
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Gemino: Practical and Robust Neural Compression
for Video Conferencing

Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha Venkatapathy, and
Mehrdad Khani, Massachusetts Institute of Technology; Sadjad Fouladi,

Microsoft Research; Mohammad Alizadeh, Frédo Durand, and Vivienne Sze,
Massachusetts Institute of Technology

https://www.usenix.org/conference/nsdi24/presentation/sivaraman

Gemino: Practical and Robust Neural Compression for Video Conferencing

Vibhaalakshmi Sivaraman Pantea Karimi Vedantha Venkatapathy Mehrdad Khani

Sadjad Fouladi ⊞ Mohammad Alizadeh Frédo Durand Vivienne Sze

Massachusetts Institute of Technology, ⊞ Microsoft Research

Abstract

Video conferencing systems suffer from poor user expe-

rience when network conditions deteriorate because current

video codecs simply cannot operate at extremely low bitrates.

Recently, several neural alternatives have been proposed

that reconstruct talking head videos at very low bitrates

using sparse representations of each frame such as facial

landmark information. However, these approaches produce

poor reconstructions in scenarios with major movement or

occlusions over the course of a call, and do not scale to higher

resolutions. We design Gemino, a new neural compression

system for video conferencing based on a novel high-frequency-

conditional super-resolution pipeline. Gemino upsamples

a very low-resolution version of each target frame while

enhancing high-frequency details (e.g., skin texture, hair, etc.)

based on information extracted from a single high-resolution

reference image. We use a multi-scale architecture that runs

different components of the model at different resolutions,

allowing it to scale to resolutions comparable to 720p, and we

personalize the model to learn specific details of each person,

achieving much better fidelity at low bitrates. We implement

Gemino atop aiortc, an open-source Python implementation

of WebRTC, and show that it operates on 1024×1024 videos in

real-time on a Titan X GPU, and achieves 2.2–5× lower bitrate

than traditional video codecs for the same perceptual quality.

1 Introduction

Video conferencing applications have become a crucial part

of modern life. However, today’s systems continue to suffer

from poor user experience: in particular, poor video quality

and unwelcome disruptions are all too common. Many of these

problems are rooted in the inability of today’s applications to

operate in low-bandwidth scenarios. For instance, Zoom rec-

ommends a minimum bandwidth of 1.2Mbps for one-on-one

meetings and 2-3 Mbps for group meetings [1]. In certain parts

of the world, Internet broadband speeds remain insufficient for

reliable video conferencing. For example, large swaths of the

population in Africa and Asia had average Internet broadband

speeds less than 10 Mbps in 2022 [2], with the five slowest

countries having speeds under 1 Mbps. Mobile bandwidth is

even more restricted: SpeedTest’s Global Index [3] suggest that

global mobile bandwidth average is 50% of broadband speeds.

Even in regions of North America and Europe with high

broadband speeds [2], over 30% of users surveyed about their

video conferencing experience claimed that “video quality”

issues were their biggest pain point [4]. This is because the user

experience is not just determined by the average bandwidth,

but rather by tail events of low bandwidth (a few seconds every

5–10 minutes) that cause glitches and disrupt the video call.

When the network deteriorates, even briefly, existing video

conferencing solutions cope to an extent by lowering quality,

but below a certain bandwidth (e.g., 100s of Kbps for HD

video), they must either suspend the transmission altogether

or risk packet loss and frame corruption.

