
Closed-loop Network Performance Monitoring and
Diagnosis with SpiderMon

Weitao Wang, Xinyu Crystal Wu, *Praveen Tammana, Ang Chen, T. S. Eugene Ng

1

*

Root Causes of Performance Problems are Unpredictable

2

Sporadic
Random flow suffers at

different locations

Network-wide
Problem may involve

multiple switches

Transient
Last for a short time and

disappear quickly

Root Causes of Performance Problems Are Also Diverse

3

Sporadic
Random flow suffers at

different locations
(Multiple congestions)

Network-wide
Problem may involve

multiple switches
(ECMP load imbalance)

Transient
Last for a short time and

disappear quickly
(Transient loop)

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

Micro-burst
High priority
Victim

Path 1 (25%)
Path 2 (75%)
Victim

Wrong configuration
Normal flow

(a) Multiple contentions (b) ECMP load imbalance (c) Transient loops

10 11 10 11 10 11

0

0

1

2 3

1

2
3

0 1

2
3

0 1

2 3

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

Micro-burst
High priority
Victim

Path 1 (25%)
Path 2 (75%)
Victim

Wrong configuration
Normal flow

(a) Multiple contentions (b) ECMP load imbalance (c) Transient loops

10 11 10 11 10 11

0

0

1

2 3

1

2
3

0 1

2
3

0 1

2 3

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

0 1 2 3

4 5 6 7

8 9

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

Micro-burst
High priority
Victim

Path 1 (25%)
Path 2 (75%)
Victim

Wrong configuration
Normal flow

(a) Multiple contentions (b) ECMP load imbalance (c) Transient loops

10 11 10 11 10 11

0

0

1

2 3

1

2
3

0 1

2
3

0 1

2 3

Existing Solutions Fall Short in Visibility / Overhead / Coverage

4

Host-based
Monitor and diagnose

purely on the hosts
(Trumpet, Dapper, …)

In-Network

Always-on
Monitor the whole
network at all time
(NetSight, PINT, …)

Query-based
Add telemetry on some
switches based on query

(Sonata, Marple, …)
Lack of in-network

information
High overhead for

collecting and storing
non-related information

Low coverage due to pre-
defined monitoring scope

Another Common Shortage: An Efficient Close-loop Diagnosis

5

Diagnosis procedure in the previous monitoring works:
• Problem-specific
• Collect data in a high-recall low-precision way
• High computational complexity ---- e. g., nested loops

An ideal diagnosis procedure:
• Extensible and generalizable for many different problems / root causes
• Collect data in a high-recall high-precision way
• Low computational complexity

Outlines

• SpiderMon Design
1. Overview
2. Problem detection
3. Relevant telemetry data retrieval
4. Root cause diagnosis

• Evaluation
1. Diagnosis accuracy
2. System overhead

6

SpiderMon Overview

Always-on monitoring:
• Monitor every packet on every hop in the data plane
• Maintain causality information (for spreading “spider” packet)
• Maintain historical telemetry data (reported after recognized as related info)

7

SpiderMon Overview

Always-on monitoring:
• Monitor every packet on every hop in the data plane
• Maintain causality information (for spreading “spider” packet)
• Maintain historical telemetry data (reported after recognized as related info)

8

Root cause analysis:
• Analyze related telemetry info
• Diagnose the root causes

Find related telemetry data:
• Spread the “Spider” packets
• Report related telemetry info

Problem triggered

Monitoring and Problem Detection

Excessive accumulated queuing delay (AQD header):
• Immediate trigger and high coverage

• Monitor every packet on every hop in the data plane
• Fixed low network overhead

• Fixed small additional header length in despite of path length
• Transparent to hosts

• Added to each packet at the source ToR, remove at the destination ToR
• Tunable thresholds

• Assign different thresholds for different QoS

9

Delay = A ms Delay = B ms Delay = C ms

Switch 1 Switch 2 Switch 3

AQD = 0 AQD = A AQD = A+B AQD = A+B+C

Telemetry Collection ---- “Spider” Attack!

Determine the provenance graph for the detected problem:
• Include every switches that may “cause” the problem

• Switches on the victim’s historical path
• Switches that sent excessive data and contended with the victim

• Minimal overhead: only related telemetry data are collected

10

Victim flow
Contending flow 1

Contending flow 2

Provenance graph

Causality Data Structures For Spreading ”Spider” Packets

Trace-back victim’s path:
• Timeout bloom filter
• Record timestamp in each bucket
• If (curr_ts – bucket_ts < T) {return true;}

• All the items before curr_ts-T will be removed automatically

11

• Normal bloom filter
• Turn 0 into 1 in each matched bucket
• If (bucket == 1) {return true;}

