Starlight: Fast Container Provisioning
on the Edge and over the WAN

Jun Lin Chen, Daniyal Liagat, Moshe Gabel, Eyal de Lara

Container Provisioning

» De-facto standard approach for
packaging and deploying in cloud
» Standardized
» Lightweight
» Easy to develop and deploy

» Increasingly used outside cloud

» WAN '\

» Mobil
obile “the edge”
» Edge

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment

Starlight Contributions

» Container provisioning slow outside datacenter. postgres
P State-of-the-art optimizations make it worse!

» Root cause: design decisions from cloud.

Prov. time (s)
= N w
(@) o o o
| =
| e

accelerator for container provisioning
v" x3 faster, even in cloud @ @

v’ Backwards compatible with existing containers, We
tools, registries, standards.

Bl baseline WM eStargz

v" Practically no overhead
Starlight wget

v" Open source
@

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 3

P

Let’s expand on that...

UNIVERSITY OF

TORONTO

O
N

Lo

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 4

What are Containers?

» Container = isolated processes
» Filesystem, resources

» Container image = stack of layers
» Filesystem is union of layers.

» Easy to develop and package:
» Start with existing container...

» ...add new layer on top. —_ g — - g —
mysq| my-application-db
container image container image
P

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 5

Deploying Containers on a Node

» Standard 3-phase process for deployment:
1. PULL: get compressed layers from registry (container DB)
2. CREATE: decompress contents, create mount points.
3. START: mount the filesystem and start.

container 4—»{ :nntainerm Jq— _>[registry J

{ OverlayFS

Remote node Cloud

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 6

Fast Container Provisioning

P Containers-as-a-Service
» Amazon ECS, Azure Container Instances...

» Function-as-a-Service
» FaaSNet [Wang et al., ATC’21]

» Security and software updates
> Log4j

» User mobility
» [Tiwari et al., HotMobile’19]

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 8

Edge Challenges

» High latency, low bandwidth links
- long downloads

» Limited edge resources
— no local registry/cache
—> aggressive repurposing

» User mobility

- frequent reconfiguration

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 9

Containers on the Edge

» Deploy containers on the edge, measure provisioning time.
» containerd prov. time = download + decompress + start + ready for work
» download: just download.

Iower redis node postgres prov time triples
1S 15 - e 0° when moving to

— i A 151
better © triple # edge
o 197 N 10 - / —a=aA &
l e " P P 20 -‘___A__A-—-A
S

A
5 . .-'x-"x‘.'x ?‘M— > 4
sen Men XX 5_ it VIR D L St ke

Prov time grows

O | | 1 1 0 1 | 1 1 0 1 1 | I
0 100 200 300 0 100 200 300 0 100 200 300 [GEESICIREICCY
RTT (ms) RTT (ms) RTT (ms) download times.
—a— containerd %+ download

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 10 MM TORONTO

Containers on the Edge

» 60%—99% files not needed during startup

Harter, et al. Slacker: Fast distribution with lazy docker containers, FAST 16

P eStargz: state-of-the art, start containers early, download on-demand

redis node postgres Fast in cloud, but
15 - _, 40
15 - A slow on edge.

@ A 0 A/A 0
v A T o® | ,
c A~ _e e~ x 20 Scales badly with
— %% A~ g 2 ‘/ PVaRe 4
= alns X 5 a:” éwx...x.--x-")(" RTT

0 4 0 -4

0O 100 200 300 0O 100 200 300 0 100 200 300

RTT (ms) RTT (ms) RTT (ms) Can be SIO\{VGF
_ than containerd!
—A=— containerd —e— eStargz %= download

1S
UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 11 TORONTO

Why Slow?

» Pull-based protocol:
» Worker retrieves only layers it needs
» Multiple long HTTP requests = many roundtrips, queuing
» On-demand file requests makes this worse!

TP GET . E—
HTTP GET -

worker | HITP GET = I
HTTP GET >

o000 [XN]
UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 12 MM TORONTO

» Layer-based structure:

» Metadata stored per-layer
— extra roundtrips

» Cross-layer file duplication
- inflates downloads

» Docker Hub study:

99.4% of files are duplicated
Zhao et al, CLUSTER 19

Chen, Liagat, Gabel, de Lara

50
40
30
20
10

Download size (MB)

39
x10.5
inflation
3.7
node.js
B image size new files
&

UNIVERSITY OF

Starlight: Fast Container Deployment 13

P

Starlight

P Piecemeal approaches won'’t fix core design.
» ...and we want to be backwards compatible.

