Closed-loop Network Performance Monitoring and
Diagnosis with SpiderMon

Weitao Wang, Xinyu Crystal Wu, *Praveen Tammana, Ang Chen, T. S. Eugene Ng

. @
Il

Unconventional Wisdom

Indian Institute of Technology
Hyderabad

Root Causes of Performance Problems are Unpredictable

Sporadic Network-wide Transient
Random flow suffers at Problem may involve Last for a short time and
different locations multiple switches disappear quickly

Root Causes of Performance Problems Are Also Diverse

Sporadic Network-wide
Random flow suffers at

different locations multiple switches
(Multiple congestions) (ECMP load imbalance)

Transient
Problem may involve Last for a short time and
disappear quickly
(Transient loop)

hlh||h|h||h]|h]||h]|h hih|{|lh|h||h|h]||[h]|h
Oo11((21(3|(14|5]||6|7 o(11(12(3]14(5]|6]|7 O|11|(2131|(4|5]||6]|7
- Micro-burst

=> Path 1 (25%) ----- > \Wrong configuration
High priority == Path 2 (75%) s g

. .. Normal flow
Victim Victim

Existing Solutions Fall Short in Visibility / Overhead / Coverage

Host-based In-Network

Monitor and diagnose
purely on the hosts

(Trumpet, Dapper, ...) Always-on

Monitor the whole

network at all time

_ (NetSight, PINT, ...)
Lack of in-network

information

High overhead for

collecting and storing
non-related information

Query-based
Add telemetry on some

switches based on query
(Sonata, Marple, ...)

Low coverage due to pre-

defined monitoring scope

Another Common Shortage: An Efficient Close-loop Diagnosis

Diagnosis procedure in the previous monitoring works:

* Problem-specific

e Collect data in a high-recall low-precision way
 High computational complexity ---- e. g., nested loops

An ideal diagnosis procedure:

» Extensible and generalizable for many different problems / root causes
* Collect data in a high-recall high-precision way

* Low computational complexity

Outlines

* SpiderMon Design
1. Overview
2. Problem detection
3. Relevant telemetry data retrieval
4. Root cause diagnosis
e Evaluation
1. Diagnosis accuracy
2. System overhead

SpiderMon Overview

Always-on monitoring:

 Monitor every packet on every hop in the data plane

* Maintain causality information (for spreading “spider” packet)

* Maintain historical telemetry data (reported after recognized as related info)

SpiderMon Overview

Always-on monitoring:

 Monitor every packet on every hop in the data plane

* Maintain causality information (for spreading “spider” packet)

* Maintain historical telemetry data (reported after recognized as related info)

Problem triggered

Find related telemetry data: Root cause analysis:

e Spread the “Spider” packets * Analyze related telemetry info
* Report related telemetry info * Diagnose the root causes

Monitoring and Problem Detection

Excessive accumulated queuing delay (AQD header):
* |Immediate trigger and high coverage
* Monitor every packet on every hop in the data plane
* Fixed low network overhead
* Fixed small additional header length in despite of path length

* Transparent to hosts
 Added to each packet at the source ToR, remove at the destination ToR

* Tunable thresholds
* Assign different thresholds for different QoS

Switch 1 Switch 2 Switch 3

{ Delay = A ms} { Delay = B ms} { Delay = C ms}

AQD =0 AQD =A AQD = A+B AQD = A+B+C

Telemetry Collection ---- “Spider” Attack!

Determine the provenance graph for the detected problem:

* Include every switches that may “cause” the problem

* Switches on the victim’s historical path
e Switches that sent excessive data and contended with the victim

 Minimal overhead: only related telemetry data are collected

- \/ictim flow
mmmmml- Contending flow 1
sl Contending flow 2

@ Provenance graph

10

@

A

=7 =

Causality Data Structures For Spreading “Spider” Packets

Trace-back victim’s path:
* Timeout bloom filter
 Record timestamp in each bucket
e If (curr_ts —bucket_ts < T) {return true;}
e All the items before curr_ts-T will be removed automatically

 Normal bloom filter
e Turn O into 1 in each matched bucket
* If (bucket ==1) {return true;}
* Cannot remove items = low precision

T: Timeout period

Flow 1 Flow 2 Traceback flow 1
.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIID-
P 5]]]
TO T1 T2 T3