• Cannot remove items à low precision

12

Port 1 Port 2 Port 3 …Index

0

1

2

3

4

T0 T0 T0

T0 T0 T0

T0 T0 T0

T0 T0 T0

T0 T0 T0

Hash 1

Hash 2

Hash 3

Flow 1

T1

Flow 2

T2T0 T3

Traceback flow 1T: Timeout period

13

Port 1 Port 2 Port 3 …Index

0

1

2

3

4

T1 T0 T0

T0 T0 T0

T1 T0 T0

T1 T0 T0

T0 T0 T0

Hash 1

Hash 2

Hash 3

Port 1

Flow 1

Flow 1

T1

Flow 2

T2T0 T3

Traceback flow 1

14

Port 1 Port 2 Port 3 …Index

0

1

2

3

4

T1 T0 T0

T0 T0 T2

T1 T0 T2

T1 T0 T0

T0 T0 T2

Hash 1

Hash 2

Hash 3

Port 3

Flow 2

Flow 1

T1

Flow 2

T2T0 T3

Traceback flow 1

15

Port 1 Port 2 Port 3 …Index

0

1

2

3

4

T1 T0 T0

T0 T0 T2

T1 T0 T2

T1 T0 T0

T0 T0 T2

Hash 1

Hash 2

Hash 3

Flow 1

T1

Flow 2

T2T0 T3

Traceback flow 1

Flow 1

True

True

True

False

False

False

False

True

False

Only port 1 return True for all buckets

Causality Data Structures For Spreading ”Spider” Packets

16

Search related branches
• Per-port traffic meter (more details in the paper)

Telemetry Data Collection

From every switch covered by “Spider” packets, we collect:
Per-epoch per-flow data in a circular buffer

1. 5-tuple
2. Sequence number range
3. Traffic volume / packet counts
4. Queue depth
5. Flow priority
6. In-coming / outgoing port
7. ……

17

Epoch 1 Epoch 2 … Epoch N

Telemetry Data Alignment

From every switch, we only use data from one relevant epoch to improve accuracy:
• Problems:

• Switches’ clocks are not synchronized
• Switches process the same packet at different time

• Solution:
• Use sequence number to align the telemetry data

18

Epoch 1: 100 - 156

Epoch 2: 157 - 290

Epoch 3: 291 - 404

…

Switch 1

Epoch 1: 192 - 350

Epoch 2: 351 - 492

Epoch 3: 493 - 614

…

Switch 2

Victim packet
sequence
number:

400

Identify Root Causes with Wait-for Graph

1. For every switch, replay the queue approximately based on the telemetry info:

19

f1 f1 f1f2f3f1f1f3f3

2. Parse the wait-for relation:

f1 f1 f1f2f3f1f1f3f3

Queue depth: 8 f3 wait for f1

f3

f1

f2

+5

+1
+2

Identify Root Causes with the Wait-for Graph

3. Find the potential root causes with positive degree:
(degree = incoming edge weights – outgoing edge weights)

20

4. Determine the root causes by leveraging additional info as appropriate:
Flow priority; other flow’s throughput on the same path; more details in the paper.

Evaluation Setup

• Simulator
• BMv2 Software Switch + NS3 simulator
• 945 lines of P4 code
• 52 instances from CloudLab

• 8- core 2.0 Ghz CPU and 32 GB RAM
• Fat-tree topology with 20 switches and 32 servers

• 8 ToR switches, 8 aggregation switches, 4 core switches, 4 server per ToR
• Hardware Switch prototype

• Barefoot Tofino switches
• 32 ports, 2 pipelines

• 1147 lines of P4-Tofino code

21

Diagnosis Effectiveness: Compare with Existing Solutions

SpiderMon has the best precision & recall:
1. Collect packet-level information;
2. Only within a short time interval;

22

Better precision

Be
tt

er
 re

ca
ll

• Trumpet can only infer in-network
condition based on the host-side info;

• Marple has delay to enable queries on
the related switches;

• Pathdump and SwitchPointer lack of
queueing information;

• NetSight infer the packet “postcard”
order by topology information

Multiple Micro-burst Scenario

Data Complexity Overhead and Switch Memory Overhead

SpiderMon collects and processes the
least amount of data because it selects

the related switches only.

23

SpiderMon’s memory usage is
affordable even when the flow

concurrency is very high

Summary

SpiderMon is a low-overhead high-accuracy closed-loop monitoring and diagnosis system

• Network-wide always-on monitoring

• Trigger-based selective information collection

• Efficient and generalizable diagnosis

• Achieve more accurate root causes analysis with less overhead.

24

Summary

SpiderMon is a low-overhead high-accuracy closed-loop monitoring and diagnosis system

• Network-wide always-on monitoring

• Trigger-based selective information collection

• Efficient and generalizable diagnosis

• Achieve more accurate root causes analysis with less overhead.

Thank you!

(wtwang@rice.edu)
25

mailto:wtwang@rice.edu

