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Root Causes of Performance Problems are Unpredictable
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Sporadic
Random flow suffers at 

different locations

Network-wide
Problem may involve 

multiple switches

Transient
Last for a short time and 

disappear quickly



Root Causes of Performance Problems Are Also Diverse
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Sporadic
Random flow suffers at 

different locations
(Multiple congestions)

Network-wide
Problem may involve 

multiple switches
(ECMP load imbalance)

Transient
Last for a short time and 

disappear quickly
(Transient loop)
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Existing Solutions Fall Short in Visibility / Overhead / Coverage
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Host-based
Monitor and diagnose 

purely on the hosts
(Trumpet, Dapper, …)

In-Network

Always-on
Monitor the whole 
network at all time
(NetSight, PINT, …)

Query-based
Add telemetry on some 
switches based on query

(Sonata, Marple, …)
Lack of in-network 

information
High overhead for 

collecting and storing 
non-related information

Low coverage due to pre-
defined monitoring scope



Another Common Shortage: An Efficient Close-loop Diagnosis
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Diagnosis procedure in the previous monitoring works:
• Problem-specific
• Collect data in a high-recall low-precision way
• High computational complexity ---- e. g., nested loops

An ideal diagnosis procedure:
• Extensible and generalizable for many different problems / root causes
• Collect data in a high-recall high-precision way
• Low computational complexity



Outlines

• SpiderMon Design
1. Overview
2. Problem detection
3. Relevant telemetry data retrieval 
4. Root cause diagnosis

• Evaluation
1. Diagnosis accuracy
2. System overhead
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SpiderMon Overview

Always-on monitoring:
• Monitor every packet on every hop in the data plane 
• Maintain causality information (for spreading “spider” packet)
• Maintain historical telemetry data (reported after recognized as related info)
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SpiderMon Overview

Always-on monitoring:
• Monitor every packet on every hop in the data plane 
• Maintain causality information (for spreading “spider” packet)
• Maintain historical telemetry data (reported after recognized as related info)
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Root cause analysis:
• Analyze related telemetry info
• Diagnose the root causes

Find related telemetry data:
• Spread the “Spider” packets
• Report related telemetry info

Problem triggered



Monitoring and Problem Detection

Excessive accumulated queuing delay (AQD header):
• Immediate trigger and high coverage

• Monitor every packet on every hop in the data plane
• Fixed low network overhead 

• Fixed small additional header length in despite of path length
• Transparent to hosts

• Added to each packet at the source ToR, remove at the destination ToR
• Tunable thresholds

• Assign different thresholds for different QoS
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Delay = A ms Delay = B ms Delay = C ms

Switch 1 Switch 2 Switch 3

AQD = 0 AQD = A AQD = A+B AQD = A+B+C



Telemetry Collection ---- “Spider” Attack!

Determine the provenance graph for the detected problem:
• Include every switches that may “cause” the problem

• Switches on the victim’s historical path
• Switches that sent excessive data and contended with the victim

• Minimal overhead: only related telemetry data are collected
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Victim flow
Contending flow 1

Contending flow 2

Provenance graph



Causality Data Structures For Spreading ”Spider” Packets

Trace-back victim’s path:
• Timeout bloom filter
• Record timestamp in each bucket
• If (curr_ts – bucket_ts < T) {return true;}

• All the items before curr_ts-T will be removed automatically
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• Normal bloom filter
• Turn 0 into 1 in each matched bucket
• If (bucket == 1) {return true;}

• Cannot remove items à low precision
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Causality Data Structures For Spreading ”Spider” Packets
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Search related branches 
• Per-port traffic meter (more details in the paper)



Telemetry Data Collection

From every switch covered by “Spider” packets, we collect:
Per-epoch per-flow data in a circular buffer

1. 5-tuple
2. Sequence number range
3. Traffic volume / packet counts
4. Queue depth
5. Flow priority
6. In-coming / outgoing port
7. ……
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Epoch 1 Epoch 2 … Epoch N



Telemetry Data Alignment

From every switch, we only use data from one relevant epoch to improve accuracy:
• Problems: 

• Switches’ clocks are not synchronized
• Switches process the same packet at different time

• Solution:
• Use sequence number to align the telemetry data 
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Epoch 1: 100 - 156

Epoch 2: 157 - 290

Epoch 3: 291 - 404

…

Switch 1

Epoch 1: 192 - 350

Epoch 2: 351 - 492

Epoch 3: 493 - 614

…

Switch 2

Victim packet 
sequence 
number: 

400



Identify Root Causes with Wait-for Graph

1. For every switch, replay the queue approximately based on the telemetry info: 
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f1 f1 f1f2f3f1f1f3f3

2. Parse the wait-for relation: 

f1 f1 f1f2f3f1f1f3f3

Queue depth: 8 f3 wait for f1

f3

f1

f2

+5

+1
+2



Identify Root Causes with the Wait-for Graph

3. Find the potential root causes with positive degree: 
( degree = incoming edge weights – outgoing edge weights ) 
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4. Determine the root causes by leveraging additional info as appropriate:
Flow priority; other flow’s throughput on the same path; more details in the paper.



Evaluation Setup

• Simulator
• BMv2 Software Switch + NS3 simulator
• 945 lines of P4 code
• 52 instances from CloudLab

• 8- core 2.0 Ghz CPU and 32 GB RAM
• Fat-tree topology with 20 switches and 32 servers

• 8 ToR switches, 8 aggregation switches, 4 core switches, 4 server per ToR
• Hardware Switch prototype

• Barefoot Tofino switches 
• 32 ports, 2 pipelines

• 1147 lines of P4-Tofino code
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Diagnosis Effectiveness: Compare with Existing Solutions

SpiderMon has the best precision & recall: 
1. Collect packet-level information;
2. Only within a short time interval;
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Better precision

Be
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ll

• Trumpet can only infer in-network 
condition based on the host-side info;

• Marple has delay to enable queries on 
the related switches;

• Pathdump and SwitchPointer lack of 
queueing information;

• NetSight infer the packet “postcard” 
order by topology information

Multiple Micro-burst Scenario



Data Complexity Overhead and Switch Memory Overhead

SpiderMon collects and processes the 
least amount of data because it selects 

the related switches only. 
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SpiderMon’s memory usage is 
affordable even when the flow 

concurrency is very high 



Summary

SpiderMon is a low-overhead high-accuracy closed-loop monitoring and diagnosis system

• Network-wide always-on monitoring 

• Trigger-based selective information collection

• Efficient and generalizable diagnosis

• Achieve more accurate root causes analysis with less overhead. 
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Summary

SpiderMon is a low-overhead high-accuracy closed-loop monitoring and diagnosis system

• Network-wide always-on monitoring 

• Trigger-based selective information collection

• Efficient and generalizable diagnosis

• Achieve more accurate root causes analysis with less overhead. 

Thank you! 

( wtwang@rice.edu )
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