Recently, several neural approaches for face image synthesis

have been proposed that deliver extreme compression by

generating each video frame from a sparse representation

(e.g., keypoints) [5–9]. These techniques have the potential to

enable video conferencing with one to two orders of magnitude

reduction in bandwidth (as low as ∼10Kbps [6, 8]), but their

lack of robustness and high computational complexity hampers

their practicality. Specifically, synthesis approaches work by

“warping” a reference image into different target poses and

orientations captured by such sparse keypoints. These methods

produce good reconstructions when the difference between the

reference and the target image is small, but they fail (possibly

catastrophically) in the presence of large movements or

occlusions. In such cases, they produce poor reconstructions,

for both low-frequency content (e.g., missing the presence

of a hand in a frame altogether) and high-frequency content

(e.g., details of clothing and facial hair). As a result, while

synthesis approaches show promising average-case behavior,

their performance at the tail is riddled with inconsistencies in

practice. Furthermore, real-time reconstruction is only feasible

at low resolution for such models [5,8], even on high-end GPUs,

while typical video conference applications are designed for

HD, Full HD, and even 4K videos [10, 11]. Naïvely reusing

these models on larger input frames can quickly become

prohibitively expensive as the resolution is increased.

We present Gemino, a neural compression system for

low-bitrate video conferencing, designed to overcome the

above robustness and compute complexity challenges. Gemino

targets extreme compression scenarios, such as delivering

video in ∼100 Kbps or less. At such bitrates, the bandwidth

required for video becomes comparable to a typical audio

call [12], greatly expanding the range of networks that can

support video conferencing.

Gemino’s design begins with the observation that current

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 569

570 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Related Work

Traditional Codecs. Most video applications rely on

standard video compression modules (codecs) such as

H.264/H.265 [22,23], VP8/VP9 [24,25], and AV1 [13]. These

codecs separate video frames into keyframes (I-frames) that

exploit spatial redundancies within a frame, and predicted

frames (P-/B-frames) that exploit temporal—as well as

spatial—redundancies across frames. Over the years, these

standards have been improved through ideas like variable block

sizes [23] and low-resolution encoding for lower bitrates [13].

These codecs are particularly efficient in their slow modes

when they have generous time and compute budget to compress

a video at high quality. However, these codecs still require

a few hundred Kbps for real-time applications such as video

conferencing, even at moderate resolutions like 720p. In low-

bandwidth scenarios, these codecs cannot do much other than

transmit at the worst quality, and suffer packet loss and frame

corruption [26]. To circumvent this, some applications [27]

switch to lower resolutions when the network degrades. How-

ever, as new video conferencing solutions such as Google’s

Starline [11] with a large bandwidth footprint are introduced,

these concerns with current codecs become more acute.

Super-resolution. Linear single-image super-resolution (SR)

methods [28, 29] provide robust quality enhancements in

various contexts. Neural SR methods have further enhanced

the upsampling quality by learning better interpolation or in-

painting methods [21,30–32]. Video SR methods [33,34] build

on image SR but further improve the reconstruction by exploit-

ing redundant information in adjacent low-res video frames.

Certain approaches like FAST [35] and Nemo [36] further opti-

mize SR forvideo generation byperforming SR onlyon “anchor

frames” and generating the rest by upsampling motion vectors

and residuals. For video conferencing, domain-specific SR has

also shown promising outcomes utilizing facial characteristics

and training losses in their models [37,38]. However, to the best

of our knowledge, none of these prior methods study upsam-

pling conditioned on a high-resolution image from the same

context. Unlike pure SR methods, Gemino provides access to

high-resolution reference frames and learns models that jointly

in-paint and propagate high-frequency details from the ref-

erence frame. In recent work, SRVC [39] uses content-specific

super-resolution to upsample a low-resolution video stream.

Our approach is similar to SRVC in that it designs a model

adapted to a specific person. However, to enable real-time

encoding, Gemino only customizes the model once per person

rather than continuously adapting it throughout the video.

Neural Codecs. The inability of traditional codecs to operate

at extremely low bitrates for high-resolution videos has led re-

searchers to consider neural approaches that reconstruct video

from very compact representations. Neural codecs have been

designed for video-streaming [39–41], live-video [42], and

video video conferencing [6, 8]. Swift [41] learns to compress

and decompress based on the residuals in a layered-encoding

stack. Both NAS [40] and LiveNAS [42] enhance video quality

using one or more DNN models at either the client for video

streaming, or the ingest server for live video. The models

have knobs to control the compute overheads by using a

smaller Deep Neural Network (DNN) [40], or by adjusting the

number of epochs over which they are fine-tuned online [42].

