
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

In-Network Velocity Control of Industrial Robot Arms
Sándor Laki and Csaba Györgyi, ELTE Eötvös Loránd University, Budapest, Hungary;
József Pető, Budapest University of Technology and Economics, Budapest, Hungary;

Péter Vörös, ELTE Eötvös Loránd University, Budapest, Hungary;
Géza Szabó, Ericsson Research, Budapest, Hungary

https://www.usenix.org/conference/nsdi22/presentation/laki

In-Network Velocity Control of Industrial Robot Arms

Sándor Laki1, Csaba Györgyi1, József Pető2, Péter Vörös1, and Géza Szabó3

1ELTE Eötvös Loránd University, Budapest, Hungary
2Budapest University of Technology and Economics, Budapest, Hungary

3Ericsson Research, Budapest, Hungary

Abstract
In-network computing has emerged as a new computational
paradigm made possible with the advent of programmable
data planes. The benefits of moving computations tradition-
ally performed by servers to the network have recently been
demonstrated through different applications. In this paper, we
argue that programmable data planes could be a key tech-
nology enabler of cloud and edge-cloud robotics, and in gen-
eral could revitalize industrial networking. We propose an
in-network approach for real-time robot control that sepa-
rates delay sensitive tasks from high-level control processes.
The proposed system offloads real-time velocity control of
robot arms to P4-enabled programmable data planes and only
keeps the high-level control and planning at the industrial con-
troller. This separation allows the deployment of industrial
control in non-real-time environments like virtual machines
and service containers running in a remote cloud or an edge-
computing infrastructure. In addition, we also demonstrate
that our method can smoothly control 100s of robot arms with
a single P4-switch, enables fast reroute between trajectories,
solves the precise synchronization of multiple robots by de-
sign and supports the plug-and-play deployment of new robot
devices in the industrial system, reducing both operational
and management costs.

1 Introduction

In the recent decade, there has been an increasing demand
from customers towards the manufacturing industry to pro-
vide more and more customized products. Personalized pro-
duction is one of the key motivations for manufacturers to
start leveraging new technologies that enable to increase, for
instance, the flexibility of production lines. High flexibility,
in general, is needed to realize cost-effective and customized
production by supporting fast reconfiguration of production
lines, as well as, easy application development. Fast recon-
figuration and agile behavior can be achieved by moving the

Source code is available at https://github.com/slaki/nsdi22.

robot control from the pre-programmed local robot controllers
to the cloud. In industrial robotics research, cloud robotics is
a major topic and in the last years, several studies [9, 11, 13]
have shown the benefits of connecting robots to a centralized
processing entity: a) usage of more powerful computing re-
sources in a centralized cloud especially for solving Machine
Learning (ML) tasks; b) lower cost per robot as functionalities
are moved to a central cloud; c) easy integration of external
sensor data and easier collaboration or interaction with other
robots and machinery; e) reliability of functions can be im-
proved by running multiple instances as a hot standby in the
cloud and the operation can immediately be taken over from
faulty primary function without interruption.

Though centralized processing has clear benefits in making
the management of industrial processes simple and flexible,
cloud-based solutions cannot satisfy the low latency and high
reliability network requirements of real-time industrial con-
trol (e.g., velocity or torque control of actuators, robot arms,
conveyor belts, etc.). Industry 4.0 and 5G propose the use of
edge computing infrastructure for this purpose, moving these
tasks to the computing nodes located close to the industrial
environment. Though the propagation delay can significantly
be reduced with this setup, edge-computing nodes rely on the
same virtualization technologies as remote cloud infrastruc-
tures. Existing solutions require real-time operating systems
to eliminate the effects of CPU scheduling and ensure precise
timing (e.g., in velocity control the velocity vectors need to
be sent to the robot arms with accurate timing). Newer robot
arms have 2 ms or less update time. The real-time velocity
control of hundreds of such robot arms requires an ultra-fast
response time that is hard to satisfy with traditional edge
computing infrastructure.

With the advent of PISA switches [3] and the P4 lan-
guage [2], a new era has begun in which programmable net-
work devices can not only perform pure packet forwarding
but simple computations as well. This trend led to the birth of
a new computational paradigm called in-network computing,
where server-based computations or a part of them are moved
to programmable data planes. This new way of using network-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 995

https://github.com/slaki/nsdi22

ing hardware can open up the fields for low-latency real-time
calculations on the application level during the communica-
tion. Foremost, they can split long, distant control loops into
smaller ones to deal with transport latency, enable computa-
tions at line rate and ensure real-time response time in orders
of microseconds, solving the previously described problems
of cloud and edge-cloud robotics.

In this paper, we investigate how cloud robotics can benefit
from the advances of in-network computing. In particular,
we propose a system in which high-level control of indus-
trial processes can be deployed in the cloud (or edge cloud)
while low-level speed control of the robot arms is offloaded to
the programmable data plane (switch, smart NIC, or service
card). Similarly to recent practical deployment options [6],
we only assume reliable network connections with low la-
tency between industrial robots and the programmable data
plane. This design has the advantage that the high-level in-
dustrial controller does not require real-time OS and has less
strict end-to-end delay requirements. Our vision is that P4-
programmable data planes (e.g., smart NICs, service cards,
switches) could complement the computational capabilities
of cloud and edge cloud infrastructures for use cases where
real-time operation, ultra-fast response time, high throughput,
or all of these are required. Though the proposed method
controls robot arms independently, we also demonstrate that
it can easily synchronize the low level control processes of
multiple robots and thus can potentially provide support for
coordinated operation.

Moving low-level robot control to the network poses many
challenges that are addressed in this paper: 1) How can veloc-
ity control be implemented with the limited instruction-set of
programmable hardware data planes? 2) What is an efficient
trajectory representation? 3) What to do if the entire trajec-
tory does not fit into the memory? 4) How can match-action
tables be used as playback buffers of trajectories? 5) How can
trajectory segments be loaded in the limited memory of the
switch and updated without violating timing requirements?
6) What constraints are needed for the data and control plane
interactions? 7) How can the low-level control of multiple
robot arms be synchronized? 8) How can switching to an al-
ternative trajectory be solved in run-time (e.g., implementing
a collision avoidance or emergency stop operations)?

2 Related Work

The related work of this paper covers a wide area of expertise
from various research fields. We grouped them according to
the different topics.
Traditional characteristics of robots. An industrial robot
has many metrics and measurable characteristics, which will
have a direct impact on the effectiveness of a robot during the
execution of its tasks. The main measurable characteristics
are repeatability and accuracy. In a nutshell, the repeatability
of a robot might be defined as its ability to achieve repetition

of the same task. While, accuracy is the difference (i.e., the
error) between the requested task and the realized task (i.e.,
the task actually achieved by the robot). For more details
about the calculation of accuracy and repeatability, see [10].
The ultimate objective is to have both; a robot that can re-
peat its actions while hitting the target every time. When the
current mass production assembly lines are designed, robots
are deployed to repeat a limited set of tasks as accurately and
as fast as possible to maximize productivity and minimize
the number of faulty parts. The reprogramming of the robots
rarely occurs, e.g., per week, per month basis and it takes a
long time, e.g., days, requiring a lot of expertise.
Network aspects Authors of [7] compare the network pro-
tocols used nowadays in industry applications e.g., Modbus,
Profinet, Ethercat. All investigated Industrial Ethernet (IE)
systems show similar basic principles, which are solely im-
plemented in different ways. Several solutions apply a shared
memory and most systems require a master or a compara-
ble management system, which controls the communication
or has to be configured manually. Shared memory is imple-
mented via data distribution mechanisms that are based on
high frequency packet sending patterns. These packets have
to be transmitted with strict delivery time and small jitter.
IE protocols rely so heavily on the transport network that
protocol mechanisms common in broadband usage like re-
liable transmission, error detection, etc. are not among the
basic features of industrial protocols. Authors of [1] sum-
marize the fundamental trade-offs in 5G considering various
dimensions of block-lengths, spectral efficiency, latency, en-
ergy consumption, reliability, etc. Numerous aspects have to
be solved during an industry automation task even when the
robot stands still.
In-Network Industrial Control In-network control is a way
to offload critical control tasks into network elements man-
aged and organized through a remote environment. In the past
few years, numerous papers offered solutions for In-Network
Complex Event Processing (CEP). These works focus on
sensor data-driven event triggering based on specific thresh-
old values. Authors of [15] demonstrate such a system for
a strongly delay-sensitive use case, controlling an inverted
pendulum. By outsourcing the control to a distant controller,
they show how a very low RTT of 5-20ms can break the entire
system or make it oscillate badly. By combining in-network
processing with the distant controller, they were able to utilize
the ultra-low latency of local communication, and the control
of the pendulum showed identical results as with fully local
control. This paper mainly focuses on the implementation
of the LQR controller in P4 and the limitations of the P4
language. Though the method we propose in this paper also
uses a controller (PID-like) in the middle of the pipeline, it
goes much further by providing an abstract representation
of function components with error bounds that can poten-
tially be used in any controller algorithms. In addition, our
approach also handles many other problems: trajectory-based

