
Programming Network Stack for Middleboxes with Rubik

Hao Li1, Changhao Wu1,2, Guangda Sun1, Peng Zhang1, Danfeng Shan1, Tian Pan3, Chengchen Hu4

1Xi’an Jiaotong University 2Brown University
3Beijing University of Posts and Telecommunications 4Xilinx Labs Asia Pacific

Abstract
Middleboxes are becoming indispensable in modern networks.

However, programming the network stack of middleboxes

to support emerging transport protocols and flexible stack

hierarchy is still a daunting task. To this end, we propose

Rubik, a language that greatly facilitates the task of middle-

box stack programming. Different from existing hand-written

approaches, Rubik offers various high-level constructs for

relieving the operators from dealing with massive native code,

so that they can focus on specifying their processing intents.

We show that using Rubik one can program the middlebox

stack with minor effort, e.g., 250 lines of code for a complete

TCP/IP stack, which is a reduction of 2 orders of magni-

tude compared to the hand-written versions. To maintain a

high performance, we conduct extensive optimizations at the

middle- and back-end of the compiler. Experiments show

that the stacks generated by Rubik outperform the mature

hand-written stacks by at least 30% in throughput.

1 Introduction

Middleboxes are pervasively deployed in modern networks.

In the middlebox, a low-level network stack (e.g., TCP/IP) is

responsible for parsing raw packets, and a set of high-level

hooks (e.g., HTTP dissector) process the parsed data for vari-

ous purposes. There is a constant need for programming the

network stack of middleboxes in order to accommodate dif-

ferent networks (e.g., IEEE 802.11 [9] in WLAN), support

new protocols (e.g., QUIC [50]), realize customized func-

tions (e.g., P4 INT [5]), and capture new events (e.g., the IP

fragmentation [11]), etc.

By programming a middlebox stack, an operator Alice is

mainly concerned with the following tasks. (1) Writing new
parsers. It is common that a network needs to support a new

protocol. Then, Alice needs to write a new parser to parse

such traffic. (2) Customizing stack hierarchy. Another com-

mon need is to change the protocol layering, say to support

encapsulation methods like IP-in-IP [1]. Then, Alice needs

to re-organize the parsers. (3) Adding new functions. Finally,

new functions may be requested from the network stack to

meet diverse needs. For example, Alice may need to know

when IP fragmentation happens, and modify an existing net-

work stack to capture this event. In the following, we will

show the difficulty of the above programming tasks.

The difficulty of writing new parsers. Currently, protocol

parsers are written in low-level native code to ensure the

high efficiency, which leads to a large number of lines of

code (LOC) even for a single protocol, e.g., ∼7K C LOC

for TCP protocol parser in mOS [14]. Someone may argue

that the TCP/IP is the de facto narrow waist for middlebox

processing, so a general-purpose TCP/IP substrate is sufficient

for extended programmability. However, many networks have

their own customized transport layers (e.g., QUIC [50]), and

in those cases, Alice still needs to manually write new parsers.

The difficulty of building stack hierarchy. The data struc-

tures in current middlebox stacks are monolithic and closely

coupled with standard stacks, making it difficult to reuse the

existing protocol parsers for upgrading the stacks. For exam-

ple, libnids [11] can parse Ethernet, IP, UDP and TCP pro-

tocols, but due to its TCP-specific data structure, it can hardly

support the IP-in-IP stack, i.e., ETH→IP→GRE→IP→TCP,

although there is only one thin GRE parser need to be added.

As a result, we have to modify 1022 LOC of libnids in our

preliminary work to support the IP-in-IP stack, where most

effort (815 LOC) is devoted to stack refactoring.

The difficulty of adding new functions. Since the network

stack is closely coupled, adding a new function often needs a

deep understanding of a huge code base. For example, if one

wants to capture a low-level IP fragmentation event that is

not supported in Zeek [24], she has to first read all the native

code related to the IP protocol and the event callback module,

which involves ∼2K LOC. Another scenario would be the

feature pruning: e.g., for writing a stateful firewall without

the need to buffer the TCP segments, the operator has to go

through considerable code to ensure the code deletion in a

full-functional TCP stack will not produce other side effects.

Table 1: Existing approaches to program middlebox stack and

their support of the three programming tasks.

Approaches
Protocol

Parser

Stack

Hierarchy

Stack

Functions

Packet Parser (e.g., P4 [18], VPP [23])

TCP-Specific Stacks (e.g., mOS [44])

NFV Frameworks (e.g., NetBricks [58])

: Can be fully programmed with high-level abstractions, i.e., minor LOC
: Partially supported or can be programmed with moderate LOC
: Not supported or can only be programmed with large amount of LOC

Apart from the mature and fixed TCP stack libraries like

mOS and libnids, many attempts have been made to fulfill

the above three tasks in order to make the middlebox stack

programmable. However, none of them can fully facilitate

those onerous tasks, as shown in Table 1: the packet parsers

like P4 [18] cannot efficiently buffer the packets; the NFV

frameworks like NetBricks [58] and ClickNF [37] often rely

on TCP-specific modules that are pre-implemented with many

native LOC. We discuss these related work in detail in §2.2.

In fact, there exists a dilemma between the abstraction

level and code performance when enabling programmability

on the performance-demanding middlebox stack. On the one

hand, many exceptions like out-of-order packets can arise in

L2-L4, so higher-level abstractions are desired to relieve the

developers from handling those corner cases. On the other

hand, optimizing a stack at wire speed also relies on tuning

underlying processing details, which becomes much more

challenging if those details are transparent to the developers.

As a result, previous works tend to trade off the programma-

bility for the performance, offering limited programmability

over specific stacks, e.g., TCP (see §2.3).

In this paper, we propose Rubik, a domain-specific lan-

guage (DSL) for addressing the above dilemma, which can

fully program the middlebox stack while assuring wire-speed
processing capability. For facilitating the stack writing, Rubik

offers a set of handy abstractions at the language level, e.g.,
packet sequence and virtual ordered packets, which handle

the exceptions in an elegant fashion. Using these declarative

abstractions, operators can compose a more robust middlebox

stack with much fewer lines of code, and retain the possibil-

ity of flexible extension for future customization needs. For

maintaining high performance, Rubik translates its program

into an intermediate representation (IR), and uses domain-

specific knowledge to automatically optimize its control flow,

i.e., eliminating the redundant operations. The optimized IR is

then translated into native C code as the performant runtime.

In sum, we make the following contributions in this paper.

• We propose Rubik, a Python-based DSL to program the

network stack with minor coding effort, e.g., 250 LOC

for a complete TCP/IP stack (§3 and §4).

• We design and implement a compiler for Rubik, where

a set of domain-specific optimizations are applied at the

IR layer, so that all stacks written in Rubik can benefit

from those common wisdom, without caring about how

to integrate them into the large code base (§5).

• We prototype Rubik, and build various real cases on it,

including 12 reusable protocol parsers, 5 network stacks,

and 2 open-source middleboxes (§6). Experiments show

that Rubik is at least 30% faster than state of the art (§7).

2 Motivation and Challenges

In this section, we demonstrate that programming middlebox

stack is a necessity in modern networks (§2.1), while no ex-

isting tool can really enable such programmability (§2.2). We

pose the challenges of designing a DSL for middlebox stack,

and summarize how our approach addresses them (§2.3).

2.1 Programming Middlebox Stack Matters
As presented in §1, programming a middlebox stack requires

huge human effort. However, some argue that it might not be

a problem: most middleboxes work with standard TCP/IP pro-

tocols, thus a well-written TCP/IP stack should be sufficient.

In contrast, we believe there are plenty of scenarios where a

deeply customized middlebox stack is desired.

First, the middlebox stacks need to be customized for serv-

ing diverse networks with different protocols [13,32,34,42,43,

63, 70]. Apart from the existing ones, we note that the emerg-

ing programmable data plane may cause an upsurge of new

protocols, each of which requires an upgrade of the middlebox

stack, or its traffic cannot traverse the network [16, 55].

Second, even for a fixed stack, the operators may still ma-

nipulate the packets in arbitrary ways, and the implementa-

tion of middlebox stacks varies to satisfy those user-specified

strategies. For example, if a TCP packet is lost in the mirrored

traffic [22], libnids will view this as a broken flow and di-

rectly drop it for higher performance [11], while mOS will

keep the flow and offer an interface to access the fragmented

sequence for maximumly collecting the data [44].

Third, middleboxes are constantly evolving for providing

value-added functions, e.g., adding a new layer [12, 35], mea-

suring performance [20], inspecting encrypted data [40,49,67]

and migrating/accelerating NFV [38, 47, 57, 68, 72]. These

extensions heavily rely on a highly customized stack.

The above facts prove that programming middlebox stack

is a necessity in modern networks, which however demands

massive human effort. In practice, such overhead has begun

to hinder the birth of new protocols: the middlebox vendors

tend to be negative to support new protocols, as the huge

code modification can cost large human labor and introduce

bugs or security vulnerabilities. For example, some middlebox

vendors suggest blocking the standard port of QUIC (UDP

443) to force it falling back to TCP, so that their products can

analyze such connections [10]. This heavily impacts the user

experience [4, 19], and will finally result in the ossification of

underlying networks [60].

2.2 Related Work

Plenty of attempts have been made to facilitate the middlebox

development, as shown in Table 1. In the following, we show

why they are not sufficient to program the middlebox stack.

Programmable packet parsers like P4 [18] and VPP [23]

can dissect arbitrary-defined protocols in an amiable way.

However, since they target at implementing a switch/router,

they cannot efficiently buffer and/or reassemble the packets.

There are also DSLs, e.g., Binpac [59], Ultrapac [52],

FlowSifter [56] and COPY [51], that can automatically gen-

erate L7 protocol parsers. The parsers they generate focus

on the L7 protocols like HTTP, hence can only work on the

already reassembled segments. In other words, they can facil-

itate the development of high-level functions of a middlebox,

e.g., HTTP proxy, deep packet inspection, but have to cooper-

ate with a low-level stack, instead of serving as one.

TCP stack libraries include those for end-host stacks and

those for middlebox stacks. The end-host stack libraries, e.g.,
mTCP [45], Modnet [61], Seastar [27], F-Stack [25], only

maintain the unidirectional protocol state for a certain end

host, while middlebox stacks must track the bidirectional

behaviors of both sides. As a result, the middlebox developers

cannot build their applications on end-host stack libraries.

On the other hand, the major feature a middlebox stack

library provides is the bidirectional TCP flow management.

Previously, such libraries are closely embedded in IDS frame-

works like Snort [21] and Zeek [24], therefore cannot be

reused when developing new applications. libnids [11] de-

couples the TCP middlebox stack from the high-level func-

tions, making the stack reusable. Recent works like mOS [44]

and Microboxes [53] implement a more comprehensive TCP

stack with fast packet I/O, and more importantly, provide

the flexible user-defined event (UDE) programming schemes,

e.g., dynamic UDE registration, parallel UDE execution. Be-

sides, they provide limited programmability over TCP stack,

e.g., unidirectional buffer management. However, all above

approaches are hard-coded, hence cannot support non-TCP

stacks without massive native code understanding and writing.