» Must rethink deployment pipeline as a whole.

» So that’s what we did with Starlight!
1. Designed new worker-cloud protocol (push-based, file-granularity).

2. Implemented components to support it.

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 16

Design of Delta Bundle Protocol

» Push-based: single request, no roundtrips
» Only send what worker needs
» All metadata before any contents

compressed
» File granularity file contents

/

Header Body

file list and }
metadata

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 17

Delta Bundle Structure

Image on worker/_ deleted

#2 B /1 E Al
Iff/{y-alOp:vl file renamed
change ¥

cont; nts changed

Image requested

#3\FL/

#4D B" F épyAy
“—~my-app:v2

= -V

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 18 vy TORONTO

Delta Bundle Structure

Image on worker file hash attributes .. source offset
etc/my.cnf B -r-------- #2 #4
#1 C D etc/ssh drwxr-xr-x #2, #4
B E Al etc/sshd _config A2 -rw-r--r-- #4 N
etc/sshd_banner F -rw-r--r-- #3 /.\
my-app:vl bin/tar D -rw-r--r-- #1,#4 [|\
root/test.txt F -rw-r--r-- H#3 //o

Image requested
Delta Bundle F A2
#3 F
header bod
#4 D B F A2 y
my-app:v2
% UNIVERSITY OF
Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 19 E’; TORONTO

Delta Bundle Structure

Image on worker

#1 C

#2 B E Al
my-app:vl

\ 4

Image requested

#3 F

#4 D B F A2
my-app:v2

Chen, Liagat, Gabel, de Lara

file hash attributes .. source offset
etc/my.cnf B -r-------- #2 #4
etc/ssh drwxr-xr-x #2 H#H4
etc/sshd _config A2 -rw-r--r-- HA ~
etc/sshd_banner F -rw-r--r-- #3 /.\
bin/tar D -rw-r--r-- #1,#4 [|\
root/test.txt F -rw-r--r-- #3 [-

Delta Bundle F A2
header body
v" Metadata in front
v" Only new contents
v No duplication SO
Starlight: Fast Container Deployment 20 ,Ey; TORONTO

Starlight Architecture

CLI

{ :nntainerm]\>
3 snapshotter <

Worker

Starlight g
(delta bur

Cloud
e A
& Jocker registry :nn)tainerm
N
Standard
)rOtOCOI protocol
dles)
> proxy

v

StarlightFS

Chen, Liagat, Gabel, de Lara

Starl

|

directory DB

ight: Fast Container Deployment 21

Starlight Operation

Worker Cloud

CLI [registry J

{ :nntainerm]

snapshotter proxy

StarlightFS directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 23

Starlight Operation

Worker Cloud

CLI [registry J
1 PULL my-app
{ :nntainerm PULL

snapshotter proxy

StarlightFS directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 24

Starlight Operation

Worker Cloud
CLI [registry J
: have my-app:vl
:nntalnerm
want my-app:v2
snapshotter > proxy
StarlightFS directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 25

Starlight Operation

Worker Cloud

CLI [registry J
retrieve contents ‘
{ container[E]] (layers)
snapshotter Proxy

retrieve list of files \

StarlightFS directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 26

Starlight Operation

CLI

{ :nntainerm]

StarlightFS

Chen, Liagat, Gabel, de Lara

snapshotter

v" Delta bundle computed

on the fly

Worker Cloud

[registry J

Starlight: Fast Container Deployment

|

compressed
layers

proxy (compute A)

|

27

list of files
and metadata

directory DB

Starlight Operation

Worker Cloud
CLI [registry J
list of files and l compressed
tainer tadat
{ :nntainerm } (c;)CMz;mer metatatd layers
snapshotter < proxy
StarlightFS directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 28

Starlight Operation

Worker Cloud
CLI [registry J
PULL finished compressed
{ cant alnerm }\ compressed file layers
contents
snapshotter < proxy
StarlightFS directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 29

