Automated Verification
of Network Function Binaries

Solal Pirelli,
Akvilé Valentukonyté, Katerina Argyraki, George Candea

=PFL

Context

[]_:::

I

14§ § 1
1111

e.g., IEEE 802.1D

Network Functions

Too complex for
automated
verification

Hard part

Contracts

Invariants Flow table

NF code

Automatically prove the code obeys contracts
by inferring the necessary invariants

Requirements

NFs need automated verification, but:
SOSP’19 | NSDI’20 | work

1. Developers use many data structures @) O O

2. Operators deploy binaries i C O

Describing data structures with
Maps
enables the automated verification
of network function binaries

Outline

Intro

Abstracting data structures
Handling binaries
Implementation

Evaluation & Limitations

Contract example: LRU.evict()

State: map M (value — age)
Pre: M.length() > 0
Post: M.contain void* LRU_expire(struct LRU* lru)

// assert len(lru.items) > ©

)

M = Mre1/,, age = lru.items[result]

e .1 // assume(lru.items.forall(lambda v, a: a <= age))

/
A4 (V,a) EN// de1 lru.items[result]

Translation

Map operations — decidable solver queries
Problem: map size is unknown

Insight: few operations per packet

Translation

Track known items explicitly,
and unknown items as an invariant

V; = get(M, K;) (K4, V;, present)
remove(M, K5) (K,, _, absent)

others: Akyvp. ...

Finding invariants

Use known items as templates:
“Values in M are > X”
“Values in My are keys in M,”

Outline

Intro

Abstracting data structures
Handling binaries
Implementation

Evaluation & Limitations

13

Network Functions

Data structures

14

Source code

M

Data structures

Network
primitives

15

Exhaustive symbolic execution

pkt_is_ipv4 A ... Ipkt_is_ipv4 A ...

16

Binaries

map_get(.. map get

-—

Dynamic
linking

Data structures

Network
primitives

17

Outline

Intro

Abstracting data structures
Handling binaries
Implementation

Evaluation & Limitations

18

Klint

. @5
NF binary g Invariant
angr inference

Contracts Translation

Data structs

19

Outline

Intro

Abstracting data structures
Handling binaries
Implementation

Evaluation & Limitations

20

Verified NFs

C:

Rust:

Bridge
Firewall
Maglev
NAT
Policer
Router

Policer

Verification performance

<2 min/ NF

Single-threaded prototype

Veritied NF performance

Prototyping new data structures is now quick
(then verify manually, as previous work)

Faster than previous verified NFs

Why only NFs?

Few and shallow “networking” operations

Explicitly modeled by our tool

Not feasible for e.g. Linux

Map limitations

Good fit for most data structures

Not applicable to all complex code: regex, ...

summary

We verify network function binaries
that use any data structure with map-based contracts

We translate maps by separating known/unknown items,
which scales and enables invariant inference

dslab.epfl.ch/research/klint solal.pirelli@epfl.ch

26