NFV frameworks offer a packaged programming solution

from L2 to L7. However, none of them provide complete

middlebox stack programmability. MiddleClick [30] and

ClickNF [37] can manipulate the stack hierarchy using Click

model [48], but they rely on pre-implemented elements, e.g.,
ClickNF implements the TCP-related elements with 156

source files (12K LOC in C++) [7]. NetBricks [58] sup-

ports the customization of the header parser, the scheduled

events, etc, which is sufficient for programming a connection-

less protocol. However, the abstractions for programming a

connection-oriented protocol, e.g., transmission window, con-

nection handshake, are still TCP-specific. OpenBox [33] and

Metron [46] abstract and optimize a set of L2-L7 elements

for middlebox applications. However, the flow management

element still has to be pre-implemented using native code.

Header
Extraction

Instance
Mangament

Buffer
Management

Proto. State
Machine

Parse Tree
Traversal

Event
Callback

1 2

3 4

6

5

Current Stack Layer

The Next Stack Layer

The Previous Stack Layer
Protocol Data
Posed to User

Figure 1: The three key modules in a middlebox stack layer:

protocol parser (yellow boxes), event callback (green box),

and parse tree traversal (red box).

2.3 Challenges and Our Approach

A DSL that fully captures the L2-L4 abstractions can be

a cure to above problems. In the next, we revisit the high-

level pipeline of middlebox stack, and pose the challenges of

designing and implementing a DSL corresponding to it.

Middlebox stacks follow a layer-based processing pipeline,

which is largely the same with the end-host stacks, as shown

in Figure 1. Specifically, each stack layer starts by parsing
the protocol (1©– 4©), which extracts the header, manages

the instance, buffers the segments, updates the protocol state

machine (PSM), etc. Next, the event callback module (5©)

will raise the events with the protocol data fed to the users,

e.g., the reassembled or retransmitted data. Finally, the parse
tree (6©) will decide the next protocol to be parsed. However,

even the above pipeline is seemingly natural and generalized,

designing and implementing a DSL corresponding to it can

still be a challenging task. The reason is two-fold.

First, working at L2-L4, the middlebox stacks run more

complex logic than it appears in the pipeline. For example,

the out-of-order packets can mess around the PSM, e.g., an

early-arrived FIN packet may mislead the stack to tear down

the TCP connection. Each of these exceptions is handled with

native code in fixed stacks, and it is extremely difficult to pro-

vide a neat DSL that covers all such cases. Rubik addresses
this challenge by offering a set of high-level constructs to hide
such exceptions from programmers, e.g., “packet sequence”
that hides the retransmission exception and “virtual ordered
packet” that hides the out-of-order exception, which can max-
imumly correspond to the intuitive pipeline (§4).

Second, the middlebox stacks must realize wire-speed pro-

cessing to serve high-level functions. However, due to the

complexities presented above, the optimizations on the stack

can only be achieved by carefully tuning the native code. That

is, the program written in DSL that hides the processing de-

tails will likely produce low-performance native code. Rubik
addresses this challenge by employing an IR and a set of
domain-specific optimizations on it before producing the na-
tive code, which automatically optimize the DSL program to
avoid potential performance traps (§5).

3 Rubik Overview

In this section, we use a walk-through example to overview

how Rubik can facilitate the middlebox stack writing. Our

example is an ETH→IP/ARP stack, where we raise a typical

event, IP fragmentation, for each IP fragment.

Figure 2 shows the real (and almost complete) Rubik code

of realizing our example. We start from declaring the IP layer

(Line 2), which initializes internal structures of a connection-

less protocol, including the header parser, the packet sequence,

PSM, etc. These components are specialized as follows.

Parsing the header fields (Line 5–18). One has to first de-

fine the header format before she references the headers. In

Rubik, a header format is a Python class that inherits layout,
and each header field is a member of this class, which specifies

its length measured by Bit(). The order of the members in-

dicates the layout of the fields. Line 5–15 show the IP header

structure, ip_hdr. We can then use this structure to compose

the header parser with one LOC in Line 18. After that, Ru-

bik can reference the fields by their names, e.g., ihl can be

referenced by ip.header.ihl.

Managing the instance table (Line 20). Having the headers,

the stack layer then finds the instance that the packet correlates

to, e.g., the TCP flow, and processes it by the previous state

and data of the same instance. The instances are stored in an

instance table, e.g., TCP flow table.

To achieve this, Rubik forms a key to index the instance ta-

ble, which consists of bi-directional protocol contexts. For IP

protocol, the instance key is a list that contains the source and

destination IP addresses (Line 20). Note that for connection-

oriented protocols, the instance key should contain two lists,

each of which indexes the packets of one direction.

Preprocessing the instance (Line 23–27). Before getting

into buffer and PSM processing, operators can update some

permanent contexts for each individual instance (perm), or use

some temporary variables for facilitating the programming

(temp). This part of logic will be executed each time after

the instance is found/created. Line 23–27 define a temporary

data structure that stores the fragmentation offset for each IP

packet, which can then be referenced as ip.temp.offset.

Managing the packet buffers (Line 30–31). Many proto-

cols buffer the packets to ensure the correct order of incoming

packets. Rubik offers a packet sequence abstraction to handle

this task. In our example, the IP protocol has to buffer the

fragmented packets according to their fragmentation offset.

Line 30–31 define a sequence block filled with the IP payload

and indexed by the fragmentation offset. This block will be

inserted into the packet sequence associated with the instance,

which is automatically sorted in ascending order by the meta.

A connection-oriented instance will maintain two se-

quences for two sides, respectively. The packets payload will

be automatically inserted into the corresponding sequence

according to the direction indicated by the instance key.

1 # Declare IP layer
2 ip = Connectionless()
3

4 # Define the header layout
5 class ip_hdr(layout):
6 version = Bit(4)
7 ihl = Bit(4)
8 ...
9 dont_frag = Bit(1)

10 more_frag = Bit(1)
11 f1 = Bit(5)
12 f2 = Bit(8)
13 ...
14 saddr = Bit(32)
15 daddr = Bit(32)
16

17 # Build header parser
18 ip.header = ip_hdr
19 # Specify instance key
20 ip.selector = [ip.header.src_addr, ip.header.dst_addr]
21

22 # Preprocess the instance using 'temp'
23 class ip_temp(layout):
24 offset = Bit(16)
25 ip.temp = ip_temp
26 ip.prep = Assign(ip.temp.offset,
27 ((ip.header.f1<<8)+ip.header.f2)<<3)
28

29 # Manage the packet sequence
30 ip.seq = Sequence(meta=ip.temp.offset,
31 data=ip.payload[:ip.payload_len])
32 # Define the PSM transitions shown in Figure 3
33 ip.psm.last = (FRAG >> DUMP) + Pred(~ip.header.more_frag)
34 ip.psm.frag = ...
35

36 # Buffering event
37 ip.event.asm = If(ip.psm.last | ip.psm.dump) >> Assemble()
38 # Callback each IP fragment using 'ipc'
39 class ipc(layout):
40 sip = Bit(32)
41 dip = Bit(32)
42 ip.event.ip_frag = If(~ip.psm.dump) >> \
43 Assign(ipc.sip, ip.header.saddr) + \
44 Assign(ipc.dip, ip.header.daddr) + \
45 Callback(ipc)

Figure 2: IP layer and fragmentation event written in Rubik.

Updating the PSM (Line 33–34). PSM tracks the protocol

states, which are useful in most connection-oriented proto-

cols (e.g., TCP handshake), and also in some connectionless

protocols that buffer the packets (e.g., IP fragmentation). Con-

sider the IP PSM shown in Figure 3. If an IP packet unsets

the dont_frag flag, the parser will take a transition from the

DUMP state to the FRAG state that waits for more fragments.

The instance will be destroyed if the PSM jumps into an ac-

cept state, e.g., DUMP in IP PSM. Line 33 defines the last
transition, i.e., FRAG→DUMP.
Assembling data and hooking IP fragments (Line 37–45).
Unlike the UDEs that are raised by the high-level functions,

e.g., HTTP request event, the built-in events (BIEs) reveal

the inherent behaviors in the stack, e.g., buffer assembling,

connection setup. Previous works only pose fixed and TCP-

specific BIEs [11, 44], while Rubik can program two types of

BIEs for arbitrary stacks.

DUMP FRAG

no frag

has frag

more fraglast frag

Figure 3: Simplified PSM for IP fragmentation.

The first is for the packet sequence operations, i.e., buffer

assembling. Rubik uses If() to specify the conditions of rais-

ing the events and Assemble() to assemble the continuous

sequence blocks. This function will form a service data unit

(SDU) for the next layer parsing. Line 37 defines the events

for assembling the fragments in IP layer.

The second type of action is for posing the user-required

data, which is achieved by a Callback() function that indi-

cates what content should be posed. Line 39–45 define an

event on the condition that fragmented packets arrive. The

back-end compiler will declare an empty function in the na-

tive C code, i.e., ip_frag(struct ipc*), and invoke it each

time the condition is satisfied.

Parse tree for ETH→IP/ARP. Each time after processing

a layer, the network stack decides the next layer to be pro-

ceeded, until it reaches the end of the stack. All such parsing

sequences form a parse tree [39].

The parse tree of our example consists of two layers, i.e.,
Ethernet, and IP/ARP. The stack executes from the root node,

which triggers the Ethernet protocol parser. This parser will

extract the headers of Ethernet, e.g., dmac, type. Next, the

parse tree checks the predicates carried by the two transitions,

and decides which one could be further parsed. In this case,

the type field is used to distinguish the IP and ARP protocol.

Rubik offers a simple syntax similar to PSM transition to

define the parse tree, as shown below.

st = Stack()
st.eth, st.ip, st.arp = ethernet, ip, arp
st += (st.eth>>st.ip) + Pred(st.eth.header.type==0x0800)
st += (st.eth>>st.arp) + Pred(st.eth.header.type==0x0806)

where ethernet, ip and arp are protocol parsers. We note

that the parsers can be reused in the stack. For example, we

can define another IP layer in this stack with st.other_ip
= ip. This will largely facilitate the customization of encap-

sulation stacks (see Appendix C.3 for a GTP example).

Summary. We omit the implementation of Ethernet layer

and ARP layer, which are quite simple compared to IP layer.

In sum, we use ∼50 LOC to define the IP protocol parser

(see Appendix C.1 for the complete code), 7 LOC to hook

the expected event, and 4 LOC to build the parse tree. As a

comparison, libnids consumes ∼1000 C LOC to implement

the similar stack [11].

4 Rubik Programming Abstractions

§3 shows the potential of reducing coding effort with Rubik.

However, as discussed in §2.3, there exists lots of complex

programming needs that call for more sophisticated program-

ming abstractions. In this section, we dive into the language

internals to present how Rubik conquers those complexities.

