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Network bandwidth is insufficient for desirable QoE
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Goal: Better QoE for more users given limited bandwidth!



Conventional wisdom

Treat video chunks equally when the player choose bitrate for chunks

Key insight: Users have different quality sensitivity to the chunks

Let’s see an example… 
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Video A
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Video B
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Which video has better quality?
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Different quality tolerance to rebuffering
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Quality sensitivity varies with video content!
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Roadmap

1. Demonstrate high variability of quality sensitivity in real videos

2. Quantify this quality sensitivity reliably

3. Leverage this quality sensitivity to improve adaptive video streaming
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Quality sensitivity is highly variable
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Opportunity: Large variability enables us to trade off insensitive chunks for sensitive ones



Incorporating quality sensitivity into a QoE model 

Reweight the chunks by their quality sensitivity in a QoE model
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How to capture content-dependent quality sensitivity

Strawman: Directly use video saliency models
- Pixel-motion-based models, e.g., AMVM
- Interestingness score models, e.g., Video2Gif, DSN
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Saliency models regard it as sensitive Our user study regards it as sensitive



Idea: Directly ask for quality sensitivity by crowdsourcing

Pros
- Directly link video quality to QoE
- Worth the cost for popular on-demand videos

Cons
- High cost to evaluate every chunk and every type of low-quality event.
- Response reliability affecting the QoE model accuracy 
- Not support live-video streaming
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Reducing the crowdsourcing cost

Idea: Coarse quality sensitivity
Group chunks that might have similar quality sensitivity
Zoom in the representative chunks in each group

Two-step scheduling
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Step 1: Identify chunks that share weights
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Improving response reliability 

Challenge: Crowdsourcing workers might provide random responses

Quality control scheme
- Engagement test
- Control questions
- Randomized video order
- Use Master Turkers

More reliable responses makes higher accuracy of the QoE model
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Protect quality sensitive video chunks

New action: Lower the quality of insensitivity chunks to get high quality for sensitive chunks
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Evaluation setup

Dataset
16 videos from LIVE-MOBILE, LIVE-NFLX-II, WaterlooSQOE-III and YouTube-UGC
Categories: Animation, Gaming, News, Sports
network throughput traces from FCC and 3G/HSDPA (0.2Mbps – 6Mbps)

Baseline ABR algorithms: Fugu, Pensive, BBA
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Sensei achieves higher QoE

Sensei has 15.1% higher QoE under the same bandwidth
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Sensei can save bandwidth

Sensei has 26.8% less bandwidth usage but the same QoE as other ABR algorithms
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Sensei’s cost

Sensei’s cost is ~$31.4 per minute video
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Better

Saving ~30x compared with the crowdsourcing w/o cost pruning



Put more in the paper

Accuracy of Sensei’s QoE model

QoE impact by number of crowd workers

Parameter selection for user study
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Summary

Observation: For viewers, quality sensitivity varies as video content changes

Key idea: Embrace variability of quality sensitivity using sensitivity weights obtained 
via per-video crowdsourcing

SENSEI improves video QoE by 15.1% or save bandwidth by 26.8% on average with a 
cost of $31.4 per minute video
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