Starlight Operation

Worker Cloud

cH [registry J

1 create and start container compressed

{ container 5]] compressed file layers

contents

! snapshotter < proxy

container
| mount

v' Containers start

StarlightFS directory DB

get SLM for before download
early start finishes

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 30 ¢y TORONTO

Starlight Operation

Worker Cloud
cH [registry J
compressed
{ container[4] } compressed file layers
contents
snapshotter < proxy
container
1(b|°‘:k9d) open pending
, file (will block) |
StarlightFs directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 31

Starlight Operation

Worker Cloud
cH [registry J
compressed

{ container 5] } compressed file layers

contents
snapshotter < proxy
container
(blocked)
StarlightFs directory DB

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 32

Starlight Operation

Worker Cloud
cH [registry J
compressed
{ container 5]] compressed file layers
contents
snapshotter < proxy
container
t (blocked)

StarlightFS directory DB

payload of v' Order optimized to
pending file minimize blocking

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 33

Detalls | Didn’t Discuss

» Generating optimized SLMs
P Starflight filesystem

» Trace collection

» Seekable compressed layers format
» Directory DB

» Downloader and metadata manager

Chen, Liagat, Gabel, de Lara

Figure 3: The flow of filesystem requests in Starkight

packground the downloader keeps receivin
decompresses the payloads to its desig?
tc information in the received SLM and
gests in the delta bundle. Once the decom-
pression of the payload has inished. it UACE the metadata
P mager. When a payload belongs o maltiple filcs. the down-
Joader creates hurd links to avoid writing to the underlying
flesystem multiple times.

g the payloads: it

Metadata Manager Multiple cont

he metadata mana
ianaging file's availability
sdata. 1t maintains file metadata of all the files in

er instances can start
[

from the same container image

fore acts as a centralize placc for
and its m
\ container image and manages files” actual location 10 the

Bt file system. Most importantly. it manages the availability
ot Ble contents, and notifics StarlightF'S ooce a ile payload
b decompressed. Once the worker bas downloaded the en-
ire image, we store its SLM locally so that future Comoer

{tances launch from the local storage. When removing ¥t
oldc
Tink ref
it is wsed by & newer version of thix image

Jiner image, the mctadata mARAECT FEMOVES 38Y hard

rences (f any) and copies the file 10 a new location i

4.6 The Starlight Filesystem (StarlightFS)

The customized filesystem serves two goals. Frst we nced 1o
T ontainers carly using oaly their SLM. Second. we ward
layFS
atures.

o teuse ile coatents across ayers and images. As 0¥
s other filesystems do not support both of these
‘e use FUSE [31] to implement StarlightFS.

Structure StarlightFS relics on the underlying host filesys-
tem (e.g.. ex14) d ¥
OverlayFS. Like OverlayFS, StarlightFS peovides
with 3 mergod view that combines muliple directori®s P4 the
underlying filesystem that represent multiple read-only layers
le readewrite 1
‘Starlight maintains filesystem tree in memon. created
from the merged view ToC in SLM. Each
sctual location of the file contents =
e iether i is in the read-only layer, in the read-wiite layer

ar to a typical OverlayFS

and a sis (

le (or directory)

node keeps track of

o pending payload. As with the ToC. some nodes might
O tace read-only layers from the previous version of the
image (§ 1. Nodes of pending files will be notified

contain

Starlight: Fast Container Deployment

by the metadata manager when the payload is avaik able (in
our implementation, by subscribing W Go signal chan
le entry of the

the correspondin nctadata man:

e space portion of SusghtFS is located in the snagehatie
process o allow such low-overhesd communicatios

Note that StarlightF$ does not maint
st o its own, nor docs it have any on-disk strOCtHIES Meta-

n any file system

o for flesin read-only layers s stored in the ToC. State for
iles in the read-write layer (i.c., mutable staie) 18 stored in
the underlying bost filesystem, with changes forwarded 10 it
\memediately. Foe cxampl, ifa file is deleted by the conteimct

1o the read-write layer, similarly
< of a crash, crror of remount, the
he saved SLM and

10 OverlayFS [22). In ca
tree and all other state are rebuilt using
underlying filesystem.

Operation When starting 3 costainer instance the snapshot-

o creates filesystem instance which builds a filesysiem 8¢

rom the metadata manager's ToC for this container fmage
Figure * shows the flow of operations in StarlightFS. When
ation, it is forwarded

a container instance performs a file ope
o StartightFS via FUSE (D In the best scenasio, the ¢
1ent of the file is alre:

Figure). Starlight uses the file path provided by the file
e to opens the underlying file O and then rEtum the
file handle back to the contain

file contents are still pending

ly in the local filesystem (¢.g.. extdin

®. In case the

reading metadat ightFS retums the
e etadata immediately using the information in the file node.