4.1 Context-Aware Header Parsing
We consider the following two context-aware header parsing

needs in middlebox stack, and address them using Rubik.

Conditional layout. The L2-L4 protocols can have condi-

tional header layout. For example, QUIC uses its first bit to

indicate the following format, i.e., long header or short header.

To this end, we can first parse the fixed layout, using which

to determine the next layout to be parsed, as shown below.

quic.header = quic_type
quic.header += If(quic.header.type == 0) >> long_header

Else() >> short_header

Type-length-value (TLV) parsing. Rubik extends its header

parsing component in two ways to express the TLV fields:

(1) the value of a field can be assigned before parsing,

which can be used to define a type field, e.g., type =
Bit(32,const=128) defines a 32-bit field that must be 128;

(2) the length of a field can refer to a pre-defined field with

arithmetic expressions, which can be used to define the length

of value field, e.g., value = Bit(length << 3).
Besides, TLV headers are often used in a sequence with

non-deterministic order, e.g., TCP options. Rubik offers a

syntax sugar for parsing those headers, as shown below.

tcp.header += AnyUntil((opt1, opt2, opt3), cond)

where opt1–opt3 are TLV header layouts, and AnyUntil()
will continuously parse the packet according to their first

fields, i.e., type, until cond turns to be false.

4.2 Flexible Buffer Management
The transport protocols can buffer the packets in flexible

ways other than simply concatenating them in order. Specif-

ically, we consider the following three exceptions in buffer

management, i.e., retransmission, conditional buffering and

out-of-window packets, and use the sequence abstraction in

Rubik to address them.

Each time a sequence block is inserted, Sequence() in Ru-

bik will compare its meta (e.g., sequence number in TCP) and

length with existing buffered blocks, in order to identify the

fully and partial retransmission. Operators can decide whether

the retransmitted parts should be overwritten by passing a

overwrite_rexmit flag to Sequence(). Once the retrans-

mission is detected, Rubik will automatically raise an event,

which can be referenced by event.rexmit.
In some cases operators would disable the sequence buffer-

ing. For example, a TCP stateful firewall relies on the meta

of sequence block to track the TCP states, but does not need

the content in the block. Operators can disable the content

buffering by simply writing tcp.buffer_data=False.
Transport protocols use window to control the transmitting

rate. Operators can pass a window=(wnd,wnd_size) param-

eter to Sequence(), which specifies the valid range of meta.

The out-of-window packets will not be inserted into the se-

quence, but raise an out_of_wnd event.

CLOSED

SYN_SENTSYN_RCVD

ESTABLISHED

Passive Connection Active Connection

1©SYN / 2©SYN+ACK / 1©SYN

3©ACK / 2©SYN+ACK / 3©ACK

(a) The end host stack PSM for TCP handshake.

CLOSED SYN_SENT SYN_RCVD ESTABLISHED

SYN →PAS SYN+ACK →ACT ACK →PAS

(b) The sender-side PSM for TCP handshake.

Figure 4: The middlebox stack PSM (b) only models the

sending behaviors of the end host stack PSM (a).

4.3 Virtual Ordered Packets
The sequence abstraction will sort the out-of-order packets,

which, however, still mess around the stack processing. Con-

sider the IP PSM shown in Figure 3. In the possible out-

of-order cases, the “last frag” packet can arrive earlier than

a “more frag” packet. With the transitions defined in Fig-

ure 2, such packet will trigger ip.psm.last and form an

incomplete SDU for the next layer. To avoid such mistake, the

transition has to track two states (instead of the fragmentation

flag only), i.e., whether the “last frag” packet has arrived and

whether the sequence is continuous. This counter-intuitive

expression makes Pred in PSM transitions quite complex.

Rubik addresses such problem by offering an abstraction

of virtual ordered packets, which gives an illusion to the oper-

ators that they are accessing the ordered packets. For example,

to handle the early-arrived “last frag” exception, the transition

ip.psm.last can be rewritten as follows.

ip.psm.last = (FRAG >> DUMP) + Pred(~ip.v.header.more_frag)

where ip.v indicates the virtual ordered packet. The compiler

of Rubik will take care of tracking the real arriving order and

ensuring the sequence continuity (see §5.4).

Note that the virtual ordered packets are for facilitating the

inconsistent condition checking, while no real packet will be

buffered and re-accessed. In other words, operators can only

use this abstraction in the conditions of If() or Pred().

4.4 Sender-Side PSM
Directly emulating the PSM of the end host stack in the mid-

dlebox is not a trivial task. Consider a simplified PSM for

TCP handshake, whose end host version is shown in Figure 4a.

Each transition in the PSM is triggered by two packets: the

received packet in the white frame and the sent packet in

the gray frame. For example, the passive host (i.e., server)

can jump into SYN_RCVD state only after it received the SYN

packet and sent the SYN+ACK packet. This transition is natu-

ral for the end hosts, since the receiving and sending behaviors

are synchronized.

However, the middlebox cannot capture those two be-

haviors at the same time. Instead, it has to use two states

to respectively capture them. For example, for the passive

side, the PSM of a middlebox will jump to a new state, say

SYN_HALF_RCVD, when processing an SYN packet sent from

the client, and will further jump to SYN_RCVD only after it sees

an SYN+ACK packet sent reversely. That is, the middlebox

stack has to maintain two PSMs for two sides, each of which

introduces many more states and transitions.

Rubik proposes a new PSM abstraction to reduce the num-

ber of states and transitions, i.e., the sender-side PSM, which

combines the two-side behaviors and is triggered by a single

packet. Figure 4b shows the sender-side PSM of TCP hand-

shake, which consists of only three transitions. The key of

this PSM is that it proceeds only by the sent packets (yellow

ones), but ignores whether they have been received (white

ones). The following defines the first transition in Figure 4b.
tcp.psm.syn = (CLOSED >> SYN_SENT) +

Pred(tcp.v.header.syn & tcp.to_passive)

where to_passive indicates the packet is being sent to the

passive side in a connection-oriented session.

Note that the sender-side PSM is not a unidirectional PSM.

Instead, it tracks all the bi-directional packets, but removes the

redundancy in the end-host PSMs. For example, in Figure 4a,

SYN is the same packet with SYN . In fact, the sender-

side PSM assumes the sent packets must be received. This

is reasonable, because the stack cannot detect the packets

lost downstream the middlebox. In practice, the middlebox

stack will eventually be in the correct state after seeing the

retransmitted packets, and before that, a retransmission event

will alert that the current state may be inconsistent.

4.5 Event Ordering
By default, all the events will be raised after proceeding PSM

and before parsing the next layer (see §5.2). However, opera-

tors have to further clarify two kinds of relationships between

the events to avoid the potential ambiguity.

First, operators may need to define the “happen-before” re-

lationships of two events, if they have the same or overlapped

raising conditions. Consider the aforementioned two events

in IP layer, ip.event.asm and ip.event.ip_frag, both of

which will be raised when ip.psm.last is triggered. As a

result, ip_frag might lose the last fragment if asm happens

first, since the reassemble operation will clear the sequence.

Second, operators may want to raise an event if the other

is happening, i.e., the “happen-with” relationship. For exam-

ple in TCP, an event rdata that poses the retransmitted data

should be raised only when the retransmission event occurs.

Rubik offers an event relationship abstraction to address

the above requirements. The following code indicates that

ip_frag should happen before asm, and rdata will be

checked and raised each time rexmit is happening.
ip.event_relation += ip.event.ip_frag, ip.event.asm
tcp.event_relation += tcp.event.rexmit >> tcp.event.rdata

5 Compiling Rubik Programs

In this section, we introduce the compiler of Rubik, which

translates the Rubik program into native C code. We first

reveal the difficulties of handling the performance issues in

the middlebox stack (§5.1). To this end, we translate the Rubik

program into an intermediate representation (IR) to reveal the

factual control flow of the stack (§5.2). Then the middle-end

of the compiler performs domain-specific optimizations on

the IR to avoid the performance traps (§5.3), and finally the

back-end translates the IR into performant C code (§5.4).

5.1 Avoiding Performance Issues is Hard
As mentioned in §2.3, the generalized execution model can

cause severe performance issues. For example, the simple

pipeline will insert every IP packet into the sequence, while

this is redundant for the non-fragmented IP packets, as their

blocks will be assembled right after being inserted. And since

the normal IP packets dominate the traffic, this redundant

copy will heavily degrade the stack performance.

Previously in hand-written stacks, developers handle each

of those performance issues using native code. However, due

to the function diversity in the stack, identifying and avoid-

ing all such traps for all stacks is too harsh for the develop-

ers. Moreover, even the developers are aware of those traps,

sometimes they have to trade off performance for the code

modularity or generality, since the proper handling of those

issues will heavily increase the size of the codebase, making

the program more bug-prone.

As a DSL, Rubik has better chance to address those per-

formance issues, if it can capture and handle them through

its automatic compilation process. This task, however, is still

challenging. First, Rubik is designed as a declarative language,

which means although the developers can easily write a “cor-

rect” program without caring about the inner logic, they also

can do little for providing more hints for a “better” program.

Second, it is also an impossible mission for the native code

compiler due to the lack of domain-specific knowledge, e.g.,
the fact that the aligned IP packets can be directly passed

cannot be obtained from the view of the native compiler.

5.2 Intermediate Representation in Rubik
Rubik addresses above challenges by introducing an IR into

the compilation, which brings the following merits. First, the

IR code is much smaller, making it possible to do effective

optimizations that are unaffordable in native code (see §5.3).

Second, the IR code still holds the high-level intent to perform

the domain-specific optimizations. Third, the IR layer is a

common ground for all Rubik programs, which means the

optimizations applied on IR work for all stacks.

Specifically, we adopt the Control-Flow Graph (CFG) as

the IR, which can clearly reveal the control flow of the stack.

HdrParser(...)

IfElse(Contain(...))

CreateInst()

state ← DUMP

InsertSeq(meta, data, len)

IfElse(state == DUMP)

IfElse(ip.header.dont_frag)

state ← DUMP

trans ← dump

IfElse(trans == dump)

Assemble()

IfElse(trans == dump)

NextLayer(SDU)

IfElse(trans == dump)

DestroyInst()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 5: Partial CFG of the IP program. The yellow

boxes are the branching blocks. Only one PSM transi-

tion (ip.psm.dump) is shown. Most of the false branches

(dashed edge) are also omitted.

Note that each protocol layer works independently in the stack,

so we view a protocol parser along with the events defined in

its layer as an individual Rubik program.

Composing the control flow. The compiler composes the

real control flow of the stack with the next four parts.

First, the compiler constructs the CFG for the protocol

parser following the pipeline depicted in Figure 1, i.e., header

parsing, instance table, packet sequence and PSM transition,

and elaborates it with more information that is relevant to the

optimization, e.g., the operations on the instance table and the

sequence. The conditional statements, e.g., PSM transitions

and event callback, will be translated into the branching blocks

with their Pred/If as the branching conditions.

