
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Netcastle: Network Infrastructure Testing At Scale
Rob Sherwood, NetDebug.com; Jinghao Shi, Ying Zhang, Neil Spring,

Srikanth Sundaresan, Jasmeet Bagga, Prathyusha Peddi, Vineela Kukkadapu,
Rashmi Shrivastava, Manikantan KR, Pavan Patil, Srikrishna Gopu, Varun Varadan,

Ethan Shi, Hany Morsy, Yuting Bu, Renjie Yang, Rasmus Jönsson, Wei Zhang,
Jesus Jussepen Arredondo, and Diana Saha, Meta Platforms Inc.;

Sean Choi, Santa Clara University

https://www.usenix.org/conference/nsdi24/presentation/sherwood

Netcastle: Network Infrastructure Testing At Scale

Rob Sherwood ⋆, Jinghao Shi †, Ying Zhang †, Neil Spring †, Srikanth Sundaresan †, Jasmeet Bagga†

Prathyusha Peddi †, Vineela Kukkadapu †, Rashmi Shrivastava †, Manikantan KR †, Pavan Patil †

Srikrishna Gopu †, Varun Varadan †, Ethan Shi †, Hany Morsy †, Yuting Bu †, Renjie Yang †

Rasmus Jönsson †, Wei Zhang †, Jesus Jussepen Arredondo †, Diana Saha †, Sean Choi ‡

⋆NetDebug.com †Meta Platforms Inc. ‡Santa Clara University

Abstract

Network operators have long struggled to achieve reliability.

Increased complexity risks surprising interactions, increased

downtime, and lost person-hours trying to debug correctness

and performance problems in large systems. For these rea-

sons, network operators have also long pushed back on de-

ploying promising network research, fearing the unexpected

consequences of increased network complexity. Despite the

changes’ potential benefits, the corresponding increase in

complexity may result in a net loss.

The method to build reliability despite complexity in Soft-

ware Engineering is testing. In this paper, we use statistics

from a large-scale network to identify unique challenges in

network testing. To tackle the challenges, we develop Netcas-

tle: a system that provides continuous integration/continuous

deployment (CI/CD) network testing as a service for 11 dif-

ferent networking teams, across 68 different use-cases, and

O(1k) of test devices. Netcastle supports comprehensive net-

work testing, including device-level firmware, datacenter dis-

tributed control planes, and backbone centralized controllers,

and runs 500K+ network tests per day, a scale and depth of

test coverage previously unpublished. We share five years of

experiences in building and running Netcastle at Meta.

1 Introduction

Decades of accumulated network deployment experience can

be pragmatically summarized as: seemingly simple changes

to the network can break things in ways that are both catas-

trophic and non-obvious even to experts. Other times the

breakage is subtle and thus hard to detect and root cause [31].

This unfortunate state of affairs is due to the complex reality

of modern networks. Many aspects contribute to complexity

including the number and variety of devices, workloads, de-

vice types and manufacturers, as well as typical distributed

systems problems of state distribution, race conditions, con-

sensus, and propagation delays. Compounding these issues,

each of these dimensions of complexity seem to be individu-

ally increasing (more devices, more workloads, more device

types, etc.) for a multiplicative increase in total complexity.

Any change to the system risks non-obvious performance

impact or even outages; increased complexity only exacer-

bates this danger. Thus, it is natural for network operators to

want to limit changes to the network. However, this is not prac-

tical in today’s world. Many changes are initiated by network

operators out of necessity, e.g., for network growth or to re-

place obsolete, inefficient, or failed devices. Moreover, many

changes happen without consultation or control of network

operators: new users join the system, usage patterns change,

and new services are regularly deployed—all assuming that

the network will “just work”. Thus, increased complexity

coupled with regular, sometimes unvetted, change requires

constant vigilance of operators to keep networks reliable.

Modern software engineering promises us that complexity

can be managed with increased testing and test automation [2].

This is particularly true in software-as-a-service (“SaaS”)

models where large distributed systems with thousands of

active developers continuously change under the covers, unno-

ticed by end-users, and rarely introducing bugs. These systems

rely heavily on various levels of unit, regression, performance,

stress, and end-to-end testing to continuously ensure that the

proposed changes do not break desired functionality. Only

changes that do not break tests are allowed to land (“continu-

ous integration” - CI) and automated tooling regularly applies

these changes to the production systems and monitors the

state of new deployments (“continuous deployment” - CD)

for regressions. With sufficient test coverage, even non-trivial

changes (e.g., a large refactoring) can be performed safely.

It should, in theory be possible to run a network with both

high-reliability and a high rate of change, using SaaS prin-

ciples. However, this assumes that it is possible to verify by

exhaustion that the network works correctly before and after

a proposed change, which in turn requires writing an offline

non-production test for every conceivable situation. This sim-

ple assumption is challenging to meet in practice. In this paper,

we first use the well-known testing matrix [21] concept to

quantify the complexity of network testing in production. In

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 993

addition to the theoretical analysis, we reveal the real-world

challenges of testing large network systems. Motivated by

them, we share the development and operation of a single

automated, centralized network testing system: Netcastle,

which has been in production for five years at Meta. This

paper provides the following contributions:

First, we analyze the complexity of network testing for-

mally using the concept of the testing matrix and quantify

testing complexity in a production network. Further, we re-

view the limitations of our original test methodologies and

use them to derive the requirements for an idealized network

testing as a service system (§2) including the need for fungi-

ble shared hardware resources, dynamic L1 topologies, and a

testing pyramid hierarchy that trade-off control vs. coverage.

This is the first work that provides systematic and quantitative

analysis of the network testing problem.

Second, we present Netcastle, a collection of software and

hardware systems that provide network testing as a service

(§4). It hides low-level resource management details with

high-level abstractions that ease test development. Its man-

agement layer automatically handles test scheduling to maxi-

mize resource utilization and minimize noise. In addition, it

leverages advanced hardware modules such as optical switch

and smart power distribution units (PDUs) to provide flexible

topology and isolation in a common physical infrastructure.

Third, We share five concrete testing use cases built on

top of Netcastle infrastructure, including data center network

testing, wide-area Backbone network testing, FBOSS white-

box switch testing, and OpenBMC firmware testing (§5). They

not only provide details of real-world network tests but also

demonstrate how Netcastle enables them flexibly.

Fourth, We evaluate Netcastle’s scalability and usability

in §6. It comprises over 500 racks with 3MW power and

thousands of switches. It supports 171 test scenarios across

multiple teams in Meta. It manages 87K assets and receives

495K reservations per day, which is around 6 reservations per

second. The services handle 37M requests daily at an average

of 428 queries per second. Moreover, we show its impact with

five severe bugs that were caught by Netcastle which would

otherwise cause catastrophic outages.

Fifth, as the first to propose and share the network testing

as a service framework with academia, we discuss the test-

ing implications for network complexity and possible future

research directions in §7.

2 Motivation

We first motivate the problem by leveraging a well-known

metric in software engineering, the test matrix [21]. Intuitively,

complexity is a function of the building blocks of the network:

e.g., features, components, and device types. In a well-run

system, all individual elements will have corresponding tests

to ensure they are functioning correctly; as will the interaction

between the elements. Thus, the more complex a system, the

more tests needed to validate correctness, and thus the larger

the test matrix. For the largest networks, such as at Meta, the

testing system complexity itself can limit the rate of change

of the network and is therefore worth studying on its own.

To illustrate the above, in this section, we quantify the test

matrix for a single software system and show how it can grow

multiplicatively over features, tests, etc. We then describe how

the composition of systems in a network make the overall test

matrix grow exponentially. This untrammelled growth serves

as the primary motivation for Netcastle; the bigger the test

matrix, the more engineering that is required to tame it. More

discussions of test matrix are in §A.

2.1 A Single Project’s Testing Matrix

FBOSS [5, 29] is the software that manages the switch hard-

ware of Meta’s data centers. Its many functions include trans-

lating high-level messages from the routing stack to the un-

derlying hardware, exporting statistics, and sourcing network

alerts (e.g., port down). FBOSS is updated across the global

fleet at least monthly. With each new code or configuration

change, the FBOSS binary is tested against all elements of its

test matrix to ensure none of the new changes have (a) bro-

ken other features (e.g., does ARP expiration still work?), (b)

caused a performance problem (e.g., did the route insertion

rate drop below a threshold), or (c) caused a regression in a

critical scaling dimension (e.g., maximum routes supported).