‘When an operation oa a pend

data (eg. SETAT e
i), Starlig
by subscribing to.a Go signal channe] asso
ToC: entry in the medtadata manager. Once the downloader
as extracted the file payload (D®. it notifis the coespond-
{ng cntry in the metadata manager, which closch the channel
s ciated with the file's ToC entry. This releasss any filesys-
o trec nodes that are waiting for the payload, w!
created instances will not be able to subscribe 15 & closed
| StarlightFS can then load the file from the

he file metadata if necessary DD
then retum the file iner instance ©©. 1f this
tadata or content, this file will be
copied from the read-only layer 1o the rc
abscaquent requests will be forwarded 10 the read-ATite L

file involves setting meta-

g file content (c.g. OPEX,
S blocks the operation until the file is ready
ed with the file’s

requi
gowrite layer. All

er.

5 Evaluation

es 1o evaluate Starlight's
performance in both controlled and real-world networks. Our

We use 21 popular container ima

N ain metric is provisioning time, defined s the e from
er. 10

the initial command o dcploy & container 00 3 W
the time the containerized

Py s ready (as
e HelloBench [26], this is determined by monitoring the

lication reports

34

!: " A0 a4
e
=
IR ‘
2

pe

Work bund
andwidh, o
Wiidence interyql

8ame container gy

Mwidth restricyion

BMbps (solid line she

(©) Clog
o time and speedup,

ed across
Top row shows,
£ the baselin
ws harmonic

100 200 330 |
B e,

B round.is;
show

Bprovement
he

BIREE provisionin,

in prov

©
B 2150 decompress

§ PO¥isioning

line approach

p latenc
standard deyi. Y. e

t
s not

time of

Blencies a1 100

in fresh acplc

e Since it i b
:ﬁm 00 the othe
teducing up

Stargz

oyments

UNIVERSITY OF

TORONTO

Evaluation

» 21 popular containers NGiNX

» 15B+ downloads in Docker Hub
» Run each until ready @

» Controlled deployments W/ E%J
» tc controls bandwidth, RTT

cassandra
» Real-world deployment é redis m @

» WAN covers 3 continents My

nede

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 35

Effect of Round-trip Time

P X =RTT O to 300ms, 100Mbs

: C .. : ostgres
» Y = resulting provisioning time 20 - POStY
» containerd v1.5.0 0
@
E = a4 .
05 20 - __ah—h —a— baseline
A
5
('
0

0 100 200 300
RTT (ms)

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 36

Effect of Round-trip Time

P X =RTT O to 300ms, 100Mbs

P Y = resulting provisioning time
» containerd v1.5.0
» eStargz v0.6.3: pull-based, on-demand

Chen, Liagat, Gabel, de Lara

postgres

I
o
|

Fresh
Prov. time (s)
(%)

o

[=
\
\
j]
Yo
\

0 100 200 300
RTT (ms)

Starlight: Fast Container Deployment

—i— paseline
—eo— eStargz

37

&

UNIVERSITY OF

P

Effect of Round-trip Time

P X =RTT O to 300ms, 100Mbs

: C .. : ostgres
P Y = resulting provisioning time 20 - POSLI .
. — Ve
» containerd v1.5.0 2 P —— baseli
> eSt 0.6.3: pull-based, on-d d SE £ o .
eStargz v0.6.3: pull-based, on-deman o £ 2“'1—-’*"‘?'!#‘ —e— eStargz
» Download optimized delta bundle L > w;{_,,__m...r....m...r Y- Wget
= Lower bound without early start o ¢
0

0 100 200 300
RTT (ms)