Second, the compiler decides when to raise the events. It is

possible to raise an event just after all its conditions have been

met, i.e., the triggering conditions are satisfied and the data

in the callback structures are ready. As such, an event that

only requires header information can be raised just after the

header parser. However, the high-level functions hooking this

event may modify the packets, which could impact the correct

execution of the PSM. Hence, the compiler puts all events

after proceeding the PSM, and decides their order by the

explicitly defined happen-before and happen-with relationship

in event_relation. The only exceptions are the built-in

sequence events, i.e., rexmit and out_of_wnd, which will be

triggered by sequence operations before proceeding the PSM,

as well as the events happening with them.

In the third and fourth parts, the compiler checks the condi-

tions for parsing the next layer and destroys the instance if it

jumps into the accepted PSM states.

Figure 5 shows a partial CFG for the IP program presented

in §3. The white boxes are the basic blocks, and the yellow

ones are branching blocks, where the solid/dashed edges in-

dicate the true/false branches. In these blocks, IR uses

instructions to reveal the operations on the real data structure.

For example, we use CreateInst() to create and insert an

1

23

4

6 6

7

5

8,9

10

12

11

13

15

(a)

1

23

4

67

75

8,9

11

13

15

(b)

1

27

3

4

5

8,9

11

13

15

6

7

(c)

1

27

8,9

13

5

8,9

11,13

15

6

7

(d)

Figure 6: (a) First-round branch lifting, where 6 is bounded

by 2 and 4 . (b) Constant analysis, where 6 , 10 and 12 are

eliminated because they are always true guarded by 4 and

9 . (c) Second-round branch lifting, where 7 is further lifted

above 3 , due to the absence of 6 . (d) Peephole optimization,

where 3 - 5 , 11 and 15 are eliminated.

instance into the instance table, and InsertSeq() to insert

the payload into its sequence. Blocks 1 – 9 are for the IP

protocol parser (only one PSM transition, i.e., ip.psm.dump,
is shown); blocks 10 and 11 are for the sequence assemble

event; blocks 12 and 13 are for the next layer parsing, and

blocks 14 and 15 handle the accept PSM state.

Revealing the dependency. Given the real control flow with

CFG, the compiler can then reveal the dependency relation-

ships between each instruction. This is achieved by checking

the read/write operations in the instructions. For example, the

instructions below a branching block can only be executed

after reading the objects in that branching conditions. Hence,

these instructions all depend on those objects.

We note that some read/write relationships are not ex-

plicit in the CFG. For example, InsertSeq() writes the se-

quence in current instance, and Assemble() reads the same

sequence. Hence, Assemble() depends on InsertSeq().
We pre-define the implicit dependencies for all instructions.

5.3 Middle-End: Optimizing Control Flow
The middle-end first transforms the CFG to expose the com-

plete processing logic on a same set of packets. Then, it ap-

plies domain-specific optimizations targeting on the “heavy”

instructions to produce an optimal CFG. Specifically, the

middle-end iteratively takes the following three steps until the

CFG converges to a stable form.

Step 1: Lifting the branches. We lift all the branching blocks

to the top of the CFG, as long as they do not depend on an

upper block. Figure 6a shows the CFG with branching blocks

lifted. We take 6 as an example: it is lifted to top of the

true branch of 2 , because in this branch, it only depends on

the conditions in 2 ; in contrast, in the false branch it can

only be lifted below block 4 , because it reads the variable

state, which is written by block 4 . Through this process,

6 is duplicated, as both branches should traverse it. Note

that some false branches are omitted in Figure 6a, e.g., the

false branches of 6 and 7 that contain the duplicated 5 .

The branch lifting process merges the basic blocks, which

helps to expose a complete processing logic on an individual

set of packets. This process maps to the “code sinking” trans-

formation in conventional compilers, which however usually

is not performed, since the codes would explode due to the du-

plication. In contrast, Rubik’s IR code is small and with a neat

pipeline, making this expensive transformation affordable.

Step 2: Constant analysis. This step replaces or removes the

instructions if they are evaluated to be a constant. For exam-

ple, consider 6 in the false branch in Figure 6a. We can

easily assert that its condition (state==DUMP) is always true,
because 4 has just assigned state with DUMP. Similar anal-

ysis takes place in block 9 , 10 , 12 , where trans==dump
in the latter two must be true. Those always-true branch

blocks can be removed, as shown in Figure 6b. Note that this

elimination may create new opportunities to iteratively lift

the branch, i.e., Step 1. For example, 7 can be further lifted

above 3 , due to the absence of 6 , as shown in Figure 6c.

Step 3: Peephole optimizations. After the first two steps, the

complete processing logic on each packet set is revealed. For

example, 3 – 15 in Figure 6c illustrates the processing logic

on the first packet of an IP instance which is with dont_frag
flag. In this step, we engage a series of peephole optimiza-

tions [36] to identify and eliminate performance traps.

Considering 3 – 15 , we have the following easy optimiza-

tions. (1) For 3 , 5 , 11 , 13 , it is obvious that the first

and only inserted block is directly assembled. Hence, 5

and 11 can be eliminated, and 13 can be rewritten into

NextLayer(Payload). (2) 3 and 15 is another pair of re-

dundant operations, where the inserted instance is directly

removed from the instance table. These two blocks can also

be eliminated. Figure 6d shows the CFG that removes all

redundant operations, most of which are very expensive, e.g.,
instance creation and sequence insertion. We can therefore

expect a much higher performance with this optimized CFG.

We emphasize that the patterns of the optimizations are not

newly designed, but the common wisdoms borrowed from the

mature stack implementations. The key is that manually real-

izing those optimizations for each stack would mess around

the processing pipeline, and significantly increase the com-

plexity of the code. In contrast, Rubik’s middle-end are stack-

and implementation-oblivious, i.e., operators can focus on the

logic of the optimizations without caring about how to inte-

grate them with the stack logic. That is, the new patterns can

be easily extended in the future, and the developers can obtain

a fully optimized pipeline for all stacks. Appendix D shows

the peephole optimizations that are currently employed.

5.4 Back-End: Producing Efficient Code
The back-end of compiler translates and assembles the op-

timized CFGs into native C code, and ensures its efficiency

in two ways: (1) maximize the code efficiency without con-

sidering the code readability, e.g., composing a single large

Figure 7: LOC breakdown of protocol parsers.

function for the whole stack to force the optimization in the C

compiler; (2) borrow the best practice from existing middle-

box stacks, e.g., a fast hashing library. Except for the above

general methods, we highlight two designs in the back-end.

Handling the header. The back-end translates the header

fields and their references using the following principles.

• Each layout will be translated into a C struct, and the

header parser is a struct pointer to the starting address

of the header, so that each field can be directly accessed

as a struct member. For the composite headers, e.g.,
ip.header=ip_hdr+ip_opt, the back-end will gener-

ate multiple pointers pointing to different locations.

• Conditions and predicates of virtual ordered packets, e.g.,
If(ip.v.header.more_frag), will be implemented as

tracking two states, i.e., if(seen_frag && no_hole),
where seen_frag will be set if “more_frag” packet has

arrived, and no_hole is assigned by checking the se-

quence each time a sequence block is inserted.

Threading model. We adopt the shared-nothing model with

the run-to-complete workflow when generating native code.

That is, each core runs an independent stack, which eliminates

the inter-core communication [46]. Specifically, the back-end

leverages the symmetric receive-side scaling (S-RSS) tech-

nique [71], so bi-directional packets from the same connection

can be correlated to the same thread. Since modern NICs sup-

port hardware-based S-RSS, this usually linearly boosts the

stack performance with the number of cores (see §7.1).

The back-end also takes care of other cases that require

considerable human effort, e.g., buffer outrun and timeout.

6 Rubik in Action
Rubik builds upon Python while offering domain-specific

syntaxes and functions. In total, our prototype amounts to 3K

Python LOC for Rubik internals, and 2K C LOC for hashing,

packet I/O and sequence operations. The source code of Rubik

is available at https://github.com/ants-xjtu/rubik.
In this section, we demonstrate the practicality of Rubik by

implementing numbers of mainstream L2-L4 protocols and

stacks (§6.1), and developing typical high-level middlebox

functions (§6.2).

6.1 Collected Protocols and Stacks
We collect and implement 12 L2-L4 protocol parsers using

Rubik. Here we focus on how many LOC used for the imple-

mentation, which reflects the complexity and robustness of

Table 2: Rubik and generated LOC for composing stacks.

Stack Parse Tree Addi. Total Gen.

TCP/IP ETH→IP→UDP/TCP 14 245 11061

GTP ETH→IP→UDP→GTP→IP→TCP 18 304 11384

PPTP
ETH→IP→TCP→PPTP

ETH→IP→GRE→PPP→IP→TCP
37 586 46546

QUIC loopback→IP→UDP→QUIC 23 361 14007

SCTP ETH→IP→SCTP 9 233 23863

Addi.: additional Rubik LOC apart from the individual protocol parsers
Total: total Rubik LOC Gen.: generated native LOC

the program. From the LOC breakdown shown in Figure 7,

we have the following observations.

First, Rubik can express the mainstream L2-L4 protocols

with minor LOC. Most connectionless protocols only take

tens of LOC. The connection-oriented ones take more, but

within hundreds of LOC. Second, most LOC are for defining

the header layout (46% in average), since one field takes one

LOC in Rubik. This task is quite straightforward if given

the protocol specification, so the factual effort of writing a

protocol parser is even less than it appears in the figure.

Reducing the effort of implementing above parsers is very

valuable. For example, the stream control transmission pro-

tocol (SCTP) [2] provides many useful transmission features

like message boundary preservation and multi-homing. How-

ever, this requires a significant change for middleboxes, e.g.,
4400 C LOC in Wireshark [3], making SCTP much less de-

ployed [41]. Using Rubik, it only takes 210 LOC for im-

plementing the SCTP layer. Another example is QUIC [6]:

although its multiplexing feature improves the transmission

efficiency, existing middleboxes cannot support it without a

fundamental upgrade. As a reference, Wireshark takes ∼3100

C LOC to realize the QUIC protocol parser [26]. Using Rubik,

merely 216 LOC is enough for prototyping a QUIC parser

(without the decryption feature, see §8).

We finally implement 5 typical stacks, as shown in Table 2.

We highlight that with the reusable protocol parsers, compos-

ing a middlebox stack requires minor additional Rubik LOC,

although the native LOC generated is massive.

6.2 Developing Applications with Rubik
Callback() in defining BIEs will generate empty callback

functions in the native code, which will be invoked each time

the BIEs are triggered. The programmers can then develop

their applications by implementing those functions.

