tasks

1
' I @ : The part (e.g, data
@ “ : Stage barrier “I aggregation) which can
@’ I y
A “I “ 1 Only start after receiving
@ ! —]
1 @ I
(A K

Job completion time: 16 + |5 = 31 Job completion time: 16 + 3 = 19
Cost (total duration): (12%2+16)+(2+7+15) = 64 Cost: (12¥2+16)+ 16*3 + (1+2+3) = 94

Minimizes job completion time
Bl Much higher cost (1.47X) &)

Minimizes cost (duration)
Much longer job completion time (1.63X) %9

NIMBLE scheduling: main idea

Fully exploit the flexible resource scaling of serverless computing
e Calculate and enforce the best launch time for each individual task

Main idea:

. Map tasks . Reduce tasks GE) A X Lazy
A R j last mapper "5 4,31
\ |
P e S (e% 31
O NN | g
e P : a NIMBLE Eager
0 £
N msamn iz o (64,19) (94, 19)
@ O
) I | S X
< @ .q 2‘
Job completion time: 16 + 3 = 19 —
Cost (total duration): (1272+16) + (1+5+12) + (1+2+3) = 64 Cost (total duration)

How to calculate the optimal launch time for each task!?

Challenge |: Describe pipelinablity

* NIMBLE scheduling requires a precise description of the pipelinablity
across different job stages

Stage-level DAG:

'
|
1
.Can only start after the map stage finishes i
:
1
|
1

.Can be pipelined with the map stage |
I
i
i
3 :
:
i
4

. Map tasks Reduce tasks {

- |
O] 2 -
o I | reduce
@ | T
cEmmm— |
L/ I
o | .
\/n =n C.annot.cslculatebthe opltlmla! tfask Iau.nch
€% time without sub-stage level information
A . 3 g

How to describe pipelinability at sub-stage level?

Challenge 2: Arbitrary DAGs

* General analytics workloads can have complicated DAG:s.

* Within a stage: tasks can consume data from multiple upstream stages
* Across stages: tasks can have cascading dependencies

uery Plan
Stage | & Query
il —————————— Stage | (map) Stage 2 (map)
Fetch Table A & P EEAEEITENET SV Generate Table B

Do online join

Stage 3 (join) Stage 4 (map)
A INNER JOIN B | Generate Table C

Fetch Table C &
Do online join

Fetch Table C &

Build Hash Table 6 R Stage 5 (join)
(A JOIN B) JOIN C

How to calculate the optimal task launch time for arbitrary DAGs!?

NIMBLE design outline

* Challenge |: How to describe pipelinability at sub-stage level?

* Develop a step model to precisely capture the sub-stage level pipelinablity

* Challenge 2: How to calculate the optimal task launch time for
arbitrary DAGs!?

* Develop a scheduling algorithm which guarantees optimal cost while being
Pareto-optimal between cost and JCT for arbitrary DAGs

Step model

* ldea: Break stages into steps

 Step: largest pipeline-able component within a stage
* Separated by pipeline breakers! (e.g, MIN, MAX, SUM)

Can be pipelined with map '_-_-_-_-_-_-_-_-_-_-_-_-_-_ -----------)

Map tasks Reduce tasks . PP : Step model: :
.Cannot be pipelined with map : :

I map |

i g—— : :
G = =
T 5 s Jreduee
N o o o N N S N S N S S S M S S J

Step 2
Pipeline-breaker

e
Ie
]

i
L

11
|.A pipeline breaker is an operator that produces the first output only after all its input has been processed

Step model

* ldea: Break stages into steps

 Step: largest pipeline-able component within a stage

* Separated by pipeline breakers! (e.g, MIN, MAX, SUM)
.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map

Step 2
Pipeline-breaker

SOC

C
IE
L1

= Data dependency within a stage:
* Must be executed sequentially

=3 Data dependency across stages:
 Can be pipelined
* Referred as parent-child step pairs

“u
:)
Y
| “
y

12
|.A pipeline breaker is an operator that produces the first output only after all its input has been processed

Step model

* Example: the step model for a complicated SQL query in TPC-DS benchmark

WITH customer_total_return AS (

SELECT St N
sr_customer_sk AS ctr_customer_sk, age O'
sr_store_sk AS ctr_store_sk,
sum(sr_return_amt) AS ctr_total_return