996 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

control, switching between trajectories, synchronization of
multiple robots, etc. In [12] authors demonstrate their own
P4-based CEP rule specification language. P4CEP’s system
model works with a collection of end-systems that are inter-
connected by programmable network processing elements.
End-systems are differentiated into event sources, and event
sinks where the sinks can react to certain conditions observed
by the event sources. FastReact [20] is another In-Network
CEP system that advocates the idea to outsource parts of an
industrial controller logic to the data plane by making the pro-
grammable switches able to cache the history of sensor values
in custom data structures, and trigger local control actions
from the data plane. [4] shows a robot control system where a
P4 switch is located between an emulated robot arm and the
controller. The switch can analyze both sides of the traffic. If
it detects that a position threshold is violated by the robot, it
sends back an emergency stop message within a very short
time due to the local communication. This work only covers
this simple failure detection scenario and cannot deal with the
more advanced control of robot arms we show in this paper.

3 System Design

The main goal of this paper is to demonstrate the feasibil-
ity and practical benefits of programmable data planes in
low-level industrial control. To this end, we show how real-
time velocity control of robot arms can be implemented in
P4-programmable network devices and how they can be inte-
grated into the existing industrial ecosystem. Fig. 1 depicts
the high-level architecture of the proposed system, enclos-
ing one or more robot arms, a P4-switch, and an industrial
controller. It is important to note that this is a practical deploy-
ment option. The first phase of the introduction of wireless
communication into production cells looks similar [6].
Robot arms. We assume simple robot arms without in-built
intelligence. Each robot arm consists of a number of joints
controlled by actuators (i.e., servo motors). The actuators
work independently, stream their internal state (position and
velocity) at a constant frequency (generally in the range of
100Hz-1kHz) and require velocity control messages at a pre-
defined rate (generally 100Hz-500Hz) to keep the movement
smooth. Note that lost command messages may cause lags
in the movement or deviance from the desired path to be fol-
lowed. In our system model, each robot arm is handled as a
set of actuators controlled in sync. However, many complex
industrial processes also require the synchronized operation
of multiple robots (or other devices like conveyor belts, etc.).
In the proposed system, this case can naturally be deduced
to the single robot case by handling the cooperative robots
as a single entity with all the actuators of the participating
individual robots.
P4-switch. A programmable packet processing device sup-
porting the P4 language [2] (e.g., PISA switch, smartNIC, or
distributed service card) that processes the status streams of

Private or public

WAN

Industrial

controller
P4-switch

Trajectory information

Status message
Velocity command

Low latency, reliability High latency, jitter, loss

Figure 1: System overview.

the robot joints and generate the velocity control commands
from the state messages and the desired trajectory provided by
the industrial controller. We assume a highly reliable network
connection with suitably small propagation delay (depending
on the robot’s control frequency) between the P4-switch and
the robots.
Industrial controller. It is responsible for coordinating the
industrial processes at a high-level and thus planning the
trajectories to be followed by the robot arms, re-planning tra-
jectories if needed (e.g., for collision avoidance), verification
of the process, failure detection and response, and synchroniz-
ing high-level processes. In our system design, the controller
could be deployed at remote or edge cloud infrastructure. In
the case of remote cloud deployment, the delay between the
switch and the industrial controller could be in the order of
10-100ms with significant jitter. In both cases, the high-level
industrial controller does not require real-time OS and thus
can operate in a VM. Note that the industrial controller also
gets the status information of the robots needed for tracking
the whole industrial process, but cannot directly send com-
mands to the actuators. Instead, it fills the match-action tables
of the switch with a sequence of trajectory points needed for
the P4-switch for controlling the robots at a low-level.

During operation, each robot arm executes the trajectory
planned by the industrial controller. A trajectory is repre-
sented by a sequence of trajectory points (TPs), where each
TP has a unique identifier and is associated with a relative
timestamp (starting with 0) and the expected state (joint ve-
locities and positions) of the robot arm at the given point of
the operational timeline. Two consecutive TPs may be far
from each other in both time and joint spaces. In the proposed
method, the P4-programmable switch is responsible for the
transition between the two TPs by continuously updating the
joint velocities of the robot arm.

A trajectory example is depicted in Fig. 2. The initial trajec-
tory plan on the top is a sequence of snapshots describing the
robot states at discrete points of time. In the snapshot images,
the orange arm illustrates the final configuration to be reached
and the other denotes the desired state in the given TP. A robot
state is described by two vectors representing the desired joint
velocities and joint positions. Note that though the robot arm
moves in the Cartesian space (as shown in the figure), the in-
dustrial controller maps the trajectory to the joint space (with

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 997

Initial trajectory plan (a)

... ...

...

tpId=58

nextTpId=59

SecDuration=Δ
(a)

i

tpId=59

nextTpId=60

SecDuration=Δ
(a)

i+1

tpId=60

nextTpId=6163

SecDuration=Δ
(a)

i+2

Trajectory was

replanned

Current time

Robot moves

towards TP 59

Past Future

tpId=63

nextTpId=64

SecDuration=Δ
(b)

1

tpId=64

nextTpId=65

SecDuration=Δ
(b)

2

tpId=65

nextTpId=66

SecDuration=Δ
(b)

3

Δ
(a)

i Δ
(a)

i+1 Δ
(a)

i+2 Δ
(b)

1 Δ
(b)

2 Δ
(b)

3

tpId=61

nextTpId=62

SecDuration=Δ
(a)

i+3

Modified trajectory plan (b)

Timeti ti+1

Figure 2: Trajectory example with re-planning.

units of rad/s and rad). One can also see that the transition
from one TP to another needs to be performed in the allocated
section duration of ∆ j. In the figure, the robot is heading TP
59. The new joint velocities to be set are calculated from the
current state of the robot arm and the desired state in TP 59.
Older TPs (e.g., 58 in the figure) have become obsolete. As
soon as the target TP is reached, we switch to the next TP (60
in the example), heading the new associated robot state and
also considering ∆

(a)
i+2 dedicated for the transition (from TP

59 to 60).

3.1 System Requirements

In this section, we identify the minimal set of requirements
needed for low-level real-time control of robot arms in most
industrial use cases. We need to consider them during the
implementation of the proposed system.
Velocity-control requirement. The smallest building blocks
to be controlled are the actuators in our system. Actuators
can be controlled independently. Each of them periodically
generates status messages carrying the current joint velocity
(rad/s) and joint position (rad) values. These messages first
need to be parsed by the P4-switch responsible for low level
control. Then, the switch has to calculate the new velocity
value by applying feed-forward control (e.g., PID) that com-
bines the state, timing, and trajectory information. Finally, the
result shall be written into a command message and sent back
to the actuator. Actuators are using different state reporting
and command execution frequencies (generally the former is
higher). Actuators operate at a given frequency. Each actuator
first waits for a command message in a time window of con-
stant length. If the time window is over, the actuator executes
the command. If multiple commands are received in a time

window, only the latest is kept and all the others are dropped.

Timing requirement. The precise timing of control com-
mands is crucial since the actuators of the robot arms expect
incoming commands with a given frequency and do not toler-
ate large timeouts and jitter. In case of bursty arrival, a part of
the commands may not be executed, leading to unexpected
deviations from the desired trajectory. For example, an UR5e
robot arm expects commands at 125 Hz, requiring a command
message every 8ms. In addition, there are timing requirements
between the P4-switch and the industrial controller on loading
trajectory information. This requirement especially important
if the entire trajectory cannot be stored in the switch (or it is
not intended), and the controller periodically loads new TPs
and deletes obsolete ones.