The most typical example can be a DPI application that

inspects the L7 data. In this case, the developer can pose an

event happening with the assemble event (tcp.event.asm).

tcp.event.sdu = Assign(sdu_layout.sdu, tcp.sdu) + \
Callback(sdu_layout)

tcp.event_relation += tcp.event.asm >> tcp.event.sdu

Other examples include the detection of SYN-flood and fake-

reset, which can be implemented through the BIEs triggered

by the first SYN packet and the reset transitions, respectively.

We present how we port Snort [21] as a more compre-

hensive example. Snort may scan the traffic multiple times

against the rules, e.g., on the fragmented IP packets or on the

reassembled L7 data. With Rubik, the programmers can im-

plement these scanning behaviors through the corresponding

BIEs posed in the stack. Specifically, we implement 25 rule

options, e.g., content, pcre, http_header, and translate the

rules into event-based callback functions. We replace Snort’s

stream and http-inspect modules with Rubik-generated

stacks and events, and reuse the high-level matching mod-

ules like Aho-Corasick algorithm for string matching and

HyperScan [69] for regular expression matching.

Note that, unlike mOS and Microboxes, Rubik currently

does not support programming UDEs. As a result, for HTTP-

related rules, we need to manually parse the L7 protocols

in the callback function (instead of using a set of inherited

UDEs), then the L7 rules can be matched against those parsed

HTTP headers. §8 discusses the UDE programming in detail.

7 Evaluation
In this section, we evaluate the performance of Rubik. Specifi-

cally, our experiments aim to answer the following questions:

(1) Do Rubik-generated stacks provide comparable or even

better performance than the hand-written stacks? (§7.1)

(2) Do Rubik-ported applications work correctly and effi-

ciently on various stacks? (§7.2)

(3) Do the middle-end optimizations help improve the per-

formance of Rubik? (§7.3)

7.1 Microbenchmarks
To measure Rubik’s performance under certain traffic load,

we build real end-host applications and set a bump-in-the-

wire testbed as the middlebox stack. Due to the lack of high-

performance non-TCP applications (e.g., QUIC, SCTP), the

microbenchmarks are mostly about the TCP/IP stack.

Experimental settings. We build the testbed on an x86 ma-

chine (20×Intel Xeon 2.2Ghz, 192GB memory) with three

dual-port 40G NICs (Intel XL710). We use another six ma-

chines (8×Intel Xeon 2.2Ghz, 16GB memory) to build three

server/client pairs. Each server/client has a single-port 40G

NIC, and is connected through one NIC in the testbed server.

The clients and servers generate 96K concurrent connec-

tions in total (32K from each pair). Each connection fetches a

file from the server (1KB by default), and will immediately

restart when it terminates. Note that the three pairs cannot

drain the 120Gbps link, so we indicate the upper bounds of

the throughput for each setting in the experiments, i.e., the

throughputs when directly wiring the clients up to the servers.

We synthesize three high-level functions to simulate differ-

ent workloads of the middlebox: (1) a flow tracker (FT) that

tracks the L4 states but ignores the payload, (2) a data assem-

bler (DA) that dumps bidirectional L7 data to /dev/null, and

Figure 8: The multi-core scal-

ability (DA, 1KB file).

Figure 9: The file size scala-

bility (DA, 8 cores).

(3) a string finder (SF) that matches 50 regular expressions

against L7 data. We run DA as the default function in the

experiments, as it reflects the intrinsic performance of a com-

plete middlebox stack, i.e., with bidirectional data reassembly

and without heavy operations on that data. When running FT,

we disable the data buffering for all involved approaches.

TCP stack. From the existing approaches shown in Table 1,

we choose to compare Rubik with the TCP-specific stack and

the NFV framework, since the packet parser cannot implement

a full-functional stack. Specifically, we involve mOS [14] and

MiddleClick [28] in our experiments. The former is the state-

of-the-art TCP middlebox stack, and the latter with Click

model is reported to be more efficient. All approaches have

the same packet I/O capability with DPDK [8] and S-RSS.

The clients and servers are implemented using mTCP [45].

Figure 8 shows the multi-core scalability of the involved ap-

proaches. Thanks to S-RSS, the performance of all approaches

can almost linearly scale with the number of CPU cores.

Note that Rubik’s TCP stack achieves 5.2Gbps, 20.9Gbps,

38.4Gbps when using 1, 4, 8 cores, respectively, and can reach

the upper bound (55.9Gbps) with 16 cores. Such throughput

outperforms other approaches by 30%–90%.

Figure 9 shows the scalability with different file sizes. With

8 cores, Rubik’s TCP stack can reach the upper bound with

the file larger than 8KB (82.1Gbps in 8KB, 101.4Gbps in

32KB). We also report that Rubik can reach the upper bound

for all file sizes if using 16 cores. Note that given the flow size

(which can be inferred from the file size) and the throughput,

we can estimate the connection arrival rates, i.e., how many

new connections can be handled per second. We report that

with 8 cores, the connection arrival rates of Rubik’s TCP stack

are 4.5M/s and 1.1M/s for 64B and 8KB files, respectively.

Figure 10 shows the throughput with different functions.

Rubik’s stack can realize 44.1Gbps and 25.5Gbps for FT and

SF with 8 cores, which maintain the lead to other approaches

(34% and 90% faster than MiddleClick and mOS). We also

report that Rubik’s stack adds reasonable transferring latency

(not shown in the figure), e.g., running DA for a single flow

adds 29μs and 97μs to the flow completion time when transfer-

ring 64B and 8KB files (62μs and 119μs without middlebox).

Why Rubik outperforms other approaches. First, the peep-

hole optimizations applied in the middle-end let Rubik han-

dles each packet class in the most efficient way, which guar-

antees a comparable performance to the mature hand-written

ones. Second, the hand-written stacks have to trade off perfor-

Figure 10: Throughput vs.

functions (1KB file, 8 cores).

Figure 11: Performance of the

GTP stack (DA).

mance for the code maintainability. For example, for maintain-

ing the 8K C LOC of TCP stack, mOS spans more than 100

non-inline functions, dozens of which would be invoked for

processing each packet. In contrast, Rubik puts 11K C LOC in

a single function for composing the same stack, which incurs

much fewer function calls, hence the higher throughput. Third,

the one-big-function also forces the optimizations of native

C compiler. Specifically, we re-compile MiddleClick and Ru-

bik’s generated code with -O0 instead of -O3, and observe

that MiddleClick’s performance downgrades by 40%, while

Rubik suffers 50% degradation. This partially confirms that

deeper optimizations can be applied in the one-big-function.

We emphasize that both mOS and MiddleClick are with

high-quality code. Even though, the performance trade-offs

for maintainability are still inevitable when handling so many

LOC with human oracle. Such risk would only be higher

for more complex stacks. In contrast, Rubik avoids the per-

formance traps for all stacks by automatically applying the

domain-specific optimizations in its middle-end, while ensur-

ing the maintainability with its neat syntaxes in the front-end.

GTP stack. Besides the TCP stack, we also run the GTP stack

in end hosts for evaluation. Specifically, we modify mTCP

to encapsulate/strip IP, UDP, and GTP layers for each TCP

packet, where the new IP and UDP layers have the same IP

addresses and ports with the original TCP packet. Note that

this operation adds ∼50 bytes to each packet, which will lift

the throughput upper bound when transferring small files.

Figure 11 shows the performance of Rubik’s GTP stack

with different CPU cores and file sizes. With only one core,

Rubik’s GTP stack can realize 4.0Gbps and 14.2Gbps for 64B

and 8KB file, respectively, and can reach their performance

upper bounds (44.6Gbps and 88.0Gbps) with 16 cores. We

highlight that even the GTP stack has much more layers than

the TCP stack, Rubik can still catch up with the throughput, as

its back-end introduces minor overhead between each layer.

7.2 Performance on Various Stacks
We collect real and synthetic traces to evaluate the perfor-

mance of Rubik on various stacks with real applications.

Traces. We prepare traces for five stacks, as shown in Ta-

ble 3. The TCP trace is captured in a campus network. The

GTP trace is captured in an ISP’s base station. For PPTP

stack, we set a PPTP server with MPPE and PPP compres-

sion disabled, and capture the trace by accessing random

websites. For QUIC stack, we set a pair of client and server

Table 3: The collected traces.

Trace #Pkts. #Flows
Avg. Flow

Size
Avg. Pkt.
Length

L7 Data
Size

Total
Size

TCP 25.9M 558K 32KB 652.13B 8.4GB 16.8GB

GTP 18M 630K 14KB 484.03B 0.6GB 8.7GB

PPTP 6.7M 9K 665KB 892.98B 4.2GB 6.0GB

QUIC 12.7M 3K 637KB 643.25B 5.4GB 8.1GB

SCTP 7.6M 600K 5KB 374.35B 2.3GB 2.9GB

Table 4: The throughput (Gbps) on the traces (16 cores).

Snort Rubik+Snort nDPI Rubik+nDPI DA

TCP 20.41 26.86 25.94 25.26 117.76

GTP 15.36 22.79 18.87 18.37 113.42

PPTP 13.91 20.01 18.79 18.22 118.41

QUIC - - - - 116.29

SCTP - - - - 101.27

using ngtcp2 [17], and capture the trace by querying random

resources. Rubik currently does not support the online de-

cryption, so we replace the encrypted data in the trace with a

deciphered one using the local SSL key (see §8). For SCTP

stack, we set the server and client using usrsctp [29], and

capture the trace by fetching random files. We filter out the in-

complete connections (flows without handshake or teardown)

for all the traces, so we can properly replay them on a loop.

Applications. We port two well-known middlebox applica-

tions, Snort [21] and nDPIReader [15], to Rubik. For Snort,

we port it as presented in §6.2, and load 2800 TCP- or HTTP-

related rules from its community rule set. We note that nD-

PIReader does not implement a complete flow reassembly

feature. To this end, we pose the TCP and UDP assemble

events, and invoke the core detecting functions provided by

nDPI in the callback functions. The Rubik-ported version can

then detect protocols on reassembled data.

We equip the original Snort and nDPI with DPDK/S-RSS

and involve them into the comparison. Note that neither

of original and Rubik-ported versions can inspect QUIC or

SCTP trace, because the rules and detecting applications are

TCP-specific, i.e., they assume the transport layer must be

TCP/UDP. However, we argue that with the help of Rubik, it

would be quite simple to port such rules to new stacks, e.g.,
inspecting the HTTP content carried by an SCTP connection.

Performance. We split the traces into three pieces by their

IP addresses and use three machines to inject them into the

testbed (120Gbps line rate). The testbed runs on 16 cores.

Table 4 shows the throughput with different applications,

from which we have two observations. First, the Rubik-ported

Snort is faster than the original and the boost is more signif-

icant on the stacks with more layers (+31.6% for TCP vs.

+48.3% for GTP), because “heavy” stacks would amplify the

efficiency of Rubik’s generated one-big-function. Second, the

Rubik-ported nDPI is slightly slower than the original (−2.8%

in average), because the latter does not reassemble the data

at all. Specifically for TCP stack, the Rubik-ported versions

perform better than the mOS-ported versions (+31.6% vs.