All of these approaches have shown improvements in the

bits-per-pixel consumption across a wide range of videos.

However, video conferencing differs from other video

applications in a few ways. First, the video is unavailable ahead

of time to optimize for the best compression-quality tradeoff.

Moreover, the interactivity of the application demands that the

video be both compressed and decompressed with low-latency.

Second, the videos belong to a specific distribution consisting

primarily of facial data. This allows for a more targeted model

for generating videos of faces. A number of such models have

been proposed [5–9, 43, 44] over the years. These models use

keypoints or facial landmarks as a compact intermediary repre-

sentation of a specific pose, to compute the movement between

two poses before generating the reconstruction. The models

may use 3D keypoints [6], off-the-shelf keypoint detectors [7],

or multiple reference frames [9] to enhance prediction.

Challenges forneural face imagesynthesis.Neuralsynthesis

approaches and specifically, keypoint-based models fall short

in a number of ways that make them impractical in a video con-

ferencing setting. These models operate similarly to the model

described in Fig. 1 but do not transmit or use the downsampled

target frame. They extract keypoints from the downsampled tar-

get frame, and transmit those instead. This choice causes major

reconstruction failures when the reference and target frames are

not close. Fig. 2 shows the reconstruction produced by the First-

Order-Motion Model (FOMM) [5], a keypoint-based model, on

1024×1024 frames. We focus on the FOMM as a representative

keypoint-based model, but these limitations extend to other

such models. The FOMM only produces blurry outlines of the

faces in rows 1 and 3 where the reference and target differ in

orientation and zoom level respectively. In row 2, the FOMM

misses the arm altogether because it was not present in the

reference frame and warping alone cannot convey the arm’s

presence. Such failures occur because keypoints are limited

in their representation of differences across frames, and most

warping fields cannot be modeled as small deformations around

eachkeypoint. Poorprediction quality in the eventof suchmove-

ments in video calls seriously disrupts the user experience.

Secondly, even in regions without much movement between

the reference and the target frames, current approaches do not

have good fidelity to high-frequency details. In row 2 of Fig. 2,

the microphone does not move much between the reference

and the target, but possesses a lot of high-frequency detail in

its grille and stand. Yet, the FOMM has a poor reconstruction

of that area. In row 1 of Fig. 2, it misses even those details in

the hair that are similar between the reference and the target.

This issue becomes more pronounced at higher resolutions

where more high-frequency content is present in each frame,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 571

572 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 573

574 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

apply NetAdapt on the generic Gemino model with short-term

finetuning on the generic dataset. This is because neural

architecture search is expensive to run, and we observe that

the pruned architecture at the end of NetAdapt is the same for

generic and personalized models. We finally long-term finetune

the shrunk model in a personalized manner to better recover its

accuracy (§5.4). These optimizations allow us to run inference

on the Titan X GPU in 27ms with barely any loss in visual

quality (last column of Tab. 1) when upsampling 128×128

frames at 15Kbps to 1024×1024. Given that video conferenc-

ing applications tolerate latencies of up to 200 ms (5–6 frames)

in their jitter buffers [50], we believe that the additional delay

from generating the received frame will be negligible.

3.5 Operational Flow

Training Procedure. To train Gemino, we first obtain

weights from a trained FOMM model on the entire VoxCeleb

dataset [45] at 256×256 resolution. We choose the appropriate

training data for the specific person we want to train a Gemino

model for, and train from scratch the additional downsampling

and upsampling layers in the HR pipeline as well as all layers in

the LR pipeline, while fine-tuning the rest of the model for 30

epochs. We repeat this procedure for different LR frame resolu-

tions and target bitrate regimes mention in Tab. 2, and different

people. In parallel, using the same procedure, we also train a

generic version of the model on a larger corpus of people. Both

models are replaced with depthwise-separable convolutions

and optimized using NetAdapt [18] to produce the final model.

