
Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, Ion Stoica

1

Caerus: NIMBLE Task Scheduling for 
Serverless Analytics



Serverless computing
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AWS Lambda Azure FunctionsGoogle Cloud Functions IBM Cloud Functions

Fast Scaling

< 1 Second30 ~ 120 Seconds

Fine-grained billing

Per millisecondPer second
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Inter-job scheduling

Optimization Metrics: average JCT, 

cluster utilization, fairness across jobs
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Serverless scheduling: a new problem

Server-centric users

Serverless users

Intra-job scheduling across tasks

Optimization Metrics: Both JCT and cost

for each individual job

Can existing server-centric intra-job scheduling policies 

optimize both JCT and cost in serverless settings?



Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its 

upstream stages have finished (Spark)
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A MapReduce job with 3 map tasks 

and 3 reduce tasks
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Job completion time: 16 + 15 = 31

Cost (total duration):  (12*2+16)+(2+7+15) = 64 



Trade-off: Lazy vs. Eager

Lazy: start a task after ALL tasks in its 

upstream stages have finished (Spark)
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Minimizes cost (duration)

Much longer job completion time (1.63X)

Stage barrier

Eager: start a task when ANY output from its 

upstream stages is ready (Mapreduce Online) 
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Trade-off

Job completion time: 16 + 15 = 31

Cost (total duration):  (12*2+16)+(2+7+15) = 64 

Minimizes job completion time

Much higher cost (1.47X)

Job completion time: 16 + 3 = 19
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The part (e.g., data 

aggregation) which can 

only start after receiving 

all the mapper output. 

Cost: (12*2+16)+ 16*3 + (1+2+3) = 94
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NIMBLE scheduling: main idea

• Fully exploit the flexible resource scaling of serverless computing 

• Calculate and enforce the best launch time for each individual task

Job completion time: 16 + 3 = 19

Cost (total duration):  (12*2+16) + (1+5+12) + (1+2+3) = 64 

NIMBLE
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Map tasks Reduce tasks

How to calculate the optimal launch time for each task?

Main idea:



• NIMBLE scheduling requires a precise description of the pipelinablity
across different job stages

8

Challenge 1: Describe pipelinablity
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Can be pipelined with the map stage
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Can only start after the map stage finishes

Cannot calculate the optimal task launch 

time without sub-stage level information

map

reduce

Stage-level DAG:

How to describe pipelinability at sub-stage level?



• General analytics workloads can have complicated DAGs.
• Within a stage: tasks can consume data from multiple upstream stages 

• Across stages: tasks can have cascading dependencies
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Challenge 2:  Arbitrary DAGs

Fetch Table A & 

Do online join

Stage 1

Stage 2

Stage 3

Fetch Table B & 

Build Hash Table

Fetch Table C & 

Build Hash Table

Fetch Table C & 

Do online join
Stage 4

Stage 5

Stage 1 (map)

Generate Table A

Stage 2 (map)

Generate Table B

Stage 3 (join)

A INNER JOIN B

Stage 4 (map)

Generate Table C

Stage 5 (join)

(A JOIN B) JOIN C

Query Plan

How to calculate the optimal task launch time for arbitrary DAGs?



• Challenge 1: How to describe pipelinability at sub-stage level?

• Develop a step model to precisely capture the sub-stage level pipelinablity
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NIMBLE design outline

• Challenge 2: How to calculate the optimal task launch time for 
arbitrary DAGs?

• Develop a scheduling algorithm which guarantees optimal cost while being 
Pareto-optimal between cost and JCT for arbitrary DAGs



• Idea: Break stages into steps
• Step: largest pipeline-able component within a stage

• Separated by pipeline breakers1 (e.g., MIN, MAX, SUM)
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Step model
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Step model:
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Pipeline-breaker

1. A pipeline breaker is an operator that produces the first output only after all its input has been processed 



• Idea: Break stages into steps
• Step: largest pipeline-able component within a stage

• Separated by pipeline breakers1 (e.g., MIN, MAX, SUM)
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Step model
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Stage model:

r.s1 r.s2

m.s1

reduce

Step model:

map

Step 1 Step 2

Pipeline-breaker

Data dependency within a stage:
• Must be executed sequentially

Data dependency across stages:
• Can be pipelined

• Referred as parent-child step pairs

1. A pipeline breaker is an operator that produces the first output only after all its input has been processed 



• Example: the step model for a complicated SQL query in TPC-DS benchmark
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Step model

Step model can efficiently describe pipelinability across a wide range of applications

map1

map2

join1.s1 join1.s2
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• Intuition to calculate the launch time:
• Optimally overlap the parent-child step pair based on the 

data produce and data consume rate
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Basic algorithm for 2-stage map-reduce
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• Optimal launch time in three simple steps

• Step 1: Calculate optimal task duration
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Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map
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• Optimal launch time in three simple steps

• Step 2: Calculate optimal task finish time
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Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map
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• Optimal launch time in three simple steps

• Step 3: Calculate the task launch time t* as: 

optimal task finish time
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Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map
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• Optimal launch time in three simple steps
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Basic algorithm for 2-stage map-reduce

Map tasks Reduce tasks
Can be pipelined with map

Cannot be pipelined with map
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Theorem 1: t* ensures optimal cost and finish time for each reduce task.
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From map-reduce to arbitrary DAGs 

• Challenges for arbitrary DAGs :
• Within a stage: tasks can consume data from multiple upstream stages 

• Across stages: tasks can have cascading dependencies

• Takeaways:
• Bad news: Impossible to design an algorithm that can achieve optimal cost 

and JCT simultaneously for arbitrary DAGs

• Good news: Extend the basic algorithm to guarantee optimal cost while 
being Pareto-optimal between cost and JCT
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Caerus System

Step Model 

Builder

Input Estimator

NIMBLE

Scheduling

Worker functions

Runtime
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Caerus Scheduler

Serverless Data Analytics Framework
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• Caerus: a task-level scheduler for serverless analytics which enables 
NIMBLE scheduling

Data Analytics Framework with Caerus
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Evaluation results on AWS

JCT (1.1-2.2X improvement) Cost  (1.2-1.6X improvement)

TPC-DS

(4 queries)

BigData
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NIMBLE scheduling can effectively optimize both JCT and cost across all these workloads



• Serverless analytics introduces a new intra-job scheduling problem to 
optimize both JCT and cost
• Existing solutions expose a hard tradeoff between these two metrics

• NIMBLE scheduling with a simple idea: to launch each task at its right time
• Step model to capture sub-stage level pipelinablity and data dependencies

• Achieves cost optimality while being Pareto-optimal between cost and JCT

• Caerus: a task-level scheduler for serverless analytics which enables 
NIMBLE scheduling in practice
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Takeaways

Thank you! Contact email:
hongzhangblaze@gmail.com