Table 5: Throughput boost (Gbps) and compilation slow down

(seconds) from the middle-end optimizations (1 core, DA).

Shadowed cells show the number with optimizations.

TCP GTP PPTP QUIC SCTP

Throughput 8.83 22.4 5.47 14.4 8.16 18.9 7.03 13.7 4.38 6.61

Rubik→C 0.06 0.28 0.07 0.31 0.10 1.19 0.07 0.42 0.06 1.22

C→Binary 3.32 3.47 3.47 5.46 3.73 13.1 3.47 4.02 3.27 6.86

+16.8% for Snort, −2.6% vs.−3.7% for nDPI) [44]. We fi-

nally highlight that when running DA, all Rubik’s stacks can

achieve more than 100Gbps throughput for their traces.

Correctness. We respectively select 100 flows from all traces.

By manually verifying the results of protocol parsers and

event callbacks, we confirm the correctness of Rubik.

7.3 Middle-End Optimizations
We inject the same traces used in §7.2 into the testbed and

measure the performance and overhead of corresponding

stacks, by enabling/disabling the middle-end optimizations.

Performance. The top part of Table 5 shows that all stacks

can significantly benefit from the optimizations, with a boost

rate of 51%–163%. The effect of the optimizations depends on

two factors. First, since each layer is independently optimized,

more layers lead to more improvements. Second, the major

optimization is the elimination of the sequence operations,

so more boosts can be gained when handling large flows.

For example, PPTP and QUIC traces have similar flow size,

but the PPTP stack with more layers gains more from the

optimizations; TCP and SCTP stacks have the same number

of layers, but the SCTP stack does not boost as much as TCP

due to the smaller flow size of the trace (5KB vs. 32KB).

Overhead. The branch lifting in the middle-end leads to

much larger CFG, which increases the time of compilation,

i.e., from Rubik program to C code, and from C code to binary.

The bottom part of Table 5 shows that such overhead is minor

in practice, i.e., all stacks are compiled within 15 seconds.

8 Limitations and Discussion
Semantics completeness. There are generally two types of

middleboxes: the flow-monitoring ones that parse the proto-

cols, check the reassembled data, and forward/drop the orig-

inal packets (e.g., IDS), and the flow-modifying ones that

intercept the connection and modify L7 content (e.g., HTTP

proxy). To the best of our knowledge, Rubik can well support

programming the former type. For the latter, Rubik should ex-

tend its sequence abstraction for inline-reordering, and event

abstraction for modifying the packet content. These exten-

sions are realizable and will be explored in our future work.

Encrypted layers. Rubik can cooperate with the encrypted

layers in the following two ways: (1) the stacks can directly

work on the raw packets, if the middleboxes are placed inside

the secure district, where the encrypted content has already

been resolved by the gateway; (2) the stacks can inspect the

encrypted content, given the proper decipher keys. We simu-

late the first scenario with QUIC protocol in our evaluation.

For the second, we can offer an extra decryption function to

modify SDU. We leave this feature to our future work.

UDE programming. Prior to Rubik, literatures focus on how

to facilitate the middlebox development by offering friendly

UDE interfaces. mOS [44] unifies the TCP stack and provides

a BSD-style socket interface, so the developers can dynami-

cally register/deregister their UDEs. Microboxes [53] further

optimizes the UDE model by parallelizing their executions,

making the performance scalable with the number of network

functions. Since the UDE programming is oblivious from the

stack programming, we believe providing such feature should

be an easy task for Rubik’s back-end, by borrowing the best

practice from mOS and Microboxes.

Boosting S-RSS. We discuss two possible techniques that can

further boost the packet dispatching. First, unlike S-RSS that

dispatches correlated packets to fixed CPU cores, RSS++ [31]

and eRSS [64] can collect the flow statistics and dynamically

dispatch packets to different cores, which can further balance

the CPU load. Second, the hardware-based S-RSS can only

classify fixed protocols. For example, for PPTP stack, it only

dispatches the packets by the lower-layer IP addresses, which

are almost fixed as a tunnel. The dispatching can be much

more balanced if higher-layer IP and TCP protocols can be

considered. A smart NIC [54] or a programmable switch asso-

ciated with the middlebox [46] that can dispatch the packets

by arbitrary headers could be a cure to this problem.

Middlebox deployments. While Rubik facilitates the devel-

opment of a single middlebox, there are literatures that deploy

middleboxes in a distributed way [62, 65] or as a cloud ser-

vice [66]. These works can be complementary to Rubik.

Ethics statement. The TCP and GTP traces used in the ex-

periments are anonymized before given to us. We claim that

our work does not raise any ethics issue.

9 Conclusion
This paper proposed Rubik, a language for programming the

middlebox stack, which offers a set of high-level constructs as

efficient building blocks, and an optimizing compiler to pro-

duce high-performance native code. We demonstrated the mi-

nor effort for implementing 12 protocol parsers and 5 popular

stacks using Rubik. We evaluated Rubik with real applications

and traces, and showed that the generated stacks outperform

existing approaches by at least 30% in throughput.

Acknowledgments. We thank the anonymous NSDI review-

ers and our shepherd Dejan Kostić for their valuable feedback.

We thank Patrick P. C. Lee and Aaron Gember-Jacobson for

their comments on the early version of this paper, and Tom

Barbette for his help on the codebase of MiddleClick. This

work is supported by NSFC (61702407, 61772412, 61902307

and 61702049), and Fundamental Research Funds for the Cen-

tral Universities. Peng Zhang is the corresponding author.

References

[1] Ip in ip tunneling. https://tools.ietf.org/html/

rfc1853, 1995.

[2] Stream control transmission protocol. https://tools.ietf.

org/html/rfc4960, 2007.

[3] packet-sctp.c. https://github.com/boundary/

wireshark/blob/master/epan/dissectors/

packet-sctp.c, 2013.

[4] Do you guys block udp port 443 for your proxy/web filtering?

https://bit.ly/2OBM51l, 2015.

[5] In-band network telemetry (int). https://p4.org/assets/

INT-current-spec.pdf, 2016.

[6] Quic: A udp-based secure and reliable transport

for http/2. https://tools.ietf.org/html/

draft-ietf-quic-transport-11, 2017.

[7] Clicknf. https://github.com/nokia/ClickNF, 2018.

[8] Dpdk. http://www.dpdk.org/, 2018.

[9] IEEE 802.11 wireless local area networks. http://grouper.

ieee.org/groups/802/11/, 2018.

[10] The impact on network security through encrypted protocols -

quic. https://bit.ly/2xw7z8y, 2018.

[11] Libnids. http://libnids.sourceforge.net/, 2018.

[12] Middlebox cooperation protocol specification and analy-

sis. https://mami-project.eu/wp-content/uploads/

2015/10/d32.pdf, 2018.

[13] Middleboxes: Taxonomy and issues. https://tools.ietf.

org/html/rfc3234, 2018.

[14] mos-networking-stack. https://github.com/ndsl-kaist/

mos-networking-stack, 2018.

[15] ndpi. https://www.ntop.org/products/

deep-packet-inspection/ndpi/, 2018.

[16] The new waist of the hourglass. http://tools.ietf.org/

html/draft-tschofenig-hourglass-00, 2018.

[17] ngtcp2. https://github.com/ngtcp2/ngtcp2, 2018.

[18] P4 language. https://p4.org/, 2018.

[19] Quic protocol | cisco community. https://community.

cisco.com/t5/switching/quic-protocol/td-p/

3402269, 2018.

[20] Report from the iab workshop on stack evolution in a middle-

box internet (semi). https://www.rfc-editor.org/rfc/

rfc7663.txt, 2018.

[21] Snort - network intrusion detection and prevention system.

https://www.snort.org/, 2018.

[22] Snort: Re: Is there a snort/libnids alternative. http://

seclists.org/snort/2012/q4/396., 2018.

[23] Vector packet processing. https://fd.io/, 2018.

[24] The zeek network security monitor. https://www.zeek.

org/, 2018.

[25] F-Stack. http://www.f-stack.org/, 2019.

[26] packet-quic.c. https://bit.ly/32ED3YK, 2019.

[27] Seastar. http://seastar.io/, 2019.

[28] Middleclick. https://github.com/tbarbette/

fastclick/tree/middleclick, 2020.

[29] usrsctp: A portable sctp userland stack. https://github.

com/sctplab/usrsctp, 2020.

[30] T. Barbette, C. Soldani, R. Gaillard, and L. Mathy. Building

a chain of high-speed vnfs in no time: Invited paper. In IEEE
HPSR, 2018.

[31] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire, and

Dejan Kostić. Rss++: Load and state-aware receive side scaling.

In ACM CoNEXT, 2019.

[32] Apurv Bhartia, Bo Chen, Feng Wang, Derrick Pallas, Raluca

Musaloiu-E, Ted Tsung-Te Lai, and Hao Ma. Measurement-

based, practical techniques to improve 802.11ac performance.

In ACM IMC, 2017.

[33] Anat Bremler-Barr, Yotam Harchol, and David Hay. Openbox:

A software-defined framework for developing, deploying, and

managing network functions. In ACM SIGCOMM, 2016.

[34] Ryan Craven, Robert Beverly, and Mark Allman. A middlebox-

cooperative tcp for a non end-to-end internet. In ACM SIG-
COMM, 2014.

[35] K. Edeline and B. Donnet. Towards a middlebox policy tax-

onomy: Path impairments. In IEEE INFOCOM Workshops,

2015.

[36] Charles N. Fischer, Ron K. Cytron, and Richard J. LeBlanc Jr.

Crafting A Compiler. Pearson, 2009.

[37] Massimo Gallo and Rafael Laufer. Clicknf: a modular stack

for custom network functions. In USENIX ATC, 2018.

[38] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan

Prakash, Robert Grandl, Junaid Khalid, Sourav Das, and Aditya

Akella. Opennf: Enabling innovation in network function con-

trol. In ACM SIGCOMM, 2014.

[39] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown. Design

principles for packet parsers. In IEEE/ACM ANCS, 2013.

[40] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han.

Sgx-box: Enabling visibility on encrypted traffic using a secure

middlebox module. In ACM APNet, 2017.

[41] David A. Hayes, Jason But, and Grenville Armitage. Issues

with network address translation for sctp. ACM SIGCOMM
Comput. Commun. Rev., 39(1):23–33, 2009.

[42] Benjamin Hesmans, Fabien Duchene, Christoph Paasch, Gre-

gory Detal, and Olivier Bonaventure. Are tcp extensions

middlebox-proof? In ACM HotMiddlebox, 2013.

[43] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam

Greenhalgh, Mark Handley, and Hideyuki Tokuda. Is it still

possible to extend tcp? In ACM IMC, 2011.

[44] Muhammad Asim Jamshed, YoungGyoun Moon, Donghwi

Kim, Dongsu Han, and KyoungSoo Park. mos: A reusable

networking stack for flow monitoring middleboxes. In USENIX
NSDI, 2017.