Synchronization requirement. Though we assume that ac-
tuators can be controlled separately, they are not independent.
They belong to a single physical structure with its own kine-
matics. Thus, the actuators of a single robot need to be coupled
in the control process. In addition, most industrial processes
require the cooperation of multiple robot arms. Synchroniza-
tion requirements can be defined on different time-scales. For
example, if a robot stops in a position and then another pro-
cess is started, but there is no strict time constraint (e.g., few
seconds are acceptable) between the two processes, a remote
industrial controller can even solve the synchronization. How-
ever, in several cases, this light synchronization is not enough,
and thus the low-level control processes also need to work in
sync (on a millisecond or sub-millisecond scale).

Trajectory switching requirement. The industrial controller
continuously monitors the whole industrial process, and in-
tervenes if needed (e.g., in case of failure or simple recon-
figuration, or for collision avoidance purposes). This case is
illustrated by Fig. 2 where the trajectory is modified (the red

998 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

point on the timeline), resulting in that after TP 60 the robot
moves towards TP 63 instead of 61. Trajectory switching is
needed when a robot is reconfigured or when an obstacle ap-
pears in the robot cell and collision avoidance can be ensured
by the new trajectory.
Communication requirement. To reduce packet processing
overhead in the P4-switch, we assume that robot arms apply
a datagram-based communication protocol (e.g., native Ether-
net frames, UDP packets, etc.) for sending status information
and receiving commands. Both status and command messages
consist of simple decimal fields in a binary format that can be
parsed by the P4-switch with ease.

4 Robot Arm & Network Protocol

The robot arm used in our experiments is an UR5e [17]. UR5e
is a lightweight, adaptable collaborative industrial robot with
six joints (6-DOF). It is commonly used in research as it has a
programmable interface, can be remotely controlled, provides
industrial grade precision, and can operate alongside humans
with no safeguarding. The robot vendor also provides a real-
time emulation environment (URSim) that is fully compliant
with the real robot arms and thus can be used for testing
validation purposes.

UR5e can receive external commands described in UrScript
[19] language via its network interface. It communicates with
external controllers over TCP by default. However, the net-
work protocol can be customized by adding a URCap [18]
plugin (called daemon) to the robot. To make the commu-
nication simple and stateless, we created a URCap daemon
implementing the translation between the original TCP-based
and our UDP-based protocols.

During the protocol design we considered two practical
aspects: 1) P4 capable devices are not suited for deep packet
inspection, and thus cannot parse the entire content of large
packets. It implies that every important field used for robot
control has to be close enough to the beginning of the packet.
2) Both status and command messages of the original commu-
nication interface rely on floating point fields. However, the
P4 language does not support floating-point arithmetic. This
problem can be handled by multiplying each floating-point
value with a properly large constant and then using the stan-
dard decimal operations. Though it is possible to implement
this conversion in P4, it is much simpler and comfortable if
the value is already in a decimal format in the used protocol.

Considering the above aspects, we use the same header
structure for status and command messages encapsulated into
simple IP/UDP packets. The introduced robot header (rh)
consists of four fields: 1) a robot ID (rh.RId) used as a unique
identifier of the robot arm, 2)a joint ID (rh.JointId) which
determines the joint (or in general the actuator) of the given
robot, 3) a joint velocity (rh.velocity) expressing the current
speed (in rad/s) of the given joint in the status messages or
the new joint-speed value to be set in the commands, and 4) a

joint position (rh.position) which is the current position (in
rad) of the given joint in the status messages, and unset in the
commands.

5 Velocity Control in Data Plane

Though our prototype is implemented in P4-16 with the Tofino
Native Architecture (TNA), we aim at keeping the data plane
description in this section general. In our model, the switch
consists of two packet processing pipelines: an ingress and an
egress. The two parts have different roles and responsibilities
in the proposed implementation:

• Ingress pipeline: This part is responsible for 1) deter-
mining the current TP for the robot arm the status packet
is sent by, 2) stepping the current TP to the next TP along
the trajectory if required, or 3) switching to another tra-
jectory in case of re-planning.

• Egress pipeline: This block solves the low-level veloc-
ity control by calculating the new joint velocity value
based on the available information (state packet and tra-
jectory).

5.1 Ingress pipeline
We assume that each TP can be identified by a unique ID.
The memory layout of the ingress pipeline is depicted in
Fig. 3. One can observe that we maintain three registers for
each robot to be controlled. They store the identifiers of the
current (REGt p), the next (REGnextT p) TPs, and the absolute
timestamp (REGnextTime) when the control has to step along
the trajectory to the next TP. Fig. 2 provides a good illustration
of the role of these three values. Accordingly, the robot moves
towards the current TP (59) which should be reached at ti+1
(REGnextTime) when we step forward to the next TP (60).

The ingress pipeline also contains two tables for storing the
trajectory as a sequence of TPs and branching points where we
can switch to another trajectory. Table TPStepper represents
the trajectory to be followed by a robot arm as a linked list
of TP identifiers. For each TP p, it stores the duration needed
for moving from the previous TP to p and the identifier of the
next TP that follows p along the trajectory. One can observe
that the next TP determines how the robot arm continues its
operation after reaching p.

The current and next TPs usually belong to the same tra-
jectory, but in some cases, re-planning is required. Table
TrajectorySwitcher solves this problem by switching be-
tween two trajectories. If there is a TP p along the original
trajectory which could also be the starting point of the new
trajectory, the switch can be implemented by replacing the
next TP of p with the appropriate TP along the new trajectory.
Thus after the branching point p, the robot arm starts follow-
ing the new trajectory also loaded into table TPStepper.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 999

Let us consider the example in Fig. 3 (see Fig. 2 for illus-
tration). Table TPStepper is applied at time ti when TP 59
becomes the new TP (m.t pId = 59) the robot arm is heading
towards. At this point of time, the next TP is unknown and
is filled from the table. The table also provides the section
duration (m.secDuration = ∆

(a)
i+1) allocated for reaching TP

59. This information is used for determining the absolute
timestamp (ti +∆

(a)
i+1) when the current TP is replaced by the

next one (TP 60) and then table TPStepper is applied again.
Though it sets REGnextT p to 61 (next TP along the initial tra-
jectory), table TrajectorySwitcher overwrites it with 63,
the starting point of the new trajectory.

Algorithm 1 describes the ingress pipeline at a high ab-
straction level. At arrival, the status message from a robot
executes the program block starting with line 3. First, the
trajectory state (T pId, nextT pId and the nextTime) is red
from the registers. T pId denotes the current TP the robot is
currently heading towards and nextT pId identifies the next
TP. Then table TrajectorySwitcher is applied that replaces
the nextT pId if the current TP is a branching point. In most
cases, there is no hit in this table. In line 6, we check if
nextTime is reached. If this condition is true, further actions
(see line 11-16) are needed since we have to move to the
next TP, update states (table TPStepper) and write them into
the registers. In high-performance hardware data planes like
Barefoot Tofino, registers can only be accessed once during
the pipeline to ensure line-rate performance even at the Tbps
scale. This constraint can be resolved by resubmitting the
packet (lines 8-9). In this case, the ingress pipeline is exe-
cuted twice only. Though packet resubmission can reduce
the overall throughput, in practice this step is only performed
when the current TP is reached. Note that in software targets
the proposed pipeline could be implemented without the need
for resubmission, but in turn, we can expect higher latency
and performance limitations.

The proposed implementation has further practical bene-
fits. In case of repetitive tasks which is usual in industrial
scenarios, we can simply create loops in table TPStepper
by setting the next TP to a TP visited previously. The syn-
chronization of different robot arms can be solved either by
merging the multiple robot arms into a single entity whose
TPs represent the joint states of all participating robots or by
creating a self-loop at the starting point of trajectories to be
synchronized. In the latter case, if the section duration is long
enough for inserting branching points to trajectories to be
executed into table TrajecotrySwitcher, the internal clock
of the P4-switch ensures that robot arms start operating at the
same time and are kept in sync during the industrial process.