Inference Routine. Once versions of the model have been

trained and optimized for different LR resolutions and target

bitrates, we simply use the appropriate model for the current

target bitrate regime and the person on the video call. The

sender and the receiver pre-negotiate the reference frame at

the beginning of the video call. This model performs inference

on a frame-by-frame basis in real-time to synthesize the video

stream at the receiver. We detail our prototype implementation

and WebRTC pipeline further in §4.

4 Implementation

Basic WebRTC Pipeline. Our neural video conferencing

solution uses WebRTC [51], an open-source framework that

enables video and audio conferencing atop the real-time

transport protocol (RTP) [52]. Since we perform neural frame

synthesis, we use a Python implementation of WebRTC called

aiortc [19] that allows easy interfacing with PyTorch. Aiortc

handles the initial signaling and the peer-to-peer connection

setup. A typical video call has two streams (video and audio)

that are multiplexed onto a single connection. The sender

extracts raw frames from the display, and compresses the

video and audio components separately using standard codecs

like VPX [24, 25], H.264/5 [22, 23], Opus [53], etc.. The

receiver decompresses the received data in both streams before

synchronizing them and displaying each frame to the client.

New Streams. We extend the standard WebRTC stack to use

Raw Frames

Reference

Compression

(sporadic)

Per-Frame

Compression

Downsampling

128
!

128

256
!

256

512
!

512

1024
!

1024

1024
!

1024

1024
!

1024

Per-Frame

Decompression

Reference

Decompression

(sporadic)

Neural Model

Sender Receiver

Reference Stream

or or or

128
!

128

256
!

256

512
!

512

1024
!

1024
or or or

Per-Frame Stream

Figure 5: Neural video compression pipeline atop WebRTC [51].

We use two RTP streams: A sparse reference stream that sporad-

ically sends high-resolution reference frames, and a per-frame

(PF) stream that is used on every frame. The PF stream sends

downsampled frames of the highest resolution that the current

bandwidth can support, and thus has separate VP8 compression

modules for each resolution. The receiver decompresses the

downsampled frames, and supplies them, along with the latest

reference frame, to the neural network that reconstructs the

target video. If bandwidth is high enough, the PF stream is used

for full-resolution VP8 frames without synthesis.

two distinct streams for video: a per-frame stream (PF stream)

that transmits downsampledvideo (e.g. 64×64 frames) on every

frame, and a reference stream that transmits occasional but high-

resolution reference frames that improve the synthesis fidelity.

We anticipate using the reference stream extremely sparsely.

For instance, in our implementation, we use the first frame of

the video as the only reference frame. However, more reference

frames may help recover high-frequency fidelity as it worsens

when the reference and target frames drift apart. But, most low-

frequency changes between the reference and the target can be

communicated simply through the downsampled target in the

PF stream3. The receiver uses the per-frame information in the

PF stream, with the reference information, to synthesize each

high-resolution frame. Fig. 5 illustrates the expanded WebRTC

architecture to accommodate the Gemino design.

The PF stream is implemented as a new RTP-enabled stream

on thesamepeerconnection between thesenderandthe receiver.

