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CDN Cache Levels: DRAM, SSD, HDD, Origin
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Three Challenges for Learned Eviction Algorithm Deployment

Many recently learned eviction algorithms beat heuristic.

e LearningDistributedTraces (Zhou & Maas, 2021), CACHEUS
(Rodriguez et al., 2021), LRB (Song et al., 2020).

[Challenge 1: ML computation overhead ]

[Challenge 3: measuring new alg impact under production noise ]
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Challenge 1: ML Computation Overhead
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[Need to learn all objects in the past window]
Song et al., 2020
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Challenge 1: ML Computation Overhead

Past request history

Song et al., 2020
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Regressions in a few locations could degrade user experience
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Challenge 3: Measuring New Alg Impact Under Production Noise
Current practice: A/B test

//ﬁ\ -

exp

20 -

-20 -10 0 9
—— Impact (%) on P95 byte miss ratio

\_ Rackn ) Edge cluster 7/20




Challenge 3: Measuring New Alg Impact Under Production Noise
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Solutions

[Challenge 1: ML computation

overhead N
Heuristic Aided Learned ]

Preference (HALP)

[Challenge 3: measuring impact ]< (

under production noise L Impact distribution analyss]
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Heuristic Aided Learned Preference (HALP)
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HALP Design Details Model
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Model & Features

e Model: two-layer MLP.

e A pairwise prediction is 720 ns, and each training is several ms.

e Loss: cross entropy.

Feature name Dimension
Access-based
Time between accesses 32
Exponential decay counters 10
Number of accesses 1
Average time between accesses 1
Time since last access 1
Video-specific
End of chunk |
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Recover Impact Distribution from

and Noise

Challenge 3: measuring impact under production noise
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Evaluation Setup

e Implementation based on Google’s SmartChoices ML service.
e Q1: Can HALP reduce the byte miss ratio without causing regression?
e Q2: What is the computation overhead of HALP?

e (Q3: How does HALP compare with SOA cache algorithms?
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HALP Robustly Improves P95 BMR by 9.1% With Negligible Regression
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HALP Has a Modest CPU Overhead of 1.8%
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HALP Has the Best BMR/CPU Overhead Combination over SOA
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