5.2 Egress pipeline
The egress pipeline is responsible for calculating the velocity
value to be set from the current state of the robot joint and
the current TP (t pId). The new velocity value is computed

Algorithm 1: Ingress pipeline (pseudo-code)

Robot header: rh, Metadata: m;
Registers: REGt p, REGnextT p, REGnextTime;
Tables: TrajectorySwitcher, TPStepper;
apply block

1 if rh.isValid() then
2 if m.resubmitted==0 then
3 m.tpId = REGt p(rh.RId);
4 m.nextTpId = REGnextT p(rh.RId);
5 m.nextTime = REGnextTime(rh.RId);
6 TrajectorySwitcher.apply();
7 if m.nextTime>now() then
8 m.resubmit_needed = 1;
9 m.resubmit_data = m.nextTpId;

10 else
11 m.tpId = m.resubmit_data;
12 TPStepper.apply();
13 REGt p(rh.RId) = m.tpId;
14 REGnextT p(rh.RId) = m.nextTpId;
15 REGnextTime(rh.RId) += m.secDuration;

16 send_back();
17 else
18 Handling normal traffic (e.g., l2 forwarding);

by a simple PID-like controller, as the weighted sum of three
values:

vnew = vcurr + c1(vtrg− vcurr)+ c2(ptrg− pcurr),

where cis are constants, vcurr and pcurr denote the current
speed and position of the robot joint while vtrg and ptrg are
the desired joint velocity and position in the current TP. One
can observe that the new velocity can be composed of three
linear transformations: (1− c1)vcurr, c1vtrg, c2 pdi f f , where
pdi f f = ptrg− pcurr. Each actuator may have different phys-
ical properties and thus require different ci constants in the
transformations. The three Transform tables in Fig. 4 are
used for approximating these linear transformations.

The egress control block is described in Algorithm 2. We
first apply table TargetData to obtain the desired joint speed
and joint position in the current TP (m.t pId). The actual state
of the robot joint is carried by the robot header (rh). Lines 3-7
perform the primitive calculations needed for the P-controller
mentioned previously. The new velocity is calculated as a sum
of different components. Each component is calculated from
metadata fields (diffPos stores the position difference) filled
previously or from header fields by a transformation. The
transformations are approximated by ternary or longest-prefix
match (LPM) tables filled in run-time (see Sec. 5.3). If the
calculated velocity value is too large, it can cause damage to
the robot arm. To take the physical limits of the robot joints
into account we introduce the table LimitVelocity checking

1000 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ti+1...

Registers

REGnextTime

59...

60...

REGtp

REGnextTp

bit<32>

bit<16>

bit<16>

Number of robots

table TrajectorySwitcher

rh.RId: exact m.tpId: exact Action

53 321 Set(m.nextTpId=52)

Default NoAction

... ...

table TPStepper

rh.RId: exact m.tpId: exact Action

55 59
Set(m.nextTpId=60,
m.secDuration=Δ(a)

i+1)

Default NoAction

... ...

Tables

55 60 Set(m.nextTpId=63)

55 60
Set(m.nextTpId=61,
m.secDuration=Δ(a)

i+2)... ...

1
2

4 5

3

55

Figure 3: Memory layout at ingress.

whether the calculated velocity value is outside of the safety
range, and mapping it into the normal range if needed. The
calculated joint speed is encoded into the velocity field of
robot header rh and sent back to the robot as a command
message (lines 9-11).

Algorithm 2: Egress pipeline (pseudo-code)

Robot header: rh, Metadata: m;
Registers: -;
Tables: TargetData, LimitVelocity,

TransformTrgVelocity, TransformCurrVelocity,
TransformDiffPosition;

apply block
1 if rh.isValid() then
2 TargetData.apply();
3 m.diffPos = m.trgPos - rh.position;
4 TransformTrgVelocity.apply();
5 TransformCurrVelocity.apply();
6 TransformDiffPosition.apply();
7 rh.velocity += m.trgVel + m.diffPos;
8 LimitVelocity.apply();
9 swap_ipAddresses();

10 swap_udpPorts();
11 clear_checksums();
12 else
13 Handling normal traffic;

5.3 Approximating transformations
The new velocity value is calculated by applying transfor-
mations on some header or metadata fields. In our proof-of-
concept P-controller, these transformations are simple multi-
plications with predefined constants, but this design enables
us to apply even non-linear mappings.

Such a transformation can be approximated by a Longest-
Prefix-Match (LPM) or a ternary-match table as depicted in
Fig. 4. The match key is the parameter of the function (e.g.,
a header or metadata field), considering the most significant
n bits starting with 1 (positive case) or 0 (negative case), as
illustrated in Fig. 5. The action parameter is the function value

calculated from the significant bits only. Since we only use
simple weight functions in our implementation, the relative
error of the approximated output equals the relative error of
the input, more precisely the relative error of the estimation
based on the most significant n bytes. The estimated value for
the input can vary between the largest and smallest possible
values with the given prefix. During this process, we skip the
leading zeros (or ones in case of negative values) and ignore
the last k bits. Depending on this estimation, the relative error
is less than or equal to 1/2n−1.

This approach fits well with the velocity control use case.
If the input is small – suggesting that we are close to the
target TP, we need to make a more precise movement – the
approximation has a small absolute error. If the input has
a higher absolute value – meaning that we are far from the
target value, and high precision control is not needed – the
method provides an acceptable higher absolute error.

This method can be improved with a small trick. The num-
ber of possible outputs is exactly the number of ternary en-
tries. However, we can calculate the approximated value
of (c− 1)x instead of cx and add one more x to the re-
sult in the P4 program. This technique applied in Table
TransformDiffPosition helped to improve the stability of
the applied P-controller.

5.4 Limiting joint velocities
The different joints have their own physical properties that de-
termine the maximum applicable velocity. To check the speed
constraints and limit the velocity if needed, we apply table
LimitVelocity. Let x be the velocity value (rh.velocity) to
be tested and c be a constant value. Starting with the positive
case, we can always decide whether x > c if x has the same n
long prefix as c but x[n+1] = 1 and c[n+1] = 0. Note that
x[1] denotes the most significant bit of x. The negative case is
similar. If x has the same n long prefix as c but x[n+1] = 0
and c[n+1] = 1 then x < c. For an input of k bits, we need
at most k entries in the table for each constant check. Fig. 4
shows a small example with the necessary prefix checks, con-
sidering a 16-bit long input value and predefined constant
c. In the case of signed inputs, the first bit shall be handled
carefully, but comparing to a negative number can be done
similarly.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1001

table TransformTrgVelocity

m.trgVel: lpm
Action

m.trgVel =

0b 1000 0..0/4 f(0b 1000 0..0)

Default NoAction

... ...

table TargetData

rh.RId: exact m.tpId: exact Action

55 59
Set(m.trgPos=120,

m.trgVel=1123)

Default NoAction

... ...

rh.JointId: exact

2

Tables

table LimitVelocity

rh.RId: exact rh.JointId: exact Action

53 0 rh.velocity = c

Default NoAction

... ...

rh.velocity: lpm

0b 1/1

55 60
Set(m.trgPos=180,

m.trgVel=123)
2

53 0 rh.velocity = c0b 01/2
0b 1001 0..0/4 f(0b 1001 0..0)

0b 1010 0..0/4 f(0b 1010 0..0)

0b 1011 0..0/4 f(0b 1011 0..0)

0b 1100 0..0/4 f(0b 1100 0..0)

0b 1101 0..0/4 f(0b 1101 0..0)

0b 1111 0..0/4 f(0b 1111 0..0)

0b 0100 00..0/5 f(0b 0100 00..0)

0b 0100 10..0/5 f(0b 0100 10..0)

0b 0101 00..0/5 f(0b 0101 00..0)

0b 0101 10..0/5 f(0b 0101 10..0)

table TransformCurrVelocity

rh.velocity: lpm
Action

rh.velocity =

0b 1000 0..0/4 g(0b 1000 0..0)

Default NoAction

... ...
0b 1001 0..0/4 g(0b 1001 0..0)

table TransformDiffPosition

m.diffPos: lpm
Action

m.diffPos +=

0b 1000 0..0/4 h(0b 1000 0..0)

Default NoAction

... ...
0b 1001 0..0/4 h(0b 1001 0..0)

rh.velocity = f(x) + g(y) + h(z)

53 0 rh.velocity = c0b 001/3

53 0 rh.velocity = c0b 0001/4

53 0 rh.velocity = c0b 0000 1111 1/9

53 0 rh.velocity = c0b 0000 1111 01/10

53 0 rh.velocity = c0b 0000 1111 0111/12

53 0 rh.velocity = c0b 0000 1111 0110 1/13

53 0 rh.velocity = c0b 0000 1111 0110 011/15

53 0 rh.velocity = c0b 0000 1111 0110 0101/16

rh.velocity = c if rh.velocity > c
(where c = 0b 0000 1111 0110 0100)

Figure 4: Memory layout at egress.