Index Port1 Port2 Port3

0

1

Hash 1

Hash 2

Hash 3

Flow 1 Flow 2 Traceback flow 1

EEEE N EEEEEEEEEEEEEEEEEEEEEEEEEDYMD

* -
L [

[] : " F [] []
\ 4

EEEEEEEEEEEEEEEEEEEEEEEEEEEEENY

TO T1 T2 13

Index Port1 Port2

0

1

TO

[
=
]
\ 4

Flow 1

EEEEEEEE N EEEEEEEEEEEEEEEEEEEEREDMD

Flow 2
-

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEENY

IndeXx

0
1

T1

Port 1

T2

Port 2

Traceback flow 1

]
T3

14

TO

Flow 1

Hash 1

Hash 2

Hash 3

FI_ow 1 Flow 2 Traceback flow 1

.III EEEEEEEEEEEEEEEEEEEEEEEEEREDYMD
|
|

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEED

T1 T2 13

Only port 1 return True for all buckets

Index Port1 Port2 Port3

0

1

15

Causality Data Structures For Spreading “Spider” Packets

Search related branches
* Per-port traffic meter (more details in the paper)

Telemetry Data Collection

From every switch covered by “Spider” packets, we collect:
Per-epoch per-flow data in a circular buffer
1. 5-tuple

2. Sequence number range

3. Traffic volume / packet counts
4. Queue depth

5. Flow priority

6. In-coming / outgoing port

7. ...

Epoch 1]—>[Epoch 2]—P[]—>[Epoch N

Telemetry Data Alighment

From every switch, we only use data from one relevant epoch to improve accuracy:
* Problems:

e Switches’ clocks are not synchronized

e Switches process the same packet at different time
e Solution:

* Use sequence number to align the telemetry data

| Epoch 1:100-156 | | Epoch 1:192-350 |
Victim packet [Epoch2:157-290 | Epoch 2: 351 - 492
sequence
number: Epoch 3: 291 - 404 | Epoch 3:493-614 |
400

[| | |

Switch 1 Switch 2

|dentify Root Causes with Wait-for Graph

1. For every switch, replay the queue approximately based on the telemetry info:

f3 f3 f1 f1 f3 f2 f1 f1 f1]

2. Parse the wait-for relation:

f3 f3 f1 f1 f3 f2 f1 f1 f1]

D ~EEEE—

Queue depth: 8 f3 wait for f1 +5 f1

f3

+2
+1 2

|dentify Root Causes with the Wait-for Graph

3. Find the potential root causes with positive degree:
(degree = incoming edge weights — outgoing edge weights)

(D)) (1
(D@ '
PN
QG
hlh{lh|h||h[h]||h|h
415((6]|7

0]1]{2]3

= Micro-burst
High priority
Victim

4. Determine the root causes by leveraging additional info as appropriate:
Flow priority; other flow’s throughput on the same path; more details in the paper.

Evaluation Setup

e Simulator
 BMv2 Software Switch + NS3 simulator
e 945 lines of P4 code
* 52 instances from CloudLab
 8-core 2.0 Ghz CPU and 32 GB RAM
e Fat-tree topology with 20 switches and 32 servers
8 ToR switches, 8 aggregation switches, 4 core switches, 4 server per ToR

 Hardware Switch prototype
e Barefoot Tofino switches
e 32 ports, 2 pipelines

1147 lines of P4-Tofino code

Diagnosis Effectiveness: Compare with Existing Solutions

Better precision
SpiderMon has the best precision & recall:

1. Collect packet-level information; -
2. Only within a short time interval; s T "'s'
< 80 v + oY <
* Trumpet can only infer in-network 5 £ 4
condition based on the host-side info; E 601 @ SpiderMon
* Marple has delay to enable querieson = Marp_'e —~
the related switches: o 407 ® NetSight
. . - + PathDump \ 4
* Pathdump and SwitchPointer lack of | :
.. . 20 X Switchpointer
gueueing information; v Trumpet
* NetSight infer the packet “postcard” 0 P

order by topology information 0 20 40 60 80 100
Precision(%)

Multiple Micro-burst Scenario

Better recall

Data Complexity Overhead and Switch Memory Overhead

Data complexity (flow*port)

A
k% %
A
k% %
o

k% %

-

SpiderMon collects and processes the
least amount of data because it selects

the related switches only.

TP PD SP NS MP SMon

0. -
0_-_-_l

Memol’%‘/ of Sta#eOf A P

HVY o
Oee ctionsvslze

3 B Per-port traffic meter
Z Timeout bloom filter
| mmm Telemetry tables -

5k 10k 20k 50k 100k
of flows per history length

SpiderMon’s memory usage is
affordable even when the flow
concurrency is very high

23

Summary

SpiderMon is a low-overhead high-accuracy closed-loop monitoring and diagnosis system
* Network-wide always-on monitoring

* Trigger-based selective information collection

* Efficient and generalizable diagnosis

* Achieve more accurate root causes analysis with less overhead.

Summary

SpiderMon is a low-overhead high-accuracy closed-loop monitoring and diagnosis system
* Network-wide always-on monitoring

* Trigger-based selective information collection

* Efficient and generalizable diagnosis

* Achieve more accurate root causes analysis with less overhead.

Thank youl!

(wtwang@rice.edu)

mailto:wtwang@rice.edu

