Check-n-Run: a Checkpointing System for Training
Deep Learning Recommendation Models

Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, Murali Annavaram

O\ Meta



Recommendation Models are Important

e Use cases include:
* E-commerce marketplaces
* Social media platforms
* Entertainment services

* Consumes most of Al compute cycle at Meta

* >50% of training compute cycle = T
* > 80% of inference compute cycles .\“,




Recommendation Model Architecture
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High Performance Training at Meta
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The Criticality of Checkpointing

* Failure recovery (ensure
progress)

* Migrating training jobs
* Publishing snapshots
* Transfer learning
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Checkpoint Challenges

* Accuracy
* Frequency
* Write bandwidth

* Storage capacity
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Check-n-Run

e Goal: a checkpointing system that significantly reduces the required
write-bandwidth and storage capacity, without degrading accuracy

* What to Checkpoint?
* Decoupled Checkpointing
e Reducing write-bandwidth (WB) and storage capacity



Checkpointing Worktlow
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Reducing WB with Differential Checkpointing

* Motivation: model accesses are sparse
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Approaches for Differential Checkpointing

* One-Shot Differential Checkpoint
* Consecutive Incremental Checkpoint
* Intermittent Differential Checkpoint
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Checkpoint Quantization

* Compress checkpoint without degrading
training accuracy

* Approaches:
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Comparing Quantization Strategies

e Uniform quantization
* Non-uniform quantization using k-means
e Adaptive uniform quantization
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Quantization Bit-width Selection

* Quantization error may accumulate

* Select bit-width based on the probability of a click
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Overall Reduction
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Summary

* The checkpointing of large recommendation systems at scale is
challenging

* Check-n-run:
* High performance checkpointing
* Significantly reduces the required write-bandwidth and storage capacity

e Questions? aeisenman@fb.com



http://aeisenman@fb.com