We downsample each input frame to the desiredresolution at the

sender and compress it using the appropriate VPX codec. The

frame is decompressed at the receiver. The bitrate achieved is

controlled by supplying a target bitrate to VPX. Our PF stream

can support full-resolution video that is typical in most video

conferencing applications, while also supporting a range of

lower resolutions for the model to upsample from. To enable

this flexibility, we design the PF stream to have multiple VPX

3We observe that sending reference frames with any fixed frequency adds

significant bandwidth overheads. So, we only use a single reference frame

in our evaluations. We leave an investigation of mechanisms to detect the

need for a new reference frame (speaker moves significantly, high-frequency

content or background changes) to future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 575

encoder-decoder pairs, one for each resolution that it operates

at. When the sender transmits a frame, it chooses an appropriate

resolution and codec based on the target bitrate,and compresses

the video at that resolution and target bitrate. The resolution

information is embedded in the payloadof the RTP packetcarry-

ing the frame data. When the receiver receives each RTP packet,

it infers the resolution and sends it to the VPX decoder for that

resolution. Once decompressed, the low-resolution frame is up-

sampled by Gemino to the appropriate full-resolution frame. If

the PF stream consists of 1024×1024 frames,Gemino falls back

onto the regular codec and stops using the reference stream. The

reference stream is repurposed from the existing video stream.

Model Wrapper. To enable neural frame synthesis, we define

a wrapper that allows the aiortc pipeline to interface with

the model. We reuse most of the pipeline from frame read at

the sender to display at the receiver, except for introducing a

downsampling module right after frame read, and a prediction

function right before frame display. The wrapper is structured

to perform format conversions and data movement from the

AudioVisual [54] frames on the CPU that aiortc needs, to

the PyTorch [55] tensors on the GPU required by the model.

We initialize models separately for the sending and receiving

clients. The wrapper also allows us to save (and periodically

update) state at the sender and receiver which is useful for

reducing the overheads from modules where we can reuse

old computation (e.g., run the encoder for high-resolution

reference features only when the reference changes).

Further Optimizations. We optimize a number of other

aspects of the aiortc pipeline. For instance, we move data

between the CPU and GPU multiple times in each step of

the pipeline. Batching these operations is difficult when

maintaining low latency on each frame. However, to minimize

PCIe overheads from repetitive data movement, we use uint8

variables instead of float. We also keep reference frames and

their encoded features stored as model state on the GPU. We

pipeline as many operations as possible by running keypoint

extraction, model reconstruction, and conversions between

data formats in separate threads.

5 Evaluation

We evaluate Gemino in a simulation environment and atop

a WebRTC-based implementation. We describe our setup

in §5.1 and use it to compare existing baselines in §5.2. §5.3

motivates our model design, §5.4 discusses the impact of

having the codec in our training process, and §5.5 shows that

Gemino closely matches a time-varying target bitrate.

5.1 Setup

Dataset. Since most widely used datasets are of low-resolution

videos [6, 45, 56] and lack diversity in the extent of the torso

or face-zoom level, we collected our own dataset comprising

of videos of five Youtubers with publicly available HD

(1920×1080) videos. For each Youtuber, we curate a set of

20 distinct videos or URLs that differ in clothing, hairstyle,

accessories, or background. The 20 videos of each Youtuber

are separated into 15 training videos and 5 test videos. For each

video, we manually record and trim the segments that consist of

talking individuals; we ignore parts that pan to news segments

or different clips. The segments are further split into 10s

chunks to generate easily loadable videos for training, while the

segments of the test video are combined to form a longer video.

We also spatially crop each frame into our desired dimensions

(typically 1024× 1024). based on the average location of the

person across all frames of the video. Note that 720p and

1024×1024 frames have similar numbers of pixels. We strip the

audio since our focus is on video synthesis. Tab. 8 in App. A.3

describes the details of the dataset. We do not own any of these

videos, and we only use images of frames produced by our eval-

uation pipeline in this paper. We use the 512×512 dataset from

NVIDIA [6] to train a generic model to illustrate the benefits

of personalization. Our evaluation focuses on reconstructing

a single front-facing person in a video call; Gemino can be

extended to multiple speakers if there are application-level

techniques to separate speakers into individual streams [57,58].