0 0 … ... 0 0 ? ? ? � � … … � �1 1 0 0 1 0

128-n-k bit n bit k bit

Figure 5: Considering the most significant n bits starting with
1 (positive case).

6 ROS integration

In this section, we briefly introduce our industrial controller
implementation based on the Robot Operating System (ROS)
[14] and its MoveIt [5] library used for generating and execut-
ing trajectories in a robot agnostic manner. ROS is an open-
source robotics framework used in various robotics-related
research since it can easily be extended and customized for
specific use cases. Our ROS-based industrial controller uses
MoveIt for motion planning and mobile manipulation of
robots. In the proposed system, it generates a JointTrajec-
tory message containing an array of points (timestamps, 6
joint positions, 6 joint velocities), as UR5e has six joints (as
shown in Fig. 2).

The architecture of the industrial controller is shown in
Fig. 6. The components developed to support the proposed
system are marked by gray. They have been integrated with
the standard MoveIt architecture consisting of trajectory gen-
eration using MoveIt planning, trajectory execution with
MoveIt using standard ROS interface, and communication
via the ROS driver of the UR5e arm.

To generate trajectories we can use RVIZ, a ROS visualizer
software, with a MoveIt Motion Planning Plugin. Using RVIZ,
we can generate trajectories interactively from a start point to
a selected endpoint. Another way to generate trajectories is
by 1) creating waypoints in Cartesian space, 2) then sending
those points to a ROS node, 3) it computes a trajectory in
joint space (defined by the joint angles of the robot) and 4)

ROS
UR

driver

UR
Robot

Trajectory
exporter

proxy

Switch control plane

MoveItt rajectory
execution

Alternative
trajectory

generation

Trajectory generation

MoveIt trajectory
planning

Waypoints

RVIZ

ROS

 Switch data plane

Figure 6: Trajectory generation and execution

finally it visits them in order.
The resulting joint trajectory is sent to MoveIt trajectory

execution, which uses the ROS action interface defined by
the UR driver to execute the trajectory on URSim/UR5e or it
can also send the trajectory to the P4-switch’s control plane
via the Trajectory Exporter proxy, which fills the appropriate
tables and let the switch execute the trajectory instead of the
ROS UR driver.

6.1 Alternate trajectory generation
We developed Alternate trajectory generation to extend the
existing capabilities of the system. Alternate trajectory gen-
eration and execution is a feature that leverages the ability
of the P4 system to quickly change chains of trajectories, to
execute prepared alternate trajectories in response to external
changes e.g., in the robot’s surroundings.

The alternate trajectory generation node uses MoveIt’s tra-

1002 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

jectory planning to prepare multiple branching trajectory frag-
ments, then concatenates them into a single trajectory. The
alternate trajectories are placed after each other, therefore the
timestamps of the whole branching trajectory are not strictly
incremental. Fig. 7 shows this process, the numbers indicate
the timestamps of the trajectory’s start and endpoints.

0 102 4

0 10
2 10

4 10

Figure 7: Generating a single trajectory from alternate ones

As the timestamps do not strictly increase, we can not
use the trajectory execution of MoveIt. MoveIt is not able to
execute alternate trajectories. Therefore we send the encoded
trajectory to a proxy ROS component (node) which forwards
the trajectory to the P4-switch.

We are also able to generate alternate trajectories on the fly
when a trajectory is already being executed. We achieve this
by keeping track of what is the current time in the currently
executed trajectory. As we know the current time, we know
where the robot will be in a ∆t time. That point can be the start
point of an alternate trajectory. To ensure a smooth transition
during the switch between alternate trajectories we need to
estimate the position of the switching as accurately as possible.
To do this we need to estimate the 1) the latency between the
industrial controller and the switch (RT T), and 2) the expected
trajectory generation time (tprocessing). For the estimation of
the start position (pstart(t)) at time (t) we came up with the
following formulae:

∆t = tprocessing +RT T

ppredict(t) = ptra j(t +∆t)

+ pstatus(t)− ptra j(t)

+(vstatus(t)− vtra j(t))×∆t

pstart(t) = bppredict(t)×
1

g(t)
c∗g(t)

Where the error is estimated on the trajectory calculation side
by calculating the difference of the position of the joints re-
ceived in the last status message and the executed trajectory
position. This is further adjusted by the difference of the cur-
rent velocity of the joints and trajectory velocity times ∆t.
A binning of the values with an integer division and mul-
tiplication with the original granularity (g(t)) is applied on
the predicted position value to replicate the behavior of the
ternary table on the trajectory planner side and consider the
granularity of the number representation in the specific time.
g(t) can be derived from the maximum of relative error (Mrel ,
see Sec. 5.3) by g(t) = l pm(ptra j(t),Mrel).

Fig. 8 shows an example on the error of pstart(t) compared
to pstatus(t +∆t), which is the joint position at the time of
switching.

–: ptra j(t +∆t)
–: +pstatus(t)− ptra j(t))
–: +(vstatus(t)−vtra j(t))×∆t

Figure 8: An example on the error of pstart(t) compared to
the later joint state

7 Evaluation

We carried out several experiments analyzing whether the pro-
posed implementation can hold the identified system require-
ments. To this end, we deployed a simple testbed consisting
of two servers (AMD Ryzen Threadripper 1900X 8C/16T
3.8 GHz, 128 GB RAM) and a Barefoot Tofino-based switch
(STORDIS BF2556X-1T). One of the servers (called Server-
A) is equipped with a dual port 10 Gbps NIC (Intel 82599ES)
that supports hardware-based timestamping. This node is con-
nected to the switch via two 10 Gbps links. The other server
(Server-B) is equipped with a Mellanox ConnectX-5 dual
port NIC whose ports are connected to the switch via two
100 Gbps links. For latency experiments, we used MoonGen
tool [8] on Server-A with hardware-based timestamping to
generate robot and mixed traffic. During the latency mea-
surements, Server-B continuously generated non-robot back-
ground traffic with IP/TCP packets of size 1280B. We aimed
to demonstrate the case that some ports of the P4-switch are
dedicated to handling robot traffic while others forward nor-
mal traffic in parallel. For operational experiments, we used
a real UR5e robot arm connected to the switch and Server-B
was running one emulated UR5e [17] robot using the official
URSim robot emulator. Note that the emulator provided by
the robot vendor is fully realistic and works in real-time. Dur-
ing the experiments, we did not realize notable differences
between the emulated and the real robot arm. In this scenario,
our ROS-based industrial controller was run on Server-A and
communicated with the control plane of the switch, loading
and removing trajectory points.

The performed evaluation scenarios were designed to as-
sess the proposed system in various common robotic use
cases: 1) Pick and place actions: See Sec. 7.3, 2) Welding,
painting, gluing: See Sec. 7.4, 3) Robot to robot collaboration:
See Sec. 7.2, 4) Heterogeneous sensor and actuator deploy-
ment in the robot cell: See Sec. 7.1, 5) Agile control, safety,
robot to human collaboration: See Sec. 7.5. The estimation

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1003

about scalability is covered by Appx. A.

7.1 Response time analysis and traffic load

A robot cell usually contains various sensor and actuator el-
ements, meaning that there are other traffic sources in the
robot cell than the one generated by the robot arm itself. The
Supervisory Control And Data Acquisition (SCADA) sys-
tems also generate considerate background traffic. This is
why it is important to evaluate the proposed system on a het-
erogeneous traffic mix. To this end, we carried out latency
measurements under various traffic loads. In this scenario,
MoonGen (Server-A) sent latency probes in every ms, mixed
with various background traffic. The latency probes were
valid robot status messages and thus they went through the
entire robot control pipeline.