The FBOSS test matrix has the following dimensions:

• Each switch hardware platform deployed in production [1]:

e.g., Wedge40/Wedge100/Wedge400 (rack switches), Mini-

pack/Minipack2 (100G/200G fabric switch)

• Each Vendor SDK type/version: e.g., Broadcom SDK

6.5.17, 6.5.18, SAI

• Each boot mode: cold (empty ASIC memory), warm (pre-

populated ASIC memory)

• Each feature test: 800+ different features – see "fboss/f-

boss/agent/hw/bcm/tests/*" in [29]

Validating that a given change has not caused a regression

requires all combinations of (6 hardware types) × (3 SDK

versions) × (2 boot modes) × (800 feature tests) = 28,800

tests. Each test can take from a few seconds to tens of minutes

to run; a serial run of all FBOSS tests would take (imprac-

tically) days to finish. Developers may launch several test

runs daily and there are dozens of developers, resulting in

hundreds of thousands of test runs per day from this single

software project (more data in §6.1.1 and Figure 8).

While it might be tempting to take short cuts in this test

matrix, e.g., test more intelligently than the brute-force com-

bination of all dimensions, experience has shown that this can

lead to bugs being deployed into production. For example, it is

not uncommon for a bug to only affect a single feature on one

SDK version and one switch type. Predicting these unlikely

interactions in advance is hard and predicting incorrectly can

994 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cause an outage, so our hard-won lesson is that brute-force

testing all combinations is necessary.

Software engineering best practices dictate that every new

feature or change should add its own tests, thus adding com-

plexity to the system. How much complexity a change adds

depends exactly on how it affects the test matrix:

• New element to an existing dimension: When the FBOSS

team introduced a new switch type, Minipack, they in-

creased the “switch hardware” testing dimension from 5

to 6 devices, resulting in a corresponding 20% increase in

tests from 24,000 per run to 28,800 tests per run. This is

the least complex type of change.

• Adding a new test matrix dimension: This is more

complex—even a simple dimension with a binary element

doubles the size of the test matrix; more elements would

result in a correspondingly larger matrix. For example, the

FBOSS team experimented with the Algorithmic Longest

Prefix Match (ALPM) route memory storage algorithm

which increases route capacity. Since ALPM potentially af-

fected all tests and was not initially deployed pervasively, it

required a new binary dimension to the test matrix, ALPM

off vs. ALPM on, or a 100% increase in test matrix size.

• Adding multiple new dimensions to the test matrix: An

example of a dimension with potentially more elements is

the parameter values for Explicit Congestion Notification

(ECN) support. ECN has a threshold parameter for when to

mark packets and every queue has a different allocation of

the shared buffer—forming two independent testing dimen-

sions. In practice, we explored 4 different ECN threshold

values and 3 different queue allocations for a net 1200%

increase in test matrix size.

2.2 Multiple Project Combinatorial Explosion

Above, we showed that a single network component can have

a very large number of tests; testing the network as a whole

across different software components results in a combina-

torial explosion of tests, e.g., does feature A in version B of

FBOSS correctly inter-operate with feature X in version Y of

BGP? For the number of software systems and features that

interact, this testing matrix quickly become intractable. To

see why, we note that FBOSS updates the global data center

fleet software every two weeks, and the Backbone controller

and switch firmware (details in §5) every 3-6 weeks. Such

frequent large-scale releases are only possible if we can have

safe, efficient, and extensive testing.

3 Evolution and Challenges

Before Netcastle, every network team ran their own indepen-

dent test lab and processes. As a result, we have a number

of different physical facilities for data center network testing,

new hardware testing, backbone network testing, etc. Each of

them is set up manually with a small number of switches un-

der a fixed wiring, and hard-coded with static configurations.

Making changes to the testbed often requires physical access,

together with manual and ad-hoc efforts.

We term these disparate labs “traditional” and in this sec-

tion, describe key problems with that approach that moti-

vated the Netcastle design. Network testing labs must be

isolated from the production network, but this isolation and

non-standard testing configurations lead to maintenance chal-

lenges. Thus a common theme of traditional test lab problems

is “lab rot”— the tendency for labs to accumulate old configu-

rations, forgotten topologies, unmanaged devices, and unclear

ownership. Lab rot increases uncertainty in the test signal (is

it my code or the lab that is broken?), risks security problems

(e.g., missing patches), and wastes resources that users hoard

to protect against the misconfigurations of others. This gener-

ation of testing exposed several challenges that leads to the

Netcastle design, which is summarized in Table 1.

3.1 Physical resource limits

Limited Lab Scale, Unbounded Device Heterogeneity. Test

labs are an extra expense, so are typically much smaller than

production networks. When a test lab is allocated to each

individual team, they are particularly limited in size, making it

difficult to find problems that only appear at production scale

(e.g., table exhaustion) or infrequently (e.g., race conditions).

At the same time, network testing is meant to confirm that

device A will interoperate with device B, across all deployed

device types and all relevant configurations. Compounding

this interoperability problem is that meeting the relevant spec-

ification or RFC alone is not necessarily sufficient; real inter-

operability requires “bug-level compatibility” testing which

requires all n2 pairs. Further, more device types are added

to the network faster than old device types are decommis-

sioned, resulting in unbounded device heterogeneity, and high

demand for testing. Because individual teams maintain small

scale test labs, this results in compromises to test coverage.

Device, Power, and Space Fragmentation. Physical reali-

ties mean that at lab construction time, each row and each

rack within that row is allocated an amount of space (rack

units) and electrical power (kilowatts) that is cost prohibitive

to change. However, many test setups require locality in the

form of direct physical connection. This means that when con-

structing topologies of nearby resources that can be directly

connected, fragmentation is possible: devices in a row that

are not used by one test setup may be too few to be usable by

another. This fragmentation can be aggravated if test device

use is of unbounded duration or devices cannot be reclaimed.

3.2 Automating test configurations

Static, Manually Maintained Topologies. A hardware test net-

work must support many topologies: physical cables that di-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 995

Network Testing Challenges Addressed By Netcastle

Physical Disparate Testing Labs Automated Device Enumeration + Lab Syncer (§4.5)

resource Limited Scale Fungible Centralized Resource Pool (§4.1)

limits Device, Power, Space Fragmentation Centralized Fiber Infrastructure (§4.2, §4.3)

Automate config Static, Manual Topologies Any-To-Any Optical Interconnects (§4.3)

Manage and Large Testing Matrices Netcastle Test Runner (§4.4) parallelization

schedule Test Harness Hording Finite Reservations + Usage Monitoring (§4.1)

tests Testing Conflicts Reservations (§4.1, §7.7)

Reduce test Broken Testing Devices Lab Doctor (§4.6)

noise Test devices not maintained Lab Doctor (§4.6) + Finite Reservations (§4.1, §7.5)

Debug tests Network Testing Distributed System Respect the Testing Pyramid (§7.3)

Table 1: Summary of Problems Resolved By Netcastle Design

rectly connect the devices under test. It is not practical to

manually rearrange cables at the time scales of when tests run:

cable moves can take up to a day to schedule from onsite per-

sonnel, while tests run many times per second. Instead, avail-

able devices are partitioned into different manually configured

topologies, e.g., Clos, star, or snake. With this partitioning, it

is not sufficient to have a device of type A available; it must

also be cabled appropriately. Ultimately, this means more

device types are needed for tests with different topologies.

At the same time, the manual maintenance that supports

standard topologies makes it more difficult to manage one-off,

experimental topologies. “Innovative” cabling decisions (i.e.,

“who ran this fiber through the ceiling!? and what will break if

I unplug it?”) meant to support these topologies can become

difficult to manage and contribute to lab rot.

3.3 Managing and scheduling tests

Test Equipment Hoarding. Test lab users tend to hoard equip-

ment, not through malice, but as a practical reaction to the

difficulty of acquiring reliable test gear. Once a user has gone

through the significant effort to get a test harness installed,

debugged, and working correctly, they are rightly hesitant to

release ownership because the cost of setting it all back up

again is high. Hoarding aggravates the problem of limited

lab scale (fewer available resources of specific types) and

fragmentation (fewer available resources in specific racks).

Test conflicts. Unfortunately, one test may adversely impact

another. Although labs are designed for test isolation, due to

hidden dependencies on external services, unclear ownership,

and raw complexity it is inevitable that some amount of test

breakage occurs due to stepping on toes. A simple example is

mistakenly believing a device/cable was not in use and chang-

ing it in the middle of someone else’s test . More subtly, net-

working devices often have non-obvious inter-dependencies:

the Wedge series of switches have a main CPU complex run-

ning Linux (the “microserver”) and a completely separate

baseboard management controller (BMC [10]). This archi-

tecture allowed a different developer to mistakenly log into

each system on the same switch and run tests in parallel with

apparent but incomplete isolation. In most cases a test on the

microserver would not affect a test on the BMC, but under cer-

tain test workloads, e.g., PCI controller reset, it would cause

subtle and hard to debug test breakage. Also, we discuss in

§ 7.7 a hard-to-fix architectural issue in traditional labs where

test equipment often depended on other test equipment.