Model Details. The main model we evaluate is our high-

frequency conditional super-resolution model that consists

of an upsampling module that takes in features from a low-

resolution (LR) frame, and upsamples it to 1024×1024. To pro-

vide the high-frequency details, it uses two pathways consisting

of warped and unwarped features from the high-resolution (HR)

reference image (Fig. 3). We use the first frame of the video as

the sole reference image fortheentire testduration. Thewarping

field is produced by a motion estimation network that uses the

first-orderapproximation near10keypoints [5]. Ourmulti-scale

architecture runs motion estimation always at 64×64 irrespec-

tive of the input video resolution. The neural encoder (for the

HR features) and decoder (for both LR and HR features) consist

of four down and upsample blocks. The discriminator operates

atmultiple scales anduses spectralnormalization [59] for stabil-

ity. Layers of our model that are identical in dimensions to those

from the FOMM are initialized from a public FOMM check-

point trained on the VoxCeleb dataset [45], and fine-tuned on a

per-person basis. The remaining layers are randomly initialized

and trained on a per-person basis over 30 epochs. We fine-tune

the FOMM baseline also in the same personalized manner. We

use Adam optimizer [60] to update the model weights with a

learning rate of 0.0002, and first and second momentum decay

rates of 0.5 and 0.999. We use equally weighted multi-scale

VGG perceptual loss [61], a feature-matching loss [62], and

a pixel-wise loss. We also use an adversarial loss [17] with

one-tenth the weight of remaining losses. The keypoints use

an equivariance loss similar to the FOMM [5]. We train our

models to reconstruct from decompressed VPX frames corre-

sponding to the low-resolution target frame so that the model

learns to correct any artifacts produced by VPX.

Evaluation Infrastructure. We evaluate our neural compres-

sion system in a simulation environment where frames are read

from a video, downsampled (if needed) for the low-resolution

576 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PF stream, compressed using VPX’s chromium codec [63],

and passed to the model (or other baselines) to synthesize

the target frame. Note that the FOMM [5] uses keypoints and

four “Jacobian” values around each keypoint for producing

its warping, and transmits them over the network. We design

a new codec for the keypoint data that achieves nearly lossless

compression and a bitrate of about 30Kbps. For VPX, we

compress and decompress the full-resolution frame at different

target bitrates, and measure the difference in visual quality

between the output and the original frame.

To obtain end-to-end latency measurements and to demon-

strate Gemino’s adaptability to different target bitrates, (§5.5),

we use ouraiortc [19] implementation. A sending process reads

video from a file frame-by-frame and transmits it to a receiving

process that records each received frame. The two processes,

running on the same server, use the ICE signaling [64]

mechanism to establish a peer-to-peer connection over a UNIX

socket, which then supports video frame transmission using

the Real-Transport Protocol (RTP). We timestamp each frame

as it is sent and received, and save the sent and received frames

in their uncompressed forms to compute latency and visual

metrics. We also log RTP packet sizes to compute the bitrate.

Metrics. To quantify the aesthetics of the generated video, we

use standard visual metrics such as PSNR (peak signal-to-noise

ratio), SSIM (structural similarity index) in decibels [65], and

LPIPS (learned perceptual image patch similarity) [20]. For

PSNR and SSIM, higher is better; while for LPIPS, lower is

better. We observe that differences in LPIPS are more reflective

of how natural the synthesized frame feels and use that as

our main comparison metric (§B.2); we also show visual

strips where appropriate. We report the bitrate consumed to

achieve a particular visual quality by measuring the total data

transferred (size of compressed frames or RTP packet sizes)

over the duration of the video, and dividing it by the duration

itself. To measure the end-to-end latency, we record the time

at which the frame is read from the disk at the sender as well

as the time at which prediction completes at the receiver. We

report the difference between these two timestamps as our

per-frame latency metric. We also report the inference time per

frame when running the trained model in simulation; this does

not capture the overheads of data conversion or movement in

an end-to-end pipeline. This inference time needs to be<33ms

to maintain a 30fps video call. We run all our experiments for

the entire duration of each test video in our dataset (Tab. 8),

and report the average over all frames for each metric.

