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Edge cache serverUser

CDN Cache Levels: DRAM, SSD, HDD, Origin
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Metric: P95 DRAM byte miss ratio
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Three Challenges for Learned Eviction Algorithm Deployment

Many recently learned eviction algorithms beat heuristic.

● LearningDistributedTraces (Zhou & Maas, 2021), CACHEUS 
(Rodriguez et al., 2021), LRB (Song et al., 2020).

Challenge 1: ML computation overhead

Challenge 2: reducing avg BMR w.o making any location worse

Challenge 3: measuring new alg impact under production noise
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Challenge 1: ML Computation Overhead
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Song et al., 2020
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Need to learn all objects in the past window



Challenge 1: ML Computation Overhead
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64 predictions per eviction
~19% CPU overhead
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Challenge 2: Reducing Avg BMR W.O Making Any Location Worse

Regressions in a few locations could degrade user experience
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Meas n

measured “impact”

Challenge 3: Measuring New Alg Impact Under Production Noise
Current practice: A/B test



Challenge 3: Measuring New Alg Impact Under Production Noise
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Difference up to 10%



Solutions

Heuristic Aided Learned 
Preference (HALP)

Impact distribution analysis

Challenge 1: ML computation 
overhead

Challenge 2: reducing avg BMR 
w.o making any location worse

Challenge 3: measuring impact 
under production noise
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ML focus

Heuristic Aided Learned Preference (HALP)

Insight: heuristic + preference learning
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SOA Learning

Heuristic

Byte miss ratio

Computation overhead 

HALP

LRU queue
Head Tail



HALP Design Details
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Heuristic policy
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Model & Features
● Model: two-layer MLP. 
● A pairwise prediction is 720 ns, and each training is several ms.
● Loss: cross entropy.
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Recover Impact Distribution from Measurement and Noise
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Challenge 3: measuring impact under production noise

÷ Noise 1

Noise n

Insight: explicit measure noise distribution by a no-op group

no-op



● Implementation based on Google’s SmartChoices ML service.

● Q1: Can HALP reduce the byte miss ratio without causing regression?

● Q2: What is the computation overhead of HALP?

● Q3: How does HALP compare with SOA cache algorithms?

Evaluation Setup
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HALP Robustly Improves P95 BMR by 9.1% With Negligible Regression
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1.5% of machines show 
small regression when noise 
is not taken into account



HALP Has a Modest CPU Overhead of 1.8%

16/20



HALP Has the Best BMR/CPU Overhead Combination over SOA
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Developed market trace simulation



Conclusion

● 9.1% P95 byte miss ratio reduction without making any location 
becomes noticeably worse.

● Insight: heuristic + preference learning.
● Deployed in production since early 2022.