3.4 Reducing testing signal noise

Tests leave devices in complex, broken states. Tests intention-

ally run on questionable code, configurations, and topologies.

As a result, they can break devices in obscure and hard to

revert ways. For example, a test configuration may disconnect

a switch from its console server and management interfaces,

making it unreachable without onsite intervention. In extreme

cases, e.g., bad firmware, it is possible to cause permanent

physical damage to the hardware. This need to verify and de-

bug test equipment before use both justifies the desire to hoard

test equipment and also takes resources offline, compounding

problems of scale and fragmentation.

Test devices are not maintained like production devices. Large

scale production networks are maintained with ruthless ho-

mogeneity and pervasive automation. Because lab networks

are heterogeneous and transient, they are both hard to auto-

mate and cannot be easily directly managed with existing

production management tooling. As a result, software up-

grades, security patches, system problem detection (“did the

disk fill up?”, “did the optic stop working?”), hardware fault

detection, etc., typically lag behind the production network,

leaving devices in various states of disrepair.

3.5 Debugging complex tests

Network testing is distributed systems. While a test setup is

simple to sketch on paper, e.g., “n1 nodes from vendor X , n2

nodes from vendor Y , running software of a certain version

and a certain topology, send messages m1 . . .mn, and a link

goes down at time t”, actually deploying and validating that

these parameters are setup and timed correctly is a complex

distributed systems problem. Test devices can be unavailable,

996 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

temporarily lose connectivity, have bugs independent from

the target of the test (e.g., from previous tests), etc. Similarly,

correctly sequencing the control signals that cause test events,

e.g., “send a BGP HELLO and then the link goes down”, and

read their results so that the test runner’s understanding of

the current state correctly reflects the physical reality (“did

the link actually go down? Before or after the HELLO?”)

reduces directly to standard distributed systems consensus

problems. And while one might expect that test labs do not run

in a byzantine adversarial model and thus consensus should

be easy, practical experience shows that significant time is

spent debugging the tests themselves; and the bigger and

more complicated the test, the more things that can go wrong.

Ultimately, tests need to be highly repeatable and problems

in the test, e.g., 1 in 1000 race conditions in the test code

adds unacceptable noise if it is supposed to catch even less

frequent race conditions in the systems under test.

4 Netcastle Testing Infrastructure

The Netcastle team provides “network test infrastructure as

a service”. The team does not write the tests, instead they

provide and maintain the backend software and lab resources,

and document best practices so that partner teams (in § 5) can

focus on testing their own code instead of on the challenges

in § 2. Figure 1 shows this interface. In this section, we

describe how Netcastle addresses the problems described

in § 3. The relationship between the problems and features

to address them is summarized in Table 1. By using these

complementary solutions, more and larger tests are made

possible, often by avoiding “lab rot".

The goal of Netcastle is to combine independent, smaller

test labs from different teams into a communal pool of test

resources, eliminating fragmentation and scale limitations.

The project aims to replicate the cloud IaaS experience where

users can reserve virtual machines via API without worrying

about the physical location or available resources. Netcastle

offers the same experience for reserving test equipment with

strong test isolation, freeing developers from worrying about

backend infrastructure maintenance and allowing them to

focus on writing tests. To accomplish this vision, Netcastle

provides many tools, processes, and points of integration to

cover in detail, so we summarize the most innovative elements

here and illustrate how they are used in Figure 3.

4.1 Centralized Reservations Guard Resources

In Netcastle, all test equipment must be reserved for finite time

through a centralized system; users can query and update this

reservation system via CLI, web interface, or a remote API

that supports automation. Resources are annotated with key/-

value pair attributes such as CPU/device type, kernel version,

etc., enabling queries that find resources by these attributes.

Individual resources can be grouped into larger atomically

reservable units (“ensembles”), e.g., reserving an entire Clos

topology rather than individual devices. This simplifies the

user interaction and avoids reservation deadlock.

The centralized reservation system also has less obvious

benefits. If the requested resources are unavailable, the caller

can queue to wait until they become available, which im-

proves resource utilization, particularly for automated testing

(see § 7.5 for details and where this can go wrong). Keeping

records of these wait times helps to identify which resource

types are in high enough demand to warrant adding more,

and instances when a component has failed when a queue is

unexpectedly stalled. Automated tools can programmatically

determine whether a device is participating in a test and act

appropriately, for example, alerts, software updates, and other

maintenance activities are suppressed for lab devices that are

are participating in a test. Requiring each reservation to be of

limited duration reduces resource hoarding and allows better

sharing of finite resources. Similarly the reservation system

provides instrumentation to monitor end-to-end test system

performance (e.g., “the queue for routers of type Y is now 45

minutes long—something must be wrong,” e.g., like § 7.5).

Given the importance of the centralized reservation system

for Netcastle, it needs to have high performance (130k+ reser-

vations a day, see § 6.1.1) and high availability (downtime

impacts developer productivity). While intuitively trivial to

build, the reservation system had to be redesigned/replaced

three times as load increased over time.

4.2 Centralized Fiber Infrastructure

To remove physical locality as a constraint, and reduce re-

source waste through fragmentation, we deploy centralized

passive fiber infrastructure to all test racks. That is, from each

rack in the lab, we pull many pairs of fiber (96 or 192 pairs,

depending on rack type) to a single central passive “fiber row”

that is shared by and sized for the whole lab. By attaching

a passive fiber patch cable from the corresponding ports in

the central fiber row, any two devices anywhere in the lab

can be directly L1 connected. This enables lab devices to be

placed wherever there is physical space and power, making

the devices interchangeable and reducing fragmentation.

The centralized fiber row is also an ideal place to deploy test

equipment shared between teams, including packet generators

and passive optical switches. Decoupling physical locality

also reduces the number of variations of device deployments,

which simplifies automation and reduces lab rot.

4.3 Any-To-Any Optical Interconnects

In addition to manually connecting patch cables in the cen-

tral fiber row, Netcastle also supports the ability to dynam-

ically, programmatically, create L1 optical topologies. De-

spite the investment in the central fiber row and the existence

of commercial-off-the-shelf programmable passive optical

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 997

Proposed Code

Change

Developer

Test Results

Netcastle Service

Storage

Checkout

Code, Tests, and

team specific

Netcastle drivers

Identify, reserve and

health-check hardware

resources from test pool.

Create Arbitrary L1

Topology With Optical

Switch Network

Run Test and record all

outputs, logs, results

Re-run any tests that have

infrastructure failures

(e.g., non-test link failure)
Identify any failed

resources and remediate

with Lab Doctor.

Figure 1: Netcastle testing as a service model.

Rack #1

Optical

Patch Panel

Switch

Model B

Switch Model A

Switch Model A

Static

Patch

Cables Type 1

Optical

Switch

Type 2

Optical

Switch

Type 1

Optical

Switch

Type 1

Optical

Switch

Type 1

Optical

Switch

Type 2

Optical

Switch

Centralized Fiber Infra:

Optical Patch Panels

Shared

Packet

Generator

Any-to-Any

Optical

Interconnects

Figure 2: Physical Infrastructure of a Netcastle Lab

switches [14, 15, 33], this is non-trivial due to scale and link

setup latencies. Specifically, in order for the link to come up

between two devices, the signal to noise ratio, as measured

by “light loss level”, must be lower than manufacturer spec-

ifications. For example, MSA, a common 100Gbps optical

standard, allows for a light loss budget of up to 5dB total

noise [35] between two devices, including passive connectors

(∼0.15–0.5 dB per connector) and the fiber itself (0.5 dB/KM

for single mode or 1.0 dB/KM for multimode), must be less

than 5dB in order to achieve a high quality connection [24].

Existing commercial passive optical switches fall in to two

broad groups. The first use Micro-Electromechanical Systems

(MEMS) mirrors or crystals to bend light [14,33]; establishing

a link relatively fast(∼10ms) but adding significant light loss

(2.5–3dB). They have medium port densities (200–400 ports

per device). The second use robotic arms to manage physical

passive fabric cables [15]; these can take minutes to establish

each link but have light loss equivalent to passive gear (0.5dB

per connector), and support high port densities of over 1000

ports per device. Our challenge in making these pieces scale

is twofold: first, developer time is important, so it would be

prohibitive to have to wait hours to setup a large network

topology using only robotic arm based switches. Second,

for the number of devices in our labs, there is not a single

device big enough to support any-to-any connectivity. We

cannot use a "multi-hop" passive optical network with chained

optical switches, because it would exceed our light loss budget

(e.g., 2 devices each at 2.5dB loss, plus optical connectors,

exceeds 5.0 dB). Complicating matters, our data centers prefer

OCP [32] standard optics which are cost optimized and have

a smaller light loss budget of 3.5dB. We could use different

optics (e.g., Multi-Source Agreement or other standards) in

our lab, but then we risk testing on equipment that are not

used in production, which could undermine our test results.

Faced with these multi-dimensional problems, we devel-

oped a hybrid solution that allows limited any-to-any connec-

tivity in our labs (Figure 2). The first insight is that the light

loss budget for a given standard (3.5dB for OCP, 5.0 for MSA)

is really a minimum guarantee and, due to manufacturing vari-

ance, a device may support somewhat higher light loss. In

practice, we found that most of our nominally 3.5dB OCP

optics in fact supported a light loss budget of 5dB. Second, af-

ter discussion with multiple MEMS manufacturers, we found

that stated light loss for an optical switch (e.g., 2.5–3.0 dB)

is a conservative maximum; real light loss varies depending

on the distance across the device from the input port to the

output port. In practice, by carefully picking input and out-

put fiber ports that are physically close to each other, we can

significantly reduce light loss. Last, to balance the trade-off

between high density, but slow, and and medium density, but

fast, connectivity switches, we build a hybrid leaf-spine fabric

of optical switches. The leaf nodes which connect directly

to the devices under test use the medium density fast con-

nectivity optical switches. We use the high density with slow

connectivity switches as spine switches. Then, similar to leaf-

spine topologies with electrical-optical switches in the DC,

we connect every leaf optical switch to every spine optical

switch. As a result, we can achieve any-to-any connectivity

across our leaf-spine optical switch fabric with a centralized

scheduler: when a developer wants to create an L1 connec-

tion between two devices, the centralized scheduler looks up

which leaf switches and ports the devices are connected to

and allocates a leaf-to-spine-to-leaf optical circuit that is al-

ready set up and physically close to the input ports. Thus with

this design, we get all three of our desired properties of scale,

meeting our light loss budget, and quick link setup.

This any-to-any topology-on-demand feature has enabled

a number of network-wide test use cases. For example, exam-

ining different generations of data center networks (§5, §6)

require creating arbitrary topologies quickly, running tests,

and tearing the topologies down. However, topology dynamics

introduce additional complexity and potential failures (§7).

4.4 Netcastle Test Runner

Netcastle test “runner” is a unified interface for launching

tests and parsing results. The runner combines an array of

workflows, including one-off interactive manual testing on

998 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Netcastle System Components (b) Basset lifecycle

Figure 3: Netcastle Components.

single devices, batch parallel processing across thousands

of devices (“test this code with all feature combinations on

all types of devices”), to long running stress runs (“run this

test 10k times and count failed runs”). The runner automates

calls to the reservation system and lab doctor, copies test

code and configurations into place, parses the test output, and

reports the results. In addition to its own internal accounting

databases, the runner must integrate with the graphical tools

that developers use to review code, the company-wide test

result database that monitors the test results history (e.g.,

to differentiate between flaky tests vs. tests that are newly

consistently failing), and the CI/CD systems that decide if a

given build is stable enough to move to the next step in the

deployment cycle. For large test runs, the runner also handles

sharding across multiple assets in parallel and retrying tests

when assets fail for infrastructure reasons. It parses the test

output and decides if a given test failure is legitimate (e.g., a

bug) vs. a failure in the underlying test infrastructure (§ 7).

Like the centralized reservation system, Netcastle runner

is intuitively simple; however, the combinations of use-cases,

systems that it must integrate with, and the distributed systems

problems associated with setting up and running multi-asset

tests, has made it a non-trivial piece of software (§ 7.5).

4.5 Lab Syncer: Asset Verification

To combat lab rot, Netcastle deploys many pieces of auto-

mated tooling. Lab syncer compares dynamically inferred

data (e.g., from connecting to every port on a console server,

and from screen scraping management switches) to a central-

ized configuration to discover devices and report changes to

the assets under management. Lab Syncer also verifies that all

assets have a common collection of addresses and metadata,

e.g., that the reservation tags (device type, kernel version, etc.)

match reality and that every device has a proper DNS name.

4.6 Lab Doctor: Device Remediation

The lab doctor performs health checks on devices as they exit

a reservation to prevent broken resources from returning to

the resource pool. It applies a well-known set of remediations

to unhealthy devices; it also runs periodically on unreserved

assets to ensure that they are healthy. Unhealthy assets that

1 # 1. Reserve testbed

2 testbed = Basset.reserve("dc_test_pool", purpose="Testing")

3 # 2. Check individual device health

4 is_healty, details = LabDoctor.check_health(testbed)

5 if not is_healthy:

6 # this will be classified as infra error

7 raise TestbedError(f"Testbed is not healthy: {details}")

8 # 3. Reconfigure connections to achieve desired topology

9 OpticalSwitchService.setUp(testbed, desired_topology)

10 # 4. Check topology level healthiness

11 TopologyValidationService.validate(testbed)

12 # 5. Connect to Ixia traffic generator

13 TrafficGenerationService.setup(testbed)

14 # 6. Run tests, example: warmboot without packet loss

15 # 6.1 Start traffic

16 TrafficGenerationService.start_traffic(testbed, TRAFFIC_SPEC)

17 # 6.2 Perform warmboot

18 forwarding_stack_service.clear_counter("pkt_loss")

19 forwarding_stack_service.perform_warmboot()

20 # 6.3 Assert no packet loss

21 pkt_loss = forwarding_stack_service.get_counter("pkt_loss")

22 TrafficGenerationService.stop_traffic(testbed)

23 assertEqual(pkt_loss, 0)

24 # 7. Tear down topology and release testbed

25 OpticalSwitchService.tearDown(testbed)

26 Basset.release(testbed)

Figure 4: Example Netcastle Test Case pseudocode.

cannot be automatically fixed are marked DEAD until manual

investigation. Figure 3(b) shows the complete asset life cycle.

4.7 Putting it together

Figure 3(a) shows how each component interacts with the test

life cycle. Figure 4 is a pseudocode example illustrating how a

test developer utilizes Netcastle. The process begins by reserv-

ing a test pool of resources and calling on Lab Doctor to check

device health status. Then, the optical switch is configured

to set up the topology and the traffic generation service (step

5), followed by a measurement to verify its accuracy. Next,

in step 6, the test developer runs a set of tests, which we will

explain further in §5. Finally, the topology is dismantled, and

all assets are returned to the pool. This process ensures that

resources are efficiently used and that the test environment is

well-maintained throughout the process.

5 Netcastle Use Cases

In this section, we present five test scenarios that use Netcastle

and how they relate to experiences from § 7.

5.1 Facebook Open Switch Software Test

FBOSS test aims to achieve rapid, automatic test and deploy-

ment for switch software [5, 29]. As we discuss in § 3, every

FBOSS code change must be tested across all features, de-

vice types, and environments before commit and deployment.

FBOSS updates the global data center fleet software every

two weeks; this cadence is only possible and safe through

extensive testing using Netcastle in the following aspects.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 999

Figure 5: DC Network Testing Usecase.

1. Hardware functional tests verify that FBOSS works

seamlessly on multiple hardware on a single switch box.

About 800 test cases per switch ASIC and SDK combina-

tion verify core functions (e.g., QoS, load balancing), they

run on every code commit and complete in about an hour.

2. Hardware benchmark tests ensure that the current ver-

sion of FBOSS meets a certain performance threshold (e.g.,

warmboot time, ECMP shrink time, TX/RX rates). About

20 test cases per switch hardware type and SDK com-

binations verify that changes meet performance criteria,

running once per day.

3. Integration tests verify FBOSS switches work seamlessly

with other entities in the data center. These tests run on

every code commit and completes in about 10 minutes.

Netcastle enables the FBOSS team to focus on writing tests

for the software functionality, as Netcastle is able to obtain

quality test signals that strictly distinguishes test failures be-

tween the software, hardware and the test infrastructure. Fur-

thermore, the FBOSS team is able to have a more predictable

deployment cycle, as they can predict how long a test cycle

will take and how much coverage the the test signals provide.

5.2 Board Management Controller Test

OpenBMC [10] is an open-source software for managing

board management controllers (BMCs) that are embedded in

servers and switches to control hardware such as fan speed and

remote server access. As the code is shared among switches

and servers, thorough testing of OpenBMC is needed to pre-

vent bad code from causing extensive damage. OpenBMC

releases new versions 4-6 times per platform per year. The

main challenges of testing OpenBMC are the diverse hard-

ware it supports—over 19 different types at Meta—and the

need to provide test signals publicly as it is open-source.

Netcastle solves these challenges as follows. For every pull

request, Netcastle runs OpenBMC tests on variety of hard-

ware types to catch regressions, and makes the test signals

available to the open-source repository, facilitating debugging

Figure 6: Netcastle Hardware Platform.

efforts by the community. Finally, Netcastle is used in validat-

ing OpenBMC image binaries. Thus, by utilizing Netcastle,

OpenBMC is able to avoid building another set of testing

infrastructure and a build pipeline, and is simultaneously able

to reap the benefits of obtaining high quality test signals.