Baselines. We obtain the bitrate for VP8, the default codec in

its Chromium settings [63] that comes with the aiortc codebase.

We also implement and evaluate VP9 in the same setup. To

evaluate the benefits of using a neural approach to video con-

ferencing, particularly at lower bitrates, we compare a few dif-

ferent models: (1) FOMM [5], a keypoint-based model for face

animation, (2) our approach, Gemino, (3) state-of-the-art super-

resolution model based on SwinIR [21], and (4) bicubic upsam-

pling [28] applied to the low-resolution VPX target frame. All

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

(a) Overall rate-distortion curve for all schemes

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

(b) Rate-distortion curve in low-bitrate regimes.

Figure 6: Rate-distortion curve for Gemino compared with

existing baselines. VP8 and VP9 require ∼5× and ∼3× the

bitrate consumed by Gemino to achieve comparable LPIPS.

At lower bitrates, Gemino outperforms other approaches

that upsample low-resolution video frames. Gemino’s benefits

become prominent as the bitrate regime is lowered.

Figure 7: CDF of reconstruction quality across all video frames

as that shows that, as we move from higher bitrates to lower, the

improvement from Gemino relative to Bicubic, particularly over

VP9, becomes more pronounced.

of the compared models generate 1024× 1024 frames except

for the generic model that uses NVIDIA’s 512×512 corpus [6].

5.2 Overall Bitrate vs. Quality Tradeoff

To quantify the improvements of our neural compression

system, we first compare Gemino with VP8 and VP9 in their

chromium configuration [63]. Fig. 6 shows the rate-distortion

curve for all schemes. For VPX, we alter the target bitrate

alone for full-resolution (1024×1024) frames in the PF stream.

For Gemino, bicubic, and SwinIR, we vary the resolution

and target bitrate of the low-resolution (LR) frame in the

per-frame (PF) stream. For each point on the rate-distortion

curve for Gemino, we train a personalized model to reconstruct

full-resolution frames from LR frames encoded at the highest

resolution supported by that target bitrate. We motivate using

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 577

578 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 579

frame. The accuracy is reported in the form of the average

LPIPS [20] across all frames of our corpus. We observe that

DSC reduces the decoder to 11% of its original MACs. While

this gives limited improvements on large GPU systems, it

improves the inference time on Jetson TX2, an embedded

AI device, by 1.84×. Running NetAdapt further reduces the

inference time to 87ms at 1.5% of the model MACs on the TX2.

The NVIDIA compiler on the Titan X GPU and the Jetson

TX2 is not optimized for DSC [49]; this can be improved with

a TVM compiler stack [66] and optimized engines such as Ten-

sorRT [67]. However, running NetAdapt produces a real-time

model for Titan X even at 10% of the original model MACs.

As expected though, there is a loss of accuracy as the models

become smaller. This loss is negligible in moving from the

full model MACs to 10%, particularly when personalizing, but

is more significant at 1.5%. The trend with personalization is

expected since smaller models do not generalize well with their

limited capacity, however it does not help if the optimizations

are extreme. This illustrates that there is a sweet spot (such as

decreasing MACs to 10%) wherein the gains from decreased

compute outweigh the loss (or lack thereof) in accuracy.

Choosing PF Stream Resolution. Gemino is designed

flexibly to work with LR frames of any size (64×64, 128×128,

256×256, 512×512) to resolve them to 1024×1024 frames, and

to fall back to VPX at full resolution if it can be supported. VP8

and VP9 achieve different bitrate ranges at every resolution by

varying how the video is quantized. For instance, on our corpus,

we observe that 256×256 frames can be compressed with

VP8 in the 45Kbps–180Kbps range, but VP9 can compress

even 512×512 frames from 75Kbps onwards. These bitrate

ranges often overlap partially across resolutions. This begs

the question: given a target bitrate, what resolution and codec

should the model use to achieve the best quality? To answer