[45] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon

Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park.

mtcp: a highly scalable user-level TCP stack for multicore

systems. In USENIX NSDI, 2014.

[46] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca

Steinert, and Gerald Q. Maguire Jr. Metron: NFV service

chains at the true speed of the underlying hardware. In USENIX
NSDI, 2018.

[47] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael,

Anubhavnidhi Abhashkumar, and Aditya Akella. Paving the

way for NFV: Simplifying middlebox modifications using

statealyzr. In USENIX NSDI, 2016.

[48] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and

M. Frans Kaashoek. The click modular router. ACM Transac-
tions on Computer Systems, 18(3):263–297, 2000.

[49] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Rat-

nasamy, and Zhi Liu. Embark: Securely outsourcing mid-

dleboxes to the cloud. In USENIX NSDI, 2016.

[50] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vi-

cente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov,

Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim

Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Rob-

bie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang,

and Zhongyi Shi. The quic transport protocol: Design and

internet-scale deployment. In ACM SIGCOMM, 2017.

[51] Hao Li, Chengchen Hu, Junkai Hong, Xiyu Chen, and Yuming

Jiang. Parsing application layer protocol with commodity

hardware for sdn. In IEEE/ACM ANCS, 2015.

[52] Zhichun Li, Gao Xia, Hongyu Gao, Yi Tang, Yan Chen, Bin

Liu, Junchen Jiang, and Yuezhou Lv. Netshield: massive

semantics-based vulnerability signature matching for high-

speed networks. In ACM SIGCOMM, 2010.

[53] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K.K Ramakrish-

nan, and Timothy Wood. Microboxes: High performance nfv

with customizable, asynchronous tcp stacks and dynamic sub-

scriptions. In ACM SIGCOMM, 2018.

[54] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy,

Simon Peter, and Karan Gupta. Offloading distributed applica-

tions onto smartnics using ipipe. In ACM SIGCOMM, 2019.

[55] Alberto Medina, Mark Allman, and Sally Floyd. Measuring

the evolution of transport protocols in the internet. ACM SIG-
COMM Computer Communication Review, 35(2):37–52, 2005.

[56] C Meiners, E Norige, A. X Liu, and E Torng. Flowsifter: A

counting automata approach to layer 7 field extraction for deep

flow inspection. In IEEE INFOCOM, 2012.

[57] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit

Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2:

A framework for nfv applications. In ACM SOSP, 2015.

[58] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia

Ratnasamy, and Scott Shenker. Netbricks: Taking the v out of

NFV. In USENIX OSDI, 2016.

[59] Ruoming Pang, Vern Paxson, Robin Sommer, and Larry Peter-

son. binpac: A yacc for writing application protocol parsers.

In ACM IMC, 2006.

[60] G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K. Grin-

nemo, P. Hurtig, N. Khademi, M. Tüxen, M. Welzl, D. Dam-

janovic, and S. Mangiante. De-ossifying the internet transport

layer: A survey and future perspectives. IEEE Communications
Surveys Tutorials, 19(1):619–639, 2017.

[61] Sharvanath Pathak and Vivek S. Pai. Modnet: A modular

approach to network stack extension. In USENIX NSDI, 2015.

[62] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao,

Vyas Sekar, and Minlan Yu. Simple-fying middlebox policy

enforcement using sdn. ACM SIGCOMM, 2013.

[63] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford,

Michio Honda, Fabien Duchene, Olivier Bonaventure, and

Mark Handley. How hard can it be? designing and imple-

menting a deployable multipath TCP. In USENIX NSDI, 2012.

[64] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and

Kunle Olukotun. Elastic rss: Co-scheduling packets and cores

using programmable nics. In APNet, 2019.

[65] Vyas Sekar, Sylvia Ratnasamy, Michael K. Reiter, Norbert

Egi, and Guangyu Shi. The middlebox manifesto: Enabling

innovation in middlebox deployment. In ACM HotNets, 2011.

[66] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishna-

murthy, Sylvia Ratnasamy, and Vyas Sekar. Making middle-

boxes someone else’s problem: Network processing as a cloud

service. In ACM SIGCOMM, 2012.

[67] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Rat-

nasamy. Blindbox: Deep packet inspection over encrypted

traffic. In ACM SIGCOMM, 2015.

[68] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls,

Katerina Argyraki, Sylvia Ratnasamy, and Scott Shenker. Resq:

Enabling slos in network function virtualization. In USENIX
NSDI, 2018.

[69] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Ge-

off Langdale, Jiayu Hu, and Heqing Zhu. Hyperscan: A fast

multi-pattern regex matcher for modern cpus. In USENIX
NSDI, 2019.

[70] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao,

and Ming Zhang. An untold story of middleboxes in cellular

networks. In ACM SIGCOMM, 2011.

[71] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin Lee,

Sunghwan Ihm, and KyoungSoo Park. Comparison of caching

strategies in modern cellular backhaul networks. In ACM Mo-
biSys, 2013.

[72] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia

Ratnasamy, and Scott Shenker. Elastic scaling of stateful net-

work functions. In USENIX NSDI, 2018.

Appendix A Rubik Built-in Abstractions

Abstractions Initialized Syntax and Parameters Functionality and Semantics

P
ac

k
et

D
at

a p.header
layout+layout

AnyUntil((layout), cond)
generate a header layout

p.temp, p.perm layout the permanent/temporary data bound to the instance

p.seq Sequence(meta,data,data_len) the sequence indexed by meta and filled with data
p.payload initialized by p.header the payload of layer p
p.sdu initialized by Assemble() the SDU passing to the upper layer

In
st

.

T
ab

le

p.selector
[inst_key]

([active_key],[passive_key])
maintain the instance table by the key

P
ro

to
.

S
ta

te

M
ac

h
in

e s PSMState(start, accept) define a PSM state s
p.psm PSM(state set) build the PSM with the state set
p.psm.t (s1 >> s2) + Pred(cond) define a transition t from s1 to s2 with condition cond

p.to_active/passive initialized by p sending to active/passive side (connection-oriented)

E
v
en

t

C
al

lb
ac

k p.event.e Assemble(), Callback(lay) an event e that assembles the sequence or poses lay

p.event_relation
(p.event.a, p.event.b)

p.event.c >> p.event.d
a happens before b, while d happens when c happens

P
ar

se

T
re

e

st Stack() define a stack st
st.lay p define layer lay with parser p
st (st.lay1 >> st.lay2) + Pred(pred) define lay2 as the next layer of lay1 with condition pred

G
lo

b
al

P
ar

am
et

er
s p.cursor initialized by p the current position (in byte) through the header parsing

p.cur_state initialized by p the current PSM state of the instance

p.timeout a float number the global keep-live threshold for the instance of p

p.psm.t.timeout a float number the keep-live threshold of the instance in transition t

Appendix B Instructions and Expressions in Rubik’s CFG

Instructions Read Write Description

Assign(reg, expr) expr reg modify reg with the result of expr
AssignSDU(expr) expr SEQUENCE modify sequence with the result of expr

CreateInst() - INSTTABLE create and insert the instance into instance table

DestroyInst() - INSTTABLE remove the instance from the instance table

InsertSeq(m,d,l) - SEQUENCE insert a sequence block (meta=m,data=d,len=l) into the sequence

Assemble() - SEQUENCE assemble the continuous blocks in the sequence and pop it

Call(expr) expr - invoke a callback function with the data expr
NextLayer() - - jump into the next layer according to the parse tree

Expressions Read Write Description

HeaderContain(f) HEADER - check whether the parsed header contains field f
Payload() HEADER - the content besides the parsed header from the packet

SDU() SEQUENCE - the SDU assembled from the sequence

Contain(key) INSTTABLE - check whether the instance with key is in the instance table

Appendix C Example Rubik Programs

C.1 IP Protocol Parser
The following code shows a complete IP protocol parser.

1 class ip_hdr(layout):
2 version = Bit(4)
3 ihl = Bit(4)
4 tos = Bit(8)
5 tot_len = UInt(16)
6 id = Bit(16)
7 blank = Bit(1)
8 dont_frag = Bit(1)
9 more_frag = Bit(1)

10 f1 = Bit(5)
11 f2 = Bit(8)
12 ttl = Bit(8)
13 protocol = Bit(8)
14 check = Bit(16)
15 saddr = Bit(32)
16 daddr = Bit(32)
17

18

19 class ip_temp(layout):
20 offset = Bit(16)
21 length = Bit(16)
22

23

24 def ip_parser():
25 ip = Connectionless()
26

27 ip.header = ip_hdr
28 ip.selector = [ip.header.saddr, ip.header.daddr]
29

30 ip.temp = ip_temp
31 ip.prep = Assign(
32 ip.temp.offset, ((ip.header.f1 << 8) + ip.header.f2) << 3
33) + Assign(ip.temp.length, ip.header.tot_len - (ip.header.ihl << 2))
34

35 ip.seq = Sequence(meta=ip.temp.offset, data=ip.payload[: ip.temp.length])
36

37 DUMP = PSMState(start=True, accept=True)
38 FRAG = PSMState()
39 ip.psm = PSM(DUMP, FRAG)
40 ip.psm.dump = (DUMP >> DUMP) + Pred(
41 ((ip.header.dont_frag == 1) & (ip.temp.offset == 0))
42 | ((ip.header.more_frag == 0) & (ip.temp.offset == 0))
43)
44 ip.psm.frag = (DUMP >> FRAG) + Pred(
45 (ip.header.more_frag == 1) | (ip.temp.offset != 0)
46)
47 ip.psm.more = (FRAG >> FRAG) + Pred(ip.header.more_frag == 1)
48 ip.psm.last = (FRAG >> DUMP) + Pred(ip.v.header.more_frag == 0)
49

50 ip.event.asm = If(ip.psm.dump | ip.psm.last) >> Assemble()
51

52 return ip

C.2 TCP Protocol Parser
The following shows the complete TCP protocol parser written in Rubik, including the header option parsing, the bi-directional buffering, the

out-of-window exception handling, etc. We note that the code is formatted according to PEP8, which largely increases the number of LOC.

Moreover, the definitions of header layout and auxiliary structures take about 40% of the LOC, which means the factual effort of writing this

parser is even less than the number of LOC shows.