We evaluated the system with two different background
traffic: 1) Simple IP packets of 64B and 1280B sizes were
generated at variable sending rates (1-10 Gbps). The switch
applied simple port forwarding and only the latency probes
went through the robot-control pipeline. With small packet
sizes the observed response time of robot traffic was in the
range of [0.6µs, 1.3µs]. With packet size of 1280B the re-
sponse time shifted towards 2µs as the load increased. This
phenomenon was caused by one or more large background
packets wedging between two latency probes. Note that at
10 Gbps transmitting a packet of size 1280B takes approx.
1µs. We also compared these measurements to the latency of a
simple port forwarding program, the differences were not sig-
nificant (<0.2µs). 2) Robot status messages were generated
as background traffic, and thus all the packets went through
the entire robot control pipeline. The latency results were
basically identical with the previously described case of us-
ing 64B IP packets. The response time was ranging between
0.6µs and 1.3µs.

Though these measurements only show the response time
in under-loaded situations without queueing effect, they are
represented in most industrial environments where a num-
ber of assumptions can be made: 1) predictable and stable
load since the device settings determine the packet genera-
tion frequencies; each device operates as a constant bit-rate
source. The packet sizes are known and thus the overall load
can easily be predicted. For example, a 6-DoF robot operat-
ing at 500 Hz (e.g., UR5e sends status messages at this rate;
sending in every 2ms) generates approx. 1.5 Mbps status traf-
fic on the upstream direction. Thus, the packet processing
pipeline is required to ensure non-blocking operation at 3000
packets/s for a single robot. Considering 1000 robot arms
which is far above the number of robots used in industrial
setups nowadays, the required forwarding rate is 3M pack-
ets/s (approx. 1.5 Gbps) on average. However, considering
synchronized robots whose status messages are sent within
a short time window, the bursty arrival at the P4-switch can
lead to higher peak rates to be handled. For example, if status

messages from all the robots arrive within a time window of
1ms (50% of the 2ms sending interval), the observed temporal
rate could be 3 Gbps or higher. One can observe that these
arrival rates can easily be served by currently available P4-
hardware including both smartNICs, DSCs, and P4-switches.
2) The robot-control traffic can be separated from other
traffic either by assigning dedicated ports and/or pipes to robot
traffic or using simple priority queues giving higher priority to
industrial traffic than background packets. Note that priority
queueing is supported by most of the networking elements
(also including non-P4-programmable ones). This scenario is
examined in more detail in Appx. C.

We also tested our pipeline enforcing the packet resub-
mission at ingress, but it had no visible effect on the latency
distribution. Finally, we repeated all the delay measurements
with generating robot traffic at 100 Gbps from Server-B, but
it has no effect on the observed latency at Server-A.

7.2 Synchronization measurements
Robot to robot collaboration is an important use case in any
industrial robot cell deployment. To speed up the assembly
process a usual deployment contains a robot arm moving the
part to be worked with into various reachable positions for
the other arm that has various grippers and executes a specific
assembling order. The two arms need perfect synchronization
otherwise the resulting product is faulty.

In this operational experiment, we launch the real UR5e
robot arm and an instance of the URSim robot emulator, both
are controlled by the switch and we start the trajectories in
sync and out of sync. Fig. 9 shows the time shift between the
start times of the two robots. The experiment was repeated
20 times. In the synchronized case, we created a single entity
from the two robot arms with 2×6 joints and launched the
trajectory by adding an entry to the TrajectorySwitcher table.
The result is a fully synchronized operation as depicted by
blue in the figure. In the non-synchronized case, the two en-
tries are inserted independently to start the two robots. Note
that we observe an 8 ms time shift in the worst case that is
comparable with the control frequency of the robots (125 Hz)
and can simply be caused by the 8 ms real-time window of the
robots. Though the observed time-shift is basically negligible
for two robot arms, we assume that it may be much more
significant if a larger number of robots is launched indepen-
dently.

7.3 Accuracy at stop position
The accuracy and repeatability of a robotic arm are essential
key performance indicators (KPIs) that need to be maintained
even in a cyber-physical-system, i.e., remote control over
the network. The basic pick and place, and palletizing use
cases mostly depend on them. It is a bare minimum that the
proposed system works well in these use cases.

1004 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6 8 10
Time-shift [ms]

0.0

0.5

1.0

E
C

D
F

Out of sync

In sync

Figure 9: Time shift.

−1.0 −0.5 0.0 0.5 1.0

Joint Position Error [rad× 10−7]

0.0

2.5

5.0

N
or

m
.

H
is

to
gr

am

×107

Approaching Stopped

Figure 10: Joint position error at stop.

We performed experiments to analyze the accuracy of the
control at the stop position (at the end of the trajectory) of the
robot arm. One can observe in Fig. 10 that the error from the
expected joint position was about 0.5×10−7 rad which was
caused by the applied number representation (see Sec. 5.3).
The green bars illustrate the deviance when the joint speed is
not absolute zero, but the joint is close to its target position.
Note that 0.5×10−7rad error in the joint position corresponds
to 0.5µm with a 1m long robot arm. In a robot arm with
multiple joints, the cumulative position error is still in the
order of micrometers.

7.4 Accuracy along the trajectory

The assembling quality and the endurance of a product mostly
depend on the quality of gluing, welding and painting work.
To ensure this, the robot needs to be accurate not only in the
goal positions but all along the planned trajectory.

Though the proposed implementation is highly config-
urable and supports the fine tuning of the applied P-controller,
more advanced controllers (e.g., PID) can obviously provide
more precise control. In this experiment, we measure the accu-
racy of the robot head at the trajectory points and compare the
results to the PID-based velocity control of ROS. Both ROS
and the emulated robot run on the same server, representing
ideal circumstances for ROS-based control.

Fig. 11a and 11b depict the TPs (green points) as well as
the path of the tool at the end of the robot arm (solid curves)
for controls based on ROS and P4-Switch, resp. Both paths
show a similar character. The accuracy of the two solutions
is presented in Fig. 11c. ROS’s fine-tuned PID-controller
provides a 0.1 mm accuracy in the worst case which is 3.2

mm in the case of our proof-of-concept P-controller. The
median accuracy values are 0.04 mm and 2.23 mm for ROS
and P4-Switch, respectively.

7.5 Continuous table management

Industry 4.0 introduces the concept of agile robot cell control
that requires fast reaction to external events, e.g., based on
camera or force sensor feedback. Ensuring safety during robot
and human collaboration is also critical. It is essential for the
proposed system to react fast to external triggers.

In this experiment, we used the same measurement setup
as in Sec. 7.1. We generated robot traffic at 10 Gbps and sam-
pled the latency every 1 ms. In the beginning, we loaded 3.4K
trajectory points to the switch and then started the operation.
In every 1 second, we add 1.6K new TPs and remove 10K
outdated TPs, illustrating the case when the switch is only
used as a playback buffer, and the trajectory segments are
loaded incrementally, while the old points are removed. Note
that inserting a trajectory point with 6 joints requires the inser-
tion of 12 entries into two exact-match tables. According to
realistic scenarios, a trajectory normally contains 5-10 points
in a second. Fig. 12 illustrates the latency samples and their
moving average (on the bottom), and also shows the number
of trajectory points (black) loaded into the switch in time,
marking the insertion (blue) and removal (red) phases (on the
top). One can observe that the insertion does not affect the
packet processing latency in this scenario.