5.3 DC Network Testing

The Data Center Network Engineering team conducts multi-

device testing on FBOSS switches and other vendor switches,

focusing on network-wide objectives and configuration cor-

rectness. This includes designing and validating data center

topology, managing network capacity, and more. Figure 5

shows a common set up for DC network testing. It faithfully

mimics the production fabric topology in a smaller scale [5]:

four pods are set up with two ToRs, connecting to two fabric

switches, interconnected by two spine switches at the aggrega-

tion layer, and four aggregation switches at the core layer. The

tests mainly consists of the following steps: test configuration

setup, inducing disruptive events (e.g., software/hardware re-

boot/crashes, switch drain/undrain, link flaps), and recording

the results (e.g., resource utilization and packet loss during

the disruptive event). In the example in Figure 4, step 6 tests

the packet loss during switch warmboot operations.

Testing new features presents challenges such as isolating

the correct topology, and filtering false test signals from manu-

ally induced test failures. Netcastle addresses these challenges

by enabling easy isolation of the testing topology through

simple scripts for controlling switch interfaces, allowing con-

figuration to reserve and use specific switches for testing, and

filtering bad signals that are manually induced.

1000 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.4 Express Backbone Controller

The EBB Controller [17] is the SDN WAN controller that

manages Meta’s inter-region global backbone network. The

team has integrated Netcastle into its CI/CD pipeline since

2019 and ships a new release every 3-4 weeks. They required

external traffic generators for their test cases; this pushed

the Netcastle team to automate reservations and access to

third party traffic generation tools. In this topology, software

VLANs mimic edge data centers. Five lab express backbone

(leb) routers are interconnected with parallel 200G physical

links. This setting is used to test new controller software,

traffic engineering algorithms, new EB router platforms, and

SDKs, among other operations.

5.5 Hardware NPI

New Product Introduction (NPI) validates prototype network-

ing gear and verifies that the hardware works correctly. This

includes, among others, environmental tests, sensor and power

checks, and data plane performance tests. Data plane testing

is simplified by connecting ports in a “snake” topology: Port i

is connected to port i+1 ∀ i mod 2 = 0, and traffic sent out

of one port is received by the next. This reduces the traffic

generator requirements from the full number of ports to only

two; one source and one sink.

6 Evaluation

In this section, we demonstrate the impact of Netcastle with

both real-world statistics and incidents caught.

6.1 System Evaluation

6.1.1 Scale: Tests, Daily Tests, and Reservations

Netcastle has grown to be the primary testing infrastructure

for the Meta network. Figure 7 shows the cumulative number

of tests developed on Netcastle over three years. From §2.1,

the FBOSS team alone has 800+ different tests before con-

sidering different hardware and software configurations. In

total, there are close to 4500 total tests developed across 20+

teams. The significant increase from week 40-80 represents

Netcastle’s largest adoption period. The steady increase after

week 80 shows its continuous benefit as the network grows.

Another metric of scale is the number of test runs per day.

Figure 8 shows the amount of daily tests in the course of three

months, ranging from 300K to as high as 700K. The average

daily test runs is around 500K, demonstrating its scale.

We further demonstrate the lab reservation’s usage in Fig-

ure 9 for a period of recent 4 months. The reservation system

can scale to as large as 130K reservations per day. The notice-

able drop around day 90 is caused by the ramping down of

development activity close to holidays.

6.1.2 Effectiveness: Failed Tests and Errors

The purpose of Netcastle is to catch test failures before bugs

manifest in production. Because Netcastle is integrated in

both code review stages and continuous deployment stages,

we can identify test failures at each stage. Figure 10 shows

that in the past four months, Netcastle caught over 500K test

failures just during code commit time. Further, the dashed

curve represents the necessity of testing during deployment, as

it captured issues with other dependent systems. Such failures

are orders of magnitude fewer than the failures that manifest

at code commit time. Yet, the volume is high—100K.

Not only are the test failures caught by Netcastle abundant

but they are also high-quality. Tests in Netcastle are grouped

into jobs for efficiency. A Netcastle test job can have 3 out-

comes: succeed (all tests passed), test failure, or infra error.

Jobs with infra errors are automatically retried and reported

as “Infra Error - No Signal” when retry limit is exhausted.

This helps developers focus on legitimate test failures that

indicate code bugs, rather than noise caused by infra issues.

Figure 11 shows the fraction of cumulative number of Net-

castle jobs that fail because of infra error and other reasons

(true failures). We observed the fraction of jobs with infra

errors is higher than jobs with legitimate test failures. Infra

errors increase as the testing framework scales and becomes

more complex, while the legitimate test failures grows flatter,

demonstrating both the necessity and effectiveness of distin-

guishing legitimate test failures from infra issues, especially

as the physical infrastructure of Netcastle grows.

6.1.3 Optical Switch Reconfiguration

Finally, we present the need for topology reconfiguration in

Figure 12. The number of reconfigurations per day ranges

from 40 to 160. The high frequency is due to multiple teams

co-sharing the testing facility, especially the traffic genera-

tor which relies on the optical reconfiguration to inject high

volume of traffic at different parts of the topology.

6.2 Five Bugs Kept Out of Production

Netcastle tests integrate with the Meta code commit process.

It generates 150K test failures yearly, some of which have

prevented catastrophic failures. We share five examples below.

6.2.1 OpenBMC Watchdog Didn’t Reset

In January 2021, two changes from the open source

OpenBMC upstream were pulled and submitted for review.

Each change was tested and landed successfully. However,

the two changes were not tested together. With both changes,

OpenBMC failed to reset the on-board watch dog timer, and

rebooted every 5 minutes. This failure resulted in a lab outage,

as all lab devices were rebooting repeatedly and all OpenBMC

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1001

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140

C
u
m

u
la

ti
v
e

#
 o

f
te

st
s

Week

Figure 7: Tests increase weekly.

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 20 40 60 80 100 120 140 160 180

D
ai

ly
 T

es
t

R
u
n
s

Day

Figure 8: Netcastle test runs per day.

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 20 40 60 80 100 120 140 160

#
 o

f
re

se
rv

at
io

n
s

Day

Figure 9: Daily lab reservations.

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 20 40 60 80 100 120 140

C
u
m

u
la

ti
v
e

fa
il

ed
 t

es
ts

 o
n
 d

if
f

Day

Failed tests on code review

Failed tests on deployment

Figure 10: Failed tests by stage.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 20 40 60 80 100 120 140

F
ra

ct
io

n

Week

Failed tests due to infra error

Failed tests due to other reasons

Figure 11: Infra error and test failures.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60#
 o

f
o
p
ti

ca
l

to
p
o
lo

g
y
 r

ec
o
n
fi

g
u
ra

ti
o
n

Day

Figure 12: Optical reconfigurations.

tests failed. This bug was caught well before reaching produc-

tion, and since the test failures were immediate and substantial,

it took less than an hour to root cause. Before Netcastle, a

similar bug took months to root cause.

6.2.2 FBOSS RIBv2 Redesign Missed Features

The Routing Information Base (RIB) is a critical data struc-

ture in FBOSS that stores routes learned from routing pro-

tocols and prepares the Forwarding Information Base (FIB)

for programming the switch ASICs. Over time, FBOSS has

added many use cases and optimizations to the original RIB,

including multi-protocol support, fast lookups via radix trees,

UCMP, and MPLS. However, the implementation of these

features increased the difficulty of adding new use cases and

scaling needs. To address this challenge, the FBOSS team

initiated a complete redesign of this core data structure. De-

spite being reimplemented by experienced engineers, massive

errors were found in the code: MPLS, mirroring, and traffic

engineering did not work as expected. With tests in place,

issues were quickly fixed.

6.2.3 Warmboot Packet Loss due to Agent Race

Warmboot is a switch ASIC feature that allows forwarding

packets while we we update the FBOSS agent software. Net-

castle has the ability to run tests after warmboot from one

commit to another, allowing explicit testing of upgrades and

rollbacks. In one upgrade, we discovered that a subset of

prefixes were experiencing high input discards, and further

investigation revealed that a drop rule had been installed in

the ASIC but not in the control plane. We also observed that

changing the traffic pattern caused previously functioning des-

tination prefixes to fail. We traced the issue to a race condition

in the agent software that occurred when adding and remov-

ing FDB entries during warmboot with traffic running. A

hidden drop rule caused by a race condition would have been

extremely disruptive. This issue was challenging to reproduce

even in a controlled lab setup; in production, without control

over the traffic, it would have been nearly impossible.