&

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 38

P

Effect of Round-trip Time

P X =RTT O to 300ms, 100Mbs

: L : ostgres
P Y = resulting provisioning time 20 - POSEI .
: A 7 .
» containerd v1.5.0 Z P —a— baseline
@ L
» eStargz v0.6.3: pull-based, on-demand fﬂ_g 50 - fg‘f—w"“"ﬂ —¢— eStargz
. =+ Ao =¥ wget
» Download optimized delta bundle W v R e e 9et
o Yo VooV Starlight
= Lower bound without early start o
D | | T T
0 100 200 300
RTT (ms)
@

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 39

P

Effect of Round-trip Time

postgres

40 e

Starlight: 2 e —i— baseline
. m — —
v’ Fastest (even with cloud RTT) GE . el —®= eStargz
. B = e Waus t

v’ Scales well with latency. L5 : v_;{_’_:,__m...r....‘...v o :tgler”ght
v’ Outperforms wget. N

0 100 200 300
RTT (ms)

UNIVERSITY OF

Chen, Liaqat, Gabel, de Lara Starlight: Fast Container Deployment 40 vy TORONTO

How Much Faster Are We?

speedup over containerd
(harmonic mean of 21 containers)

fresh deployment update Starlight...
o6 v’ Outperforms containerd
== y...
g > s —+—*——* 3x, estargz 1.9x
%\ % 4 - Ve, V. -
gal T - v’ Faster than wget
QE 3 g — A —A—h—h—x ° .
£ 5 2 o Vg Ve Vasees Yoy e e . v’ Scales better with RTT.
0 3 T ——o— A A A A e
£ 21— ‘ * v’ Extremely fast updates:
0 ' ' ~ 0 100 200 300 4—5x compared to fresh
0 100 200 300 RTT (ms)

—-a— paseline -e- eStargz -* Starlight -+- wget

Chen, Liagat, Gabel, de Lara

UNIVERSITY OF

Starlight: Fast Container Deployment 41 MM TORONTO

Runtime Overhead?

in-memory disk-based

» 150ms, 100Mbs

= Redis MongoDB
» YCSB Workload A S 60K 1
3 40K
» In-memory and on-disk 2 20k 1
database. S
0.6
50.4
No overhead: g s
v Workers start earlier, Sl ld v | |
5 ¢ 0 10 20 30 40 50 0 50 100 150
finish faster. Time (s) Time (s)
-- baseline - eStargz —— Starlight

v’ Same peak performance.

UNIVERSITY OF

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 42 ¢y TORONTO

Additional Experiments

» On WAN - similar results.
» In cloud = Starlight fastest.
» Bandwidth

» Scalability

» Proxy memory and runtime

» Detailed case analysis

Chen, Liagat, Gabel, de Lara

redis node postgres
8 -
K 6 - 30 A
]
@ £ 20
5 4-
="
>
o 21 10
o
0 - 0 -
. 8 12 4
2 30 4
v o b7 9 -
Jf_U‘ E 20 .
g_'z 4] 6
o3]
g 2 3 4 |l 10
0 | i 0 wl = 0 .
B o @ PR 2 <
(& VS\) QO & V_’\ QO € Ya QO
WO @™ o WO @ o WO @ o
Bl baseline I eStargz W Starlight wget

'.x---x--.x.-:F2Xﬂva¥¥

x* A

-%-- wget (8 cores)

p Starlight (4 cores)

—a— Starlight (8 cores)

Transfer rate
(Gbps/sec)

O N W & WU
L 1 1 1 L
"

T T T T T T T T
1 2 3 4 5 6 7 8
Concurrent clients

UNIVERSITY OF

TORONTO

18R] B8
N

Lo

Starlight: Fast Container Deployment 43

Conclusion and Future Work

» Container provisioning is slow. » Future work:

» Layered structure » Collect traces online
» Pull-based protocols » Predict/learn file order
P Starlight: new provisioning > Jointly optimize multi-

protocol, filesystem, storage format. container deployments

v’ Faster deployment on edge, cloud

v Backwards compatible, transparent

v" No overhead https://github.com/mc256/starlight B!
v’ Open source mgabel@cs.toronto.edu [] Pt

Chen, Liagat, Gabel, de Lara Starlight: Fast Container Deployment 44

https://github.com/mc256/starlight
mailto:mgabel@cs.toronto.edu