FROM

join3.sl joing3.s2

store_returns,
date_dim
WHERE
sr_returned_date_sk = d_date_sk
AND d_year = 2000
GROUP BY

sr_customer_sk, - =
sr_store_sk 6 join 2.52
)
ol — — e e e e Sl S S S an G
c_customer_id
FROM 5
customer_total_return CIPL, e o e e
store
4 groupby.sl groupby.s2
WHERE
ctrl.ctr_total_return > (i
SELECT - - - =
avg(ctr_total_return) * 1.2 3 I In1.51 » I n 1.82
FROM
customer_total_return ctr2 .
WHERE
ctrl.ctr_store_sk = ctr2.ctr_store_sk) 2
AND s_store_sk = ctrl.ctr_store_sk
AND s_state = 'TN'
AND ctrl.ctr_customer_sk = c_customer_sk
ORDER BY
c_customer_id
LIMIT 100;

Step model can efficiently describe pipelinability across a wide range of applications

Basic algorithm for 2-stage map-reduce

e Intuition to calculate the launch time:

* Optimally overlap the parent-child step pair based on the

Historical
data produce and data consume rate <. online ob information

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map

W
)4

Parent-child step
pair

y

e

€

IC
=

14

Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps
* Step 1: Calculate optimal task duration based on Lazy solution

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map

AL

N
I
[€ >

optimal duration

15

Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps
* Step 2: Calculate optimal task finish time based on Eager solution

DCan be pipelined with map

. Map tasks Reduce tasks {

.Cannot be pipelined with map

|—> optimal finish time

0 |n

@/

16

Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps
 Step 3: Calculate the task launch time t* as:
optimal task finish time - optimal task duration

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map

W
)4

(A

7

optimal finish time

—
*

iﬁ

-
4

N
Y

optimal duration

Basic algorithm for 2-stage map-reduce

* Optimal launch time in three simple steps

Theorem |:t* ensures optimal cost and finish time for each reduce task.

.Can be pipelined with map

. Map tasks Reduce tasks
.Cannot be pipelined with map

II. ‘

18

From map-reduce to arbitrary DAGs

* Challenges for arbitrary DAGs :
* Within a stage: tasks can consume data from multiple upstream stages
* Across stages: tasks can have cascading dependencies

* Takeaways:

* Bad news: Impossible to design an algorithm that can achieve optimal cost
and JCT simultaneously for arbitrary DAGs

* Good news: Extend the basic algorithm to guarantee optimal cost while
being Pareto-optimal between cost and |CT

Caerus System

* Caerus: a task-level scheduler for serverless analytics which enables
NIMBLE scheduling

Execution plan
/ User code

g

Serverless Data Analytics Framework

—>| CodeGenerator >

Compiler

Caerus Scheduler

Data Analytics Framework with Caerus

\}4 v
Step Model : NIMBLE Task Runtime
Builder / Scheduling Invocation RuUntime

W _ Online info. Profiler
Input Estimator € Update

—

——

 Worker functions

20

Evaluation results on AVVS

JCT (1.1-2.2X improvement) i Cost (1.2-1.6X improvement)
mlazy OEager ONIMBLE i mlazy DEager ONIMBLE
5 2 - | g 2
TPC-DS 515 - 10 s 0 om
(4 queries) = 1- X I —— 5 1 NIVBLE
(@) i =z
i < 0.5 - H H] 0.5 _J I I I
__________ e Q1 Q16 Q94 Q95 Q1 Q16 Q94 Q95
i 5 mlazy OEager ONIMBLE i 5 I_Lazy EEager ONIMBLE
=15 - = gl 54 []
BigData Sk i - [| _
; : = 1 4 NIMBLE i £ 1 NIMBLE
(3 queries) £ H - I i I
i 205 - ‘ 0.5 -

Q3A Q3B Q3C

NIMBLE scheduling can effectively optimize both JCT and cost across all these workloads

Takeaways

* Serverless analytics introduces a new intra-job scheduling problem to
optimize both JCT and cost

* Existing solutions expose a hard tradeoff between these two metrics

* NIMBLE scheduling with a simple idea: to launch each task at its right time
* Step model to capture sub-stage level pipelinablity and data dependencies
* Achieves cost optimality while being Pareto-optimal between cost and JCT

* Caerus: a task-level scheduler for serverless analytics which enables
NIMBLE scheduling in practice

Contact il:
Than I()’O U ! hongzharc\)gnbgczee@mgal%aiI.com