1 class tcp_hdr(layout):
2 sport = UInt(16)
3 dport = UInt(16)
4 seq_num = UInt(32)
5 ack_num = UInt(32)
6 hdr_len = Bit(4)
7 blank = Bit(4)
8 cwr = Bit(1)
9 ece = Bit(1)

10 urg = Bit(1)
11 ack = Bit(1)
12 psh = Bit(1)
13 rst = Bit(1)
14 syn = Bit(1)
15 fin = Bit(1)
16 window_size = UInt(16)
17 checksum = Bit(16)
18 urgent_pointer = Bit(16)
19

20

21 class tcp_nop(layout):
22 nop_type = Bit(8, const=1)
23

24 class tcp_mss(layout):
25 mss_type = Bit(8, const=2)
26 mss_len = Bit(8)
27 mss_value = Bit(16)
28

29

30 class tcp_ws(layout):
31 ws_type = Bit(8, const=3)
32 ws_len = Bit(8)
33 ws_value = Bit(8)
34

35

36 class tcp_SACK_permitted(layout):
37 SCAK_permitted_type = Bit(8, const=4)
38 SCAK_permitted_len = Bit(8)
39

40

41 class tcp_SACK(layout):
42 SACK_type = Bit(8, const=5)
43 SACK_len = Bit(8)
44 SACK_value = Bit((SACK_len - 2) << 3)
45

46

47 class tcp_TS(layout):
48 TS_type = Bit(8, const=8)
49 TS_len = Bit(8)
50 TS_value = Bit(32)
51 TS_echo_reply = Bit(32)
52

53

54 class tcp_cc_new(layout):
55 cc_new_type = Bit(8, const=12)
56 cc_new_len = Bit(8)
57 cc_new_value = Bit(32)
58

59

60 class tcp_eol(layout):
61 eol_type = Bit(8, const=0)
62

63

64 class tcp_blank(layout):
65 blank_type = Bit(8)
66 blank_len = Bit(8)
67 blank_value = Bit((blank_len - 2) << 3)

68

69

70 class tcp_data(layout):
71 active_lwnd = Bit(32, init=0)
72 passive_lwnd = Bit(32, init=0)
73 active_wscale = Bit(32, init=0)
74 passive_wscale = Bit(32, init=0)
75 active_wsize = Bit(32, init=(1 << 32) - 1)
76 passive_wsize = Bit(32, init=(1 << 32) - 1)
77 fin_seq1 = Bit(32, init=0)
78 fin_seq2 = Bit(32, init=0)
79

80

81 class tcp_temp(layout):
82 wnd = Bit(32)
83 wnd_size = Bit(32)
84 data_len = Bit(32)
85

86

87 def tcp_parser(ip):
88 tcp = ConnectionOriented()
89

90 tcp.header = tcp_hdr
91 tcp.header += If(tcp.cursor < tcp.header.hdr_len << 2) >> AnyUntil(
92 [
93 tcp_eol,
94 tcp_nop,
95 tcp_mss,
96 tcp_ws,
97 tcp_SACK_permitted,
98 tcp_SACK,
99 tcp_TS,

100 tcp_cc_new,
101 tcp_blank,
102],
103 (tcp.cursor < tcp.header.hdr_len << 2) & (tcp.payload_len != 0),
104)
105

106 tcp.selector = (
107 [ip.header.saddr, tcp.header.sport],
108 [ip.header.daddr, tcp.header.dport],
109)
110

111 tcp.perm = tcp_data
112 tcp.temp = tcp_temp
113

114 CLOSED = PSMState(start=True)
115 SYN_SENT, SYN_RCV, EST, FIN_WAIT_1, CLOSE_WAIT, LAST_ACK = make_psm_state(6)
116 TERMINATE = PSMState(accept=True)
117

118 tcp.prep = Assign(tcp.temp.data_len, tcp.payload_len)
119 tcp.prep = (
120 If(tcp.header.syn == 1) >> Assign(tcp.temp.data_len, 1) >> Else() >> tcp.prep
121)
122 tcp.prep = (
123 If(tcp.header.fin == 1)
124 >> Assign(tcp.temp.data_len, tcp.payload_len + 1)
125 + (
126 If(tcp.current_state == EST)
127 >> Assign(tcp.perm.fin_seq1, tcp.header.seq_num + tcp.payload_len)
128 >> Else()
129 >> Assign(tcp.perm.fin_seq2, tcp.header.seq_num)
130)
131 >> Else()
132 >> tcp.prep
133)
134

135

136 def update_wnd(oppo_lwnd, oppo_wscale, oppo_wsize, cur_lwnd, cur_wscale, cur_wsize):
137 x = If(tcp.header_contain(tcp_ws)) >> Assign(oppo_wscale, tcp.header.ws_value)
138 x += Assign(oppo_wsize, tcp.header.window_size)
139 x += Assign(oppo_lwnd, tcp.header.ack_num)
140 x += Assign(tcp.temp.wnd, cur_lwnd)
141 x += Assign(tcp.temp.wnd_size, cur_wsize << cur_wscale)
142 return x
143

144 tcp.prep += If(tcp.to_active == 1) >> update_wnd(
145 tcp.perm.passive_lwnd,
146 tcp.perm.passive_wscale,
147 tcp.perm.passive_wsize,
148 tcp.perm.active_lwnd,
149 tcp.perm.active_wscale,
150 tcp.perm.active_wsize,
151)
152 tcp.prep += If(tcp.to_passive == 1) >> update_wnd(
153 tcp.perm.active_lwnd,
154 tcp.perm.active_wscale,
155 tcp.perm.active_wsize,
156 tcp.perm.passive_lwnd,
157 tcp.perm.passive_wscale,
158 tcp.perm.passive_wsize,
159)
160

161 tcp.seq = Sequence(
162 meta=tcp.header.seq_num,
163 zero_based=False,
164 data=tcp.payload[: tcp.temp.data_len],
165 data_len=tcp.temp.data_len,
166 window=(tcp.temp.wnd, tcp.temp.wnd + tcp.temp.wnd_size),
167)
168

169 tcp.psm = PSM(CLOSED, SYN_SENT, SYN_RCV, EST, FIN_WAIT_1, CLOSE_WAIT, LAST_ACK, TERMINATE)
170

171 tcp.psm.orphan = (CLOSED >> TERMINATE) + Pred(tcp.header.syn == 0)
172 tcp.psm.hs1 = (CLOSED >> SYN_SENT) + Pred(
173 (tcp.header.syn == 1) & (tcp.header.ack == 0)
174)
175 tcp.psm.hs2 = (SYN_SENT >> SYN_RCV) + Pred(
176 (tcp.to_active == 1) & (tcp.header.syn == 1) & (tcp.header.ack == 1)
177)
178 tcp.psm.hs3 = (SYN_RCV >> EST) + Pred(tcp.v.header.ack == 1)
179

180 tcp.psm.buffering = (EST >> EST) + Pred(
181 (tcp.header.fin == 0) & (tcp.header.rst == 0)
182)
183

184 tcp.psm.wv1 = (EST >> FIN_WAIT_1) + Pred(tcp.v.header.fin == 1)
185 tcp.psm.wv2 = (FIN_WAIT_1 >> CLOSE_WAIT) + Pred(
186 (tcp.v.header.ack == 1) & (tcp.v.header.fin == 0)
187 & (tcp.perm.fin_seq1 + 1 == tcp.v.header.ack_num)
188)
189 tcp.psm.wv2_fast = (FIN_WAIT_1 >> LAST_ACK) + Pred(
190 (tcp.v.header.ack == 1) & (tcp.v.header.fin == 1)
191 & (tcp.perm.fin_seq1 + 1 == tcp.v.header.ack_num)
192)
193 tcp.psm.wv3 = (CLOSE_WAIT >> LAST_ACK) + Pred(tcp.v.header.fin == 1)
194 tcp.psm.wv4 = (LAST_ACK >> TERMINATE) + Pred(
195 (tcp.v.header.ack == 1) & (tcp.perm.fin_seq2 + 1 == tcp.v.header.ack_num)
196)
197

198 for i, state in enumerate(tcp.psm.states()):
199 setattr(tcp.psm, f"rst{i}", (state >> TERMINATE) + Pred(tcp.header.rst == 1))
200

201 tcp.event.asm = If(tcp.psm.buffering) >> Assemble()
202 return tcp

C.3 GTP Stack
The following code builds a GTP stack (Eth→IP→UDP→GTP→IP→TCP) by composing the reusable parsers.

1 stack = Stack()
2 stack.eth = eth_parser()
3 stack.ip1 = ip_parser()
4 stack.udp = udp_parser()
5 stack.gtp = gtp_parser()
6 stack.ip2 = ip_parser()
7 stack.tcp = tcp_parser(stack.ip2)
8

9 stack += (stack.eth >> stack.ip1) + Pred(1)
10 stack += (stack.ip1 >> stack.udp) + Pred(
11 (stack.ip1.psm.dump | stack.ip1.psm.last) & (stack.ip1.header.protocol == 17)
12)
13 stack += (stack.udp >> stack.gtp) + Pred(1)
14 stack += (stack.gtp >> stack.ip2) + Pred(stack.gtp.header.MT == 255)
15 stack += (stack.ip2 >> stack.tcp) + Pred(
16 (stack.ip2.psm.dump | stack.ip2.psm.last) & (stack.ip2.header.protocol == 6)
17)

Appendix D Peephole Optimizations

D.1 Direct Fast Forward
Pattern: CreateInst→ InsertSeq→ Assemble
Analysis: CreateInst creates a new instance. As such, the sequence must be empty and InsertSeq will insert the first block, which will be

directly ejected by Assemble. To this end, the insertion is redundant and the assembled data is identical to the payload of this packet. To this

end, the insertion and assemble instructions can be removed, and all the reference to p.sdu in this code block can be replaced with p.payload.
Output: CreateInst , and references to p.sdu in this code block can be replaced with p.payload, e.g., NextLayer(SDU) should be modified

to NextLayer(Payload).

D.2 Fast Forward
Pattern: InsertSeq→ Assemble
Analysis: Fast Forward optimizes the assemble operations for existing instances. To be specific, we could make a fast peek to the sequence

before we insert the block: if the sequence is empty and the block’s meta is aligned with the sequence’s window, this block can be fast

forwarded, i.e., passing the payload instead of SDU; otherwise the code maintains the same.

Output: If(IsEmpty&IsAlign)→(replace SDU with payload) → Else→ InsertSeq→ Assemble

D.3 Fast Assemble
Pattern: InsertSeq→ Assemble and without any NextLayer and Callback

Analysis: The false branch of the Fast Forward optimization means the current sequence is not empty or the current block is not aligned

with the window. We can further optimize this branch, if it has no external function call, i.e., NextLayer and Callback . Specifically, if the

packet sequence is implemented using linked list like libnids, Assemble that collects the continuous blocks will invoke several times of data

copy. However, if there is no external function that needs the assembled data, such copy is useless and can be eliminated. On the other hand,

if the packet sequence is implemented using ring buffer like mOS, the data copy is still necessary when there are holes in the sequence and

memory compaction is performed. In such cases, Assemble instruction can be eliminated. Note that we cannot eliminate InsertSeq, because

this block may be useful for next packets’ assemble in other branches.

Output: Remove Assemble .

D.4 Fast Destroy
Pattern: CreateInst→ DestroyInst
Analysis: If an instance is created and destroyed by the same packet, it means that such instance will not impact any permanent data, and all

sequence and PSM operations are meaningless. As a result, we can eliminate such creation and deletion as well as most of the instructions

between them, except Callback and NextLayer.

Output: A mostly empty instruction block except Callback and NextLayer.