6.2.4 Micro-Loop Causing Packet Loss During Drains

“Draining” redirects traffic away from a switch that is being

taken offline for maintenance. Our tests check that packet

loss during drains lasts less than 30ms. However, during one

incident, packet loss continued for 300ms. The root cause of

the issue was a micro-loop that formed during routing conver-

gence. When the switch is drained, its transit neighbors are

expected to send BGP withdraw messages to the spine to stop

attracting traffic. However, the routes were unprogrammed in

the Forwarding Information Base (FIB) before the BGP with-

drawal was sent to the spine. As a result, the traffic coming

from the spine was sent back by the transit switches. Packets

were discarded when their time-to-live (TTL) expired.

If this issue had not been detected in the lab, it could have

caused significant problems during drain operations, which

are performed hundreds of times a day. This black-hole of traf-

fic for 300ms will be handled differently by applications, with

responses ranging from normal retransmission and congestion

response to abandoning connections and failing queries. The

small scale and duration makes such events difficult to detect

and troubleshoot in a production environment. Fortunately,

using the granular metrics provided by Netcastle, we were

able to consistently reproduce and test various hypotheses.

6.2.5 “Factory Reset" Backbone Lab Devices

“Provisioning” is the process of configuring devices (switches

or servers) to an operational state. Recently, a faulty provision-

1002 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing workflow led to network devices entering a mode called

zero-touch-provisioning: essentially a factory reset state. This

state lacked the necessary boot configuration required for op-

eration within our backbone network. This problem was first

observed in the Netcastle infrastructure since we were testing

the new workflow in the lab. However, we promptly blocked

the code change responsible for the misconfiguration to pre-

vent any impact on production. If this issue had not been

discovered in the Netcastle and the new provisioning work-

flow had been rolled out, it would have resulted in a complex

and lengthy recovery process. Currently, in EBB, we perform

per-plane rebuilds, which involves rebuilding a network shard

of 42 devices in parallel. In the worst-case scenario, the bug

would have brought down 42 backbone devices, resulting in

the loss of hundreds of Terabytes of capacity.

These examples illustrate Netcastle’s capability to identify

both production tooling issues and device software bugs.

7 Experiences

7.1 Test Signal Quality Is Paramount

Obvious to state but infuriating in the details, the testing

signal, e.g., did a given test ’pass’ or ’fail’, as relayed to the

developers/automated tooling must have extremely low false

positive and false negative rates. A false negative, say due to a

failure in the infrastructure rather than a regression in the code,

is often hard to distinguish from a rare bug which can cause

developers to waste significant time. A false positive, say

when the test runner fails to catch that a test is actually failing

but reports as “pass”, allows buggy code to be pushed deeper

into the continuous deployment ("CD") pipeline. Deeper in

the CD pipeline has more noise and variance and so bugs there

are harder to replicate, isolate, and debug, and ultimately risk

being pushed into production. Worse, any noise in the test

signal degrades developer confidence and can cause them to

ignore test results or make them less inclined to write more

tests in the future. The key insight is, intuitively similar to

the famous Nyquist-Shannon sampling theorem, if one wants

to catch a code that fails at a certain rate, e.g., 1 in 1000 run

race condition, then the corresponding test signal must have

proportionately much higher sampling rate/stability (e.g., 1

in 100k test runs result in a false positive). Getting the test

infrastructure to this level of engineering confidence is no

small effort. Most of the experiences shared below derive

from this main point about test signal quality.

7.2 The Test Infrastructure Itself Must Be

Testable

The potential for test signal noise is highest when there are

bugs in the Netcastle software itself, such as in critical com-

ponents like the runner. To prevent this, Netcastle has 100%

unit test coverage and a complex system of tests that run

with each release. In one incident, a bug in the centralized re-

source reservation system caused conflicting tests to produce

a large amount of noise and risked the project’s reputation in

its early phases. This testing bug resulted in a significant loss

of developers’ trust, which put the project at risk.

7.3 Respect the Testing Pyramid

The Testing Pyramid [36] is a widely accepted testing ab-

straction that emphasizes the importance of writing simple

tests with fewer moving parts. The number of tests for each

type (e.g., unit, component, system, end-to-end) should be

inversely proportional to their complexity, creating a pyramid

shape. This principle has significant implications for Netcastle

and network testing. Despite networking being a distributed

system, writing distributed tests directly, such as designing

a test with 20 different routers to verify BGP convergence

properties, introduces significant testing noise. Therefore, Net-

castle and developer teams constantly simplify tests to reduce

noise and test the same logic with fewer moving parts, fur-

ther down the pyramid. An example of simplifying tests is

the FBOSS hardware test, where instead of using external

devices to source/sink packets for data center switch func-

tional testing, individual switch ports are put into a temporary

loopback mode. This replaces an earlier setup where switches

were connected to physical servers and test packets were

sourced/sinked via remote procedure call (RPC). The move

from a distributed system with complex RPC calls to a single

machine with only local processing reduced testing noise and

eliminated the need to maintain servers.

7.4 Infrastructure vs. Code Errors

When infrastructure errors occur in Netcastle, effort is put

into distinguishing them from code errors to avoid disrupting

developers. Skipped tests can be retried on different devices

to produce a more reliable result, and infrastructure errors

are handled by the Netcastle oncall team while code errors

are sent to individual developer teams. Lab doctor tests are

used to check device health before and after each run, and any

changes in device health can help determine whether an error

is due to infrastructure or code issues. However, there is no

perfect way to separate infrastructure from code errors, and

manual triage is often required to determine the root cause.

7.5 Do Not Under Estimate/Engineer Complex-

ity of Testing Workloads

Many of the initial false steps in the project can be attributed

to under-estimating and ultimately under-engineering the Net-

castle software systems. The team initially underestimated the

need for production-level performance, monitoring, and alert-

ing in the testing system, assuming that running tests were not

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1003

production workloads. However, the team realized the impor-

tance of testing after encountering bugs in the Netcastle code

that delayed test signal for code needed to fix a bug in produc-

tion. The root cause was the lack of a service-level agreement

(SLA) for test result return time. Now, Netcastle has a firm

SLA with each developer team, and violations trigger SEV

alerts [9] and standard production system management proce-

dures to prevent future incidents.

7.6 Manage Latency vs. Completeness

As test coverage grew, we found that not all tests could be

run and reported to developers in a timely manner, such as

within 30 minutes while they waited for test results to see if

their code could be deployed. To compromise, we created a

hierarchy of tests that ran at different time scales and with

varying levels of coverage. This model mirrors the testing

pyramid, with tests categorized as quick and low coverage,

periodic and medium coverage, and comprehensive and high

coverage. This classification evolved over time due to the need

for faster test signal and the growing number of tests, making

manual classification impractical. Had we used hierarchies

from the beginning, we could have avoided the need for the

clunky one-test-per-class heuristic.

7.7 Test Equipment Should Not Depend On

Other Test Equipment

In our earlier test labs, we discovered that managing a col-

lection of switches in a standard Clos/leaf-spine topology

as individual test equipment can cause interference between

tests running on different switches. For instance, tests run-

ning on spine switches could unexpectedly disrupt tests on

leaf switches and vice versa, leading to incorrect assump-

tions about network connectivity and causing test failures.

Additionally, some leaf nodes had servers attached to them

that were only accessible if the leaf switch was running all

necessary software, which was not always the case.

To address this issue, we took two steps. First, we desig-

nated upstream devices, such as spines connected to leaves, as

"production" test gear, meaning they were not reservable and

stayed functional during adjacent testing. Second, for devel-

opers who wanted to test pairs of gear, we used the concept

of an "ensemble" to create atomic units of the desired gear.

This prevented a single test device from being reserved, which

depended on a test device in someone else’s reservation.

8 Related Work

Network Testing Frameworks Testing new networking re-

search ideas is complex and requires consideration of various

circumstances such as network size, hardware specifications,

and protocols used. Due to the high cost and proprietary nature

of network testing frameworks built by owners of large net-

works, publicly available network testing frameworks based

on emulators are becoming more popular. Emulators such as

Flexplane [25], NIST Net [4], Mininet [20], and NS3 [28] are

widely used tools to emulate large scale networks and test

new networking concepts.

In addition to these publicly available tools, there are

numerous firms with the business model of providing net-

work testing tools [13]. Some notable firms include, Ixia

(Keysight) [34], Forward Networks [11] and Fluke Net-

works [8]. However, while these tools can be used to detect

anomalies in the current network, they are not built with the

purpose of testing newly added features, thus they do not

naturally support incremental testing of new features.

Network Testing/Verification Methodology. First of all,

there are numerous works on verifying correctness of the

network [16, 18, 19, 26, 30]. For example, Reitblatt et al. [27]

discusses formal method of verifying the correctness network

transitions. Similarly, Veriflow [18] is built to verify invari-

ants of the network in real-time. CrystalNet [22] builds an

emulation platform for production. However, these methods

only check for issues in the software states, making it hard to

detect and report any hardware related issues.