8 Discussion on Possible Deployment

Apart from the theoretic aspect and the successful proof study
that the proposed system is feasible to deploy, the possibil-
ity of a real industrial deployment is much dependent on the
cost factors. A simple calculation reveals that a Tofino-based
router costs approx. 9500 USD and it can serve up to 500-
1000 robots in parallel which means that the cost of control-
ling a robot is less than 10-20 USD. It is less than applying
mini PCs for hobby use, e.g., Raspberry Pis, and far less than
certified industrial robot controllers or routers. The energy
consumption of the proposed setup is expected to be much
lower than the sum of industrial routers and robot controllers.
A network device has better transported traffic per watt ratio
than a general purpose computation device that the current
robot controllers contain. Though in industry, usually low per-
formance, but reliable old CPUs are applied. According to [3]
a programmable switch will result in about 14% extra cost,
compared to a non-programmable one, due to the larger area
requirement for transistors. It is an interesting aspect if energy
saving can be achieved by switching non-working elements
on and off. One can observe that the capabilities of a Tofino
are far more than what is required for the robot control use
case. The utilization of the device can be improved by only

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1005

x (m)

−0.6−0.4−0.2
0.0

y
(m

)

0.2
0.4

0.6
0.8

z
(m

)

−0.2

0.0

0.2

0.4

(a) ROS (PID-control)

x (m)

−0.6−0.4−0.2
0.0

y
(m

)

0.2
0.4

0.6
0.8

z
(m

)

−0.2

0.0

0.2

0.4

(b) P4-Switch (P-control)

10−3 10−2 10−1 100 101

Accuracy [mm]

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

2.6mm0.2mm

0.02mm 1.61mm

ROS P4-Switch

(c) Tool position accuracy in the TPs

Figure 11: Path of the robot arm tool in the Cartesian-space and the observed accuracy in the TPs.

2500

5000

7500

#
T

P
s

Add TPs Remove TPs

0 2000 4000 6000 8000 10000
Time [ms]

0

1000

L
at

en
cy

[n
s]

Mean

Figure 12: Dynamic insertion and removal of trajectory
points.

dedicating a part, e.g., a quarter of the switch to robot control
while other parts can work on other tasks (e.g., routing).

The current workflow of a robot is that when it is switched
on, it starts streaming out the internal status messages at a con-
stant rate. Production cells are expected to operate 24 hours
a day, so little can be done dynamically, apart from the fact
that the default power consumption is significantly lower than
current systems. The typical power consumption of a Tofino
switch is around 110 W [16], while an average server requires
400-600 W. A modern server CPU alone can consume 165 W
(Intel Xeon Gold 6348H Processor) at full load. If we com-
pare the costs of purchasing a server with similar processing
power and memory to the cheapest P4-Switch, the difference
is not too significant. For a brief discussion on x86 alterna-
tives see Appx. B. Also note that this is the first commercially
available version of the Tofino switch, and as more and more
new models appear and become more available, prices are
expected to drop.

Considering the edge-cloud deployment scenario men-
tioned in Sec. 1, offloading computations that are simple but
have real-time requirements that cannot be satisfied in a virtu-
alized environment also have practical benefits. In this case,

distributed service cards or smart NICs with P4 programmabil-
ity could be more cost effective solutions than a Tofino-based
switch. They cost around 1500-3000 USD, also enables line
rate (10-40 Gbps) processing with sub-millisecond response
time, and have a typical power consumption of 20-50 W.

9 Conclusion

In this paper, we have introduced the first in-network control
system that uses P4-programmable network devices for not
just triggering events based on threshold values, but to do
low-lever real-time velocity control for highly delay-sensitive
robotic arms that can be used in industrial automation. With
several experiments, we have proved that our system satis-
fies the most crucial factors of industrial robot control. We
measured the latency and observed that it meets the require-
ments needed for real-time control even during the constant
insertion and deletion of lookup table entries. We witnessed
a maximum of an 8 ms time shift in the worst-case scenario
between synchronous robots, making them fully capable of
collaboration. We evaluated the end-position precision per
joint to be under 0.5µm for a 1 m long robot arm, while the
accuracy along the whole trajectory to be lower than 2.6 mm
in the worst-case.

Acknowledgment

We thank the anonymous reviewers for their valuable feed-
back on earlier versions of this paper. S. Laki and P. Vörös
also thank the support of the "Application Domain Specific
Highly Reliable IT Solutions" project that has been imple-
mented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed un-
der the Thematic Excellence Programme TKP2020-NKA-06
(National Challenges Subprogramme) funding scheme.

1006 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Mehdi Bennis, Mérouane Debbah, and H. Vincent Poor.
Ultra-Reliable and Low-Latency Wireless Communi-
cation: Tail, Risk and Scale. CoRR, abs/1801.01270,
2018.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[3] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
sdn. SIGCOMM Comput. Commun. Rev., 43(4):99–110,
August 2013.

[4] Fabricio E Rodriguez Cesen, Levente Csikor, Carlos
Recalde, Christian Esteve Rothenberg, and Gergely Pon-
grácz. Towards low latency industrial robot control in
programmable data planes. In 2020 6th IEEE Confer-
ence on Network Softwarization (NetSoft), pages 165–
169. IEEE, 2020.

[5] David Coleman, Ioan Alexandru Sucan, Sachin Chitta,
and Nikolaus Correll. Reducing the barrier to entry of
complex robotic software: a moveit! case study. ArXiv,
abs/1404.3785, 2014.

[6] Comau 5G deployment.
https://www.ericsson.com/en/reports-and-
papers/ericsson-technology-review/articles/industrial-
automation-enabled-by-robotics-machine-intelligence-
and-5g, 2017.

[7] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth,
F. Golatowski, D. Timmermann, and J. Schacht. Survey
on real-time communication via ethernet in industrial
automation environments. In Proceedings of the 2014
IEEE Emerging Technology and Factory Automation
(ETFA), pages 1–8, 2014.

[8] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. Moongen: A script-
able high-speed packet generator. In Proceedings of the
2015 Internet Measurement Conference, IMC ’15, page
275–287, New York, NY, USA, 2015. Association for
Computing Machinery.

[9] Y. Guo, X. Hu, B. Hu, J. Cheng, M. Zhou, and R. Y. K.
Kwok. Mobile cyber physical systems: Current chal-
lenges and future networking applications. IEEE Access,
6:12360–12368, 2018.

[10] ISO: International Organization for Standardization.
1998. Manipulating industrial robots – Performance cri-
teria and related test methods, NF EN ISO9283. https:
//www.iso.org/standard/22244.html, 1998.

[11] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. A survey
of research on cloud robotics and automation. IEEE
Transactions on Automation Science and Engineering,
12(2):398–409, April 2015.

[12] Thomas Kohler, Ruben Mayer, Frank Dürr, Marius
Maaß, Sukanya Bhowmik, and Kurt Rothermel. P4cep:
Towards in-network complex event processing. In Pro-
ceedings of the 2018 Morning Workshop on In-Network
Computing, pages 33–38, 2018.

[13] D. W. McKee, S. J. Clement, J. Almutairi, and J. Xu.
Massive-scale automation in cyber-physical systems:
Vision amp;amp; challenges. In 2017 IEEE 13th In-
ternational Symposium on Autonomous Decentralized
System (ISADS), pages 5–11, March 2017.

[14] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust,
Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler,
and Andrew Ng. Ros: an open-source robot operating
system. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics,
Kobe, Japan, May 2009.

[15] Jan Rüth, René Glebke, Klaus Wehrle, Vedad Cause-
vic, and Sandra Hirche. Towards in-network industrial
feedback control. In Proceedings of the 2018 Morn-
ing Workshop on In-Network Computing, pages 14–19,
2018.

[16] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pe-
disich, Zhaoyang Han, Nishanth Shyamkumar, Shivani
Burad, André DeHon, and Boon Thau Loo. Flightplan:
Dataplane disaggregation and placement for p4 pro-
grams. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21). USENIX
Association, April 2021.

[17] Universal Robot 5e. https://www.universal-
robots.com/products/ur5-robot/, 2020.

[18] URCap. https://www.universal-robots.com/about-
universal-robots/news-centre/launch-of-urcaps-the-
new-platform-for-ur-accessories-and-peripherals/,
2014.

[19] URScript. https://www.universal-robots.com/how-
tos-and-faqs/how-to/ur-how-tos/ethernet-socket-
communication-via-urscript-15678/, 2017.

[20] Jonathan Vestin, Andreas Kassler, and Johan Åkerberg.
Fastreact: In-network control and caching for industrial
control networks using programmable data planes. In

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1007

https://www.iso.org/standard/22244.html
https://www.iso.org/standard/22244.html

2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), volume 1,
pages 219–226. IEEE, 2018.