Some articles discuss industry methods for network testing,

such as Spirent’s best practices outlined in [6]. These prac-

tices include Vendor Performance Testing, Network Failure

Threshold Testing, Configuration Defect Testing, and PASS

Methodology Testing. While these practices offer practical

guidance, they do not provide a formal theoretical approach

for testing networks, which can make it difficult to quantify

testing difficulties.

9 Conclusion

Large network operators have real, but hard to quantify, con-

cerns with managing complexity in their networks. In this

paper, we first quantify network testing complexity and share

the production challenges. We then present the architecture

from the Netcastle "test infrastructure as a service" model

as well as lessons learned from over three years of growth.

Looking forward, we hope that the research community will

leverage our "testing matrix as complexity" model (§2.1) and

use it in their research to understand which changes opera-

tors are more or less likely to deploy in production. We hope

that researchers consider these effects when considering new

schemes/research as their choices have real impact on net-

work complexity: the people testing it will have to try to tame

that complexity.

This work does not raise any ethical issues.

1004 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Facebook datacenter network. https://engineering.

fb.com/2019/03/14/data-center-engineering/

f16-minipack/.

[2] K. Beck. Test Driven Development. By Example

(Addison-Wesley Signature). Addison-Wesley Longman,

Amsterdam, 2002.

[3] R. Bush. Into the future with the internet vendor task

force a very curmudgeonly view or testing spaghetti:

A wall’s point of view. SIGCOMM Comput. Commun.

Rev., 35(5):67–68, Oct. 2005.

[4] M. Carson and D. Santay. Nist net: A linux-based net-

work emulation tool. SIGCOMM Comput. Commun.

Rev., 33(3):111–126, July 2003.

[5] S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani,

R. Sherwood, Y. Zhang, and H. Zeng. Fboss: Building

switch software at scale. In Proceedings of the 2018

Conference of the ACM Special Interest Group on Data

Communication, SIGCOMM ’18, page 342–356, New

York, NY, USA, 2018. Association for Computing Ma-

chinery.

[6] S. Communications. Testing the data center network:

Best practices. https://www.infopoint-security

.de/medien/testing_the_data_center_network-

best_practices_whitepaper.pdf, November 2013.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. The MIT Press, 2nd edition,

2001.

[8] F. Corporation. Fluke networks. https://www.fluk

enetworks.com/, Jan. 2021.

[9] G. Eason. Incident response @ FB, facebook’s SEV

process, July 2016.

[10] T. Fang. Introducing openbmc: an open software frame-

work for next-generation system management. https:

//code.facebook.com/posts/1601610310055392,

Mar. 2015.

[11] I. Forward Networks. Forward networks. https://fo

rwardnetworks.com/, 2021.

[12] T. Griffin. RFC4264 BGP wedgies. https://tools.

ietf.org/html/rfc4264, Nov. 2005.

[13] S. T. Help. Top 30 network testing tools (network per-

formance diagnostic tools). https://www.software

testinghelp.com/network-testing-tools/, Jan.

2021.

[14] HUBER+SUHNER. Polatis series 7000 optical switch.

https://www.polatis.com/series-7000-384x38

4-port-software-controlled-optical-circui

t-switch-sdn-enabled.asp, Jan. 2021.

[15] T. Inc. Telescent physical layer switching. https:

//www.telescent.com/, 2021.

[16] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal,

A. Bhargava, P.-A. C. Bissonnette, S. Foster, A. Hel-

wer, M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi,

H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma.

Validating datacenters at scale. In Proceedings of the

ACM Special Interest Group on Data Communication,

SIGCOMM ’19, page 200–213, New York, NY, USA,

2019. Association for Computing Machinery.

[17] M. Jimenez and H. Kwok. Building express backbone:

Facebook’s new long-haul network. https://engine

ering.fb.com/2017/05/01/data-center-engine

ering/building-express-backbone-facebook-s-

new-long-haul-network/, May 2017.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.

Godfrey. Veriflow: Verifying network-wide invariants

in real time. In 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13), pages

15–27, Lombard, IL, Apr. 2013. USENIX Association.

[19] D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Se-

shan. Redplane: Enabling fault-tolerant stateful in-

switch applications. In Proceedings of the 2021 ACM

SIGCOMM 2021 Conference, SIGCOMM ’21, page

223–244, New York, NY, USA, 2021. Association for

Computing Machinery.

[20] B. Lantz, B. Heller, and N. McKeown. A network in a

laptop: Rapid prototyping for software-defined networks.

In Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, Hotnets-IX, New York, NY,

USA, 2010. Association for Computing Machinery.

[21] W. E. Lewis. Software Testing and Continuous Quality

Improvement, Third Edition. Auerbach Publications,

USA, 2nd edition, 2008.

[22] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada,

N. P. Lopes, A. Rybalchenko, G. Lu, and L. Yuan. Crys-

talnet: Faithfully emulating large production networks.

In Proceedings of the 26th Symposium on Operating Sys-

tems Principles, SOSP ’17, page 599–613, New York,

NY, USA, 2017. Association for Computing Machinery.

[23] Z. M. Mao, R. Govindan, G. Varghese, and R. H.

Katz. Route flap damping exacerbates internet rout-

ing convergence. SIGCOMM Comput. Commun. Rev.,

32(4):221–233, Aug. 2002.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1005

https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://www.infopoint-security.de/medien/testing_the_data_center_network-best_practices_whitepaper.pdf
https://www.infopoint-security.de/medien/testing_the_data_center_network-best_practices_whitepaper.pdf
https://www.infopoint-security.de/medien/testing_the_data_center_network-best_practices_whitepaper.pdf
https://www.flukenetworks.com/
https://www.flukenetworks.com/
https://code.facebook.com/posts/1601610310055392
https://code.facebook.com/posts/1601610310055392
https://forwardnetworks.com/
https://forwardnetworks.com/
https://tools.ietf.org/html/rfc4264
https://tools.ietf.org/html/rfc4264
https://www.softwaretestinghelp.com/network-testing-tools/
https://www.softwaretestinghelp.com/network-testing-tools/
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.telescent.com/
https://www.telescent.com/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/

[24] J. Networks. How to calculate power margin for fiber-

optic cable. https://www.juniper.net/document

ation/en_US/release-independent/junos/to

pics/task/installation/fiber-optic-cable-

budget-margin-calculating.html, July 2020.

[25] A. Ousterhout, J. Perry, H. Balakrishnan, and P. La-

pukhov. Flexplane: An experimentation platform for

resource management in datacenters. In 14th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 17), pages 438–451, Boston, MA, Mar.

2017. USENIX Association.

[26] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and

M. Caesar. Plankton: Scalable network configuration

verification through model checking. In 17th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 20). USENIX Association, Feb. 2020.

[27] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and

D. Walker. Abstractions for network update. ACM SIG-

COMM Computer Communication Review, 42(4):323–

334, 2012.

[28] G. F. Riley and T. R. Henderson. The ns-3 network

simulator. In Modeling and tools for network simulation,

pages 15–34. Springer, 2010.

[29] F. O. Source. Fboss open source. https://github.c

om/facebook/fboss, 2021.

[30] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negre-

anu, and C. Raiciu. Debugging p4 programs with vera.

SIGCOMM ’18, page 518–532, New York, NY, USA,

2018. Association for Computing Machinery.

[31] J. Stone and C. Partridge. When the crc and tcp check-

sum disagree. SIGCOMM Comput. Commun. Rev.,

30(4):309–319, Aug. 2000.

[32] J. Taylor. Facebook’s data center infrastructure: Open

compute, disaggregated rack, and beyond. In Optical

Fiber Communication Conference, page W1D.5. Optical

Society of America, 2015.

[33] C. Technologies. Calient s series photonic switch. ht

tps://www.calient.net/products/s-series-

photonic-switch/, 2021.

[34] K. Technologies. Connect and secure your network with

keysight. https://www.keysight.com/us/en/cmp

/2020/network-visibility-network-test.html,

Jan. 2021.

[35] Wikipedia. Multiple source agreement optics. https:

//en.wikipedia.org/wiki/Optical_module, July

2017.

[36] J. Willet. Evolution of the testing pyramid. https:

//www.james-willett.com/the-evolution-of-

the-testing-pyramid/, Sept. 2016.

A Appendix: Network Testing Is Hard In The-

ory

In this section, we try to quantify why network testing is hard.

Specifically, we define a formal metric for system complexity

based on the number of states and allowed state transitions.

We then argue that in non-trivial systems, the only way to enu-

merate the actually allowed state transitions (including bugs,

surprising interactions, the halting problem, etc.) is through

testing. A testing matrix is a common software engineering

term for the multi-dimensional space of all possible interac-

tions in a system. We then introduce the concept of a theoret-

ically complete testing matrix: that is, a conservative/worst

case set of conditions/states that if one were to theoretically

test all elements of the matrix, the system could be proven

by exhaustion to be bug free. We then combine these two

definitions to show that network testing is the combinatorial

combination of software and hardware systems testing and

that by our metrics is uncountably infinite in all but the most

trivial of cases.

A.1 Quantifying System Complexity

From our literature review, there does not appear to be a

commonly agreed upon method to quantify the complexity of

a general system, so we define our own. From computational

complexity theory, formally the complexity of an algorithm is

the minimum number of bits needed to represent the algorithm

and its inputs [7]. Inspired by this definition, we quantify the

complexity of a system as:

Definition A.1 Measure of System Complexity: the mini-

mum number bits required to describe all possible states and

the allowed state transitions of a system.

Consider a system with n different states where the allow-

able state transitions can be (possibly inefficiently) repre-

sented as an n× n matrix of bits denoting “state transition

i → j is allowed”. By this definition, naively this system

would require log(n) bits to describe the possible states plus

n2 bits to describe the state transitions or log(n)+n2 bits to

capture this system’s complexity. However, if this system’s

allowed state transition matrix was sparse, summarizable with

few rules or otherwise compressible, then the minimum num-

ber of bits required to represent it could be much smaller than

n2. From this definition, and matching our intuition, a system

gets more complex as it adds more states or as the allowed

state transitions become harder to describe.

This definition captures a critical combinatorial property of

system complexity: when two or more smaller systems (“com-

ponents”) are coupled into a larger system, the complexity

1006 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://github.com/facebook/fboss
https://github.com/facebook/fboss
https://www.calient.net/products/s-series-photonic-switch/
https://www.calient.net/products/s-series-photonic-switch/
https://www.calient.net/products/s-series-photonic-switch/
https://www.keysight.com/us/en/cmp/2020/network-visibility-network-test.html
https://www.keysight.com/us/en/cmp/2020/network-visibility-network-test.html
https://en.wikipedia.org/wiki/Optical_module
https://en.wikipedia.org/wiki/Optical_module
https://www.james-willett.com/the-evolution-of-the-testing-pyramid/
https://www.james-willett.com/the-evolution-of-the-testing-pyramid/
https://www.james-willett.com/the-evolution-of-the-testing-pyramid/

increases multiplicatively. That is, if one couples two systems

that have m and n states respectively, then the resulting system

C has n×m different possible states and thus (n+m)2 possi-

ble state transitions. As above, the state transition matrix of C

may still be compressible and thus the minimum bits needed

to describe them may be smaller than (n+m)2 in practice.

That said, as the number of coupled components increase, the

ability to succinctly summarize the allowed state transitions

of the larger becomes harder, e.g., it requires a combinatorial

multiplication of rules.

Note crucially that “allowed state transitions” are the ones

allowed by the actual deployed running implementation and

not limited to the transitions intended by the original design

intent. A network architect may believe they have designed a

simple system with few possible states and limited state tran-

sition rules (“no persistent loops”, “control plane processes

never reach the segmentation fault state”, etc.). However, the

implementation of the actual system including bugs, hardware

failure, environmental effects, unforeseen vendor incompat-

ibilities, etc. may in fact be much more complex. Thus, for

any large, practical system, there may be unintended and sur-

prising state transitions: i.e., the allowed state transitions an

emergent property of the coupling of many systems. More so,

the “halt” state is important to any system, so enumerating

the states that can transition to ’halt’ is directly equivalent to

the well-known and undecidable halting problem. As a result,

we claim that the only way to even approximately enumerate

possible state transitions, and thus quantify the system’s com-

plexity, is through providing specific inputs and testing which

state transitions are and are not actually allowed.

A.2 Theoretically Complete Testing Matrix

We define a theoretically complete testing matrix as a test

matrix where if all possible tests were evaluated, then the

components/system under test would be proven to be correct

by exhaustion. As we will show, this is often not a practical

tool as many of the dimensions of the theoretically complete

testing matrix will be infinite in practice, we believe it is still

a useful vehicle for quantifying network complexity.

There are two properties of a theoretically complete test

matrix:

1. It makes no simplifying assumptions about the imple-

mentation of the components under test. As a result:

2. Similar to Definition A.1, each dimension or component

added to the system increases the size of the testing

matrix multiplicatively.

Quantifying Software Systems Testing First, let’s consider

constructing the simplest possible theoretically complete test

matrix. Consider a toy, single threaded user-space process

(the “process under test”) that has n different possible states

and the only information it stores is the value of the current

state. The test matrix for such a software system is O(n2), as

the programmer needs to test all possible state transitions to

make sure each works as expected. Note that it is important

to test not only the valid state transitions (functional tests) but

also test the invalid transitions (negative testing) to verify that

they are correctly prevented. The current state and the next

state form the first two dimensions of our testing matrix and

each cell in the matrix is a single bit representing the pass/fail

result of running the test.

Next, let us relax our toy application assumption by assum-

ing that it keeps non-trivial information across state transitions

(e.g., allocates memory, opens a file, etc.) such that we now

need to consider the history of all state transitions - another

dimension to our matrix. This new dimension is potentially

infinite in size (all permutations of all possible paths through

the state diagram) and practically infinite for long running pro-

grams. While seemingly abstract, the history of all possible

state transitions is where we catch the most common types of

bugs: memory corruption, resource leaks, privilege elevation,

etc. Then, let us further relax our single-threaded assumption

by allowing the process to use threads, asynchronous I/O, or

other form of scheduling non-determinism. This adds schedul-

ing order as another dimension to our test matrix which is

exponential in the number of threads for each state change.

Now relax the single process assumption and allow the pro-

cess under test to have non-trivial communication with both

the kernel and other processes (local or remote). Thus, the

theoretically complete testing matrix for a distributed system

of software processes is the multiplicative product of each

software component in the system. In other words, if one

wants to be absolutely certain to prevent bugs in a non-trivial

multi-threaded distributed system, they need to write suffi-

cient tests that cover the multiplicative product of: all possible

state transitions × all possible state transitions histories × all

possible schedule orderings × all possible states of the other

components in the system.

Quantifying Hardware Systems Testing Hardware sys-

tems have a superset of possible bugs as compared to software

systems and thus their testing matrices are correspondingly

larger. Consider the logical design of a single integrated circuit

or component. Often before construction, such components

are modeled in a software simulator, and similar to software

testing, are tested across all possible inputs/outputs and state

transitions. As a result, all of the above analysis for software

test matrices applies to hardware testing matrices as well.

Additionally, hardware systems must test for manufacturing

repeatability (e.g., if a component requires a physical size

tolerance of ±X%, what is the distribution in practice) and

manufacturing process changes (e.g., different vendors of sol-

der, electronics components). Hardware systems must test

under different operating conditions (e.g., temperature, hu-

midity, vibrations, electromagnetic interference) and typically

ship with specified operating tolerances (e.g., run between

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1007

50-85 degrees F). All of these aspects add new dimensions to

the theoretically complete testing matrix.

A.3 Testing Network Systems

Computer networks are, by definition, transitively coupled

hardware and software systems. That is, state from any one

node could in theory be transferred to any/every other node

in the system. As a result, the complexity (Definition A.1)

and theoretically complete testing matrix of a network is the

combinatorial explosion of all possible testing matrices of all

connected hardware and software systems. More than just a

theoretical concept, large network outages happen in practice

because of rapid distribution of state from a single failed

component. A typical example is a single faulty electrical

component (e.g., a capacitor) in one optical interface on a

single switch can cause a shared link to flap up and down,

which various control plane software systems (e.g., spanning

tree protocol in L2, BGP in L3) then propagates the new

forwarding state to other nodes in the system, which each try

to adapt to the new state based on local policy. The result of

these transitive interactions, despite decades of experience and

armies of network engineering experts, are often surprising

and detrimental [12, 23].

Unique to networking, practical deployments are often the

worst case for many software and hardware testing scenarios.

For example, device up-time is typically long (over a year in

some routers) so the set of all possible paths through the state

machine is in practice large. Networking gear is expected to

operate in a variety of environments on the edges of their

operating tolerances from (in theory) climate controlled data

centers to road-side optical devices to the WiFi access point

under your desk that collects dust bunnies. Despite formal

protocol standards which should in theory ensure interop-

erability, in practice all-to-all interoperability tests are still

required between different implementations and many deploy-

ments effectively require “bug-level” compatibility. Last, for

reasons of compatibility as well as practical software engi-

neering and business realities [3], networking devices tend to

monotonically accumulate features over time (e.g., Apple talk

support, RIP, etc.). All of these elements add to the complex-

ity of network systems and thus increase the complexity of

testing these systems.

1008 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