0 200 400 600 800 1000
#Robots

10

20

30

#S
ta

ge
s

200 TPs/robot

100 TPs/robot

50 TPs/robot

Ingress
Egress

(a) Stage occupancy.

0 200 400 600 800 1000
#Robots

10

20

30

40

50

Re
la

tiv
e

SR
AM

 si
ze

50k TPs

200 TPs/robot
100 TPs/robot
50 TPs/robot

(b) SRAM usage.

0 200 400 600 800 1000
#Robots

10−2

100

102

104

#T
Ps

50k TPs

tep=0.1s, rtp=10TPs/s
tep=1s, rtp=10TPs/s
tep=0.1s, rtp=43TPs/s
tep=1s, rtp=43TPs/s

(c) TPs to be stored.

0 200 400 600 800 1000
#Robots

10−3

10−2

10−1

100

M
in

. t
ep

 (s
ec

) rtp=43TPs/s

rtp=10TPs/s

tupd=300ms
tupd=150ms

tupd=100ms

(d) Min. episode time.

Figure 13: Resource usage of different setups with variable
number of robot arms, different trajectory granularity and
control plane speed.

A Scalability estimation

We have carried out various micro-benchmark measurements
to estimate the scalability of the proposed in-network robot
control method in terms of both computational, memory re-
sources and the speed of interaction between data and control
planes. Fig. 13a-13b show the first experiment group where
the number of trajectory points stored by the switch for each
robot is varied. We consider three settings: 50, 100 and 200
TPs/robots. Note that in an average case, a trajectory consists
of 10 TPs in every second. These numbers can be interpreted
in two ways: 1) this is the number of TPs in the entire tra-
jectory of a given robot, 2) the TPs related to a trajectory
episode as discusses in Sec. 7.5 (Note that an epsiode of n
TPs requires space for storing at least 3n TPs in the pipeline:
expired episode to be deleted, active episode that is under
execution, upcoming episode that will be executed after the
active one). The TPs are stored in exact tables of the pipeline
that are mapped to the SRAM. One can observe that both the
number of stages and the SRAM usage scale linearly with
the number of robot arms. The increase in SRAM usage ex-
presses the rising number of table entries (6 entries in two
tables for each TP). Note that the SRAM usage could be the
same or similar in other P4-targets (e.g., smartNICs, DSCs).
However, the increase in the number of stages is directly re-
lated to the physical structure of underlying P4-device, and
could vary from target to target. In our case, SRAM is dis-
tributed among stages, and if the table is too large, it is spread
among multiple stages, increasing the stage occupancy. Note
that the P4-switch we used for evaluation is able to store at
most 50K TPs without any limitation. The TCAM usage of
the proposed method is limited and predictable. Tables used
for approximating the calculations in the PID-like controller
are mapped to the TCAM area whose size only depends on
the required control precision (Sec. 5.3).

Fig. 13c-13d focus on the dynamic use case discussed in
Sec. 7.5, showing the relationship between resource usage
(#TPs), the number of robots, the length of episodes (tep), the
granularity of trajectories (rt p: normal usage with 10 TPs/s;
fine-grained movement with 43 TPs/s) and the time (tupd)
needed the control plane for updating tables storing TPs in
data plane. Note that tupd in the figure illustrates the time
needed for adding and removing 1.6K TPs (2x10K entries),
and according to our measurements the update time scales
linearly with the number of TPs, but it cannot go below 1
ms. One can observe that in this dynamic scenario the speed
of the control plane determines both the minimum length of
a trajectory episode and the maximum number of robots to
be controlled for a given rt p. In our prototype control plane
tupd is almost 300 ms, and thus for rt p=10 TPs/s 500 robot
arms can be controlled with tep ≥ 1s. One can also see that it
requires less memory resources than the 50K limit and thus
the speed of the control plane has become the bottleneck in
this case, limiting the number of robots to be integrated.

1008 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 Gbps 5 Gbps 1 Gbps 5 Gbps 9 Gbps
Background traffic load

102

103

104

105

106

107

R
es

p
on

se
ti

m
e

(n
s)

No priority queue Using priority queue

64 byte packets

1280 byte packets

Figure 14: The observed response times in case of a 5Gbps
bottleneck

Though the first generation P4-programmable hardware
targets including smartNICs and switches have well-known
limitations, they can still be used for offloading real-time
computational tasks. We think that the next generation of such
devices that are on the horizon will give a momentum to the
use of in-network computing and enable supporting various
applications that require ultra-low latency, high-throughput
real-time and/or predictable performance. We believe that
real-time cloud and edge cloud applications like robot control
are one of the potential use cases that can benefit from in-
network computation.

B Comparison to x86

We have shown in the previous section that a single P4-switch
can be scaled up to control 500 or even 1000 robot arms, de-
pending on the use cases and settings. However, the low-level
velocity vector calculation can also be separated from the in-
dustrial controller and offloaded to a dedicated computer in a
traditional scenario. In this section, we consider a distributed
ROS deployment where the low-level control is coordinated
by a robot-driver node in ROS. For each robot arm, a dedi-
cated process is executed to receive status messages, perform
the calculations and send velocity commands. Robot-driver
nodes require real-time Linux kernel to ensure the timing
requirements. We evaluated the driver node of UR5e in a
multi-core server equipped with two CPUs (2x Intel Xeon
CPU E5-2630 2.30GHz 6C/12T, 32GB RAM). A single con-
trol process resulted in 0.19 CPU usage (out of 12, the number
of logical cores) in idle state which went up to 0.42 after the
robot arm was connected. The CPU usage scaled linearly
with the number of robot arms. The CPU limit was reached
with 45 emulated robot arms after that ROS processes started
interfering each other. The total system load was around 95%.

C Interference with regular network traffic

In Sec. 7.1, we have shown that the response time in under-
loaded situations is around 1-2µs. Though we think that the
separation of control and regular traffic could be possible in
most environments, in this section we investigate how regular
traffic with different load level affects the processing of con-
trol messages. To make the interference more visible, the port
rates of the switch are limited to 1Gbps, 5Gbps and 9Gbps.
90% of the test traffic is regular traffic (i.e., non robot control
packets) while the remaining 10% consists of robot control
messages. The load level is varied from 1Gbps to 9Gbps. The
same testbed is used as in Sec. 7.1.

In Fig. 14, we have created an artificial bottleneck of 5Gbps
by rate limiting the used egress port. The left side of the
figure depicts the case when the regular and robot control
traffic is not separated from each other. The packet size in
the regular traffic is either 64 or 1280 bytes, marked with red
or blue, resp. One can observe that when the arrival rate is
1 Gbps which is much smaller than the bottleneck capacity,
the response time is around 1µs as in our previous analysis.
Note that no packet loss is experienced in this case. However,
when the arrival rate of the test traffic is increased to 5Gbps,
the outgoing port starts being congested, packets accumulate
in the buffer and thus the observed latency of robot control
packets significantly increases (3× 106 ns = 3ms) due to
queueing and a part of the packets is lost. One can note that
the increased response times and packet losses degrade the
performance of our robot control method, making it unreliable.
With an arrival rate of 9Gbps, almost all robot control packets
are lost due to congestion. Regular traffic with high intensity
has a clear impact on the robot control traffic if they share the
same buffer.

However, most P4 programmable devices allow to define
multiple queues for each egress port and apply strict priority
scheduling between them. As depicted on the right side of
Fig. 14, directing regular and robot control traffic into two
separate buffers, applying strict priority scheduling between
them and giving higher priority to robot control traffic can
easily solve the problem of interference. Even in extreme
congestion situations (5Gbps or 9Gbps background load) the
response times still remain in sub-millisecond order with zero
packet loss.

Note that we have obtained similar results for other bottle-
neck capacities.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1009

	Introduction
	Related Work
	System Design
	System Requirements

	Robot Arm & Network Protocol
	Velocity Control in Data Plane
	Ingress pipeline
	Egress pipeline
	Approximating transformations
	Limiting joint velocities

	ROS integration
	Alternate trajectory generation

	Evaluation
	Response time analysis and traffic load
	Synchronization measurements
	Accuracy at stop position
	Accuracy along the trajectory
	Continuous table management

	Discussion on Possible Deployment
	Conclusion
	Scalability estimation
	Comparison to x86
	Interference with regular network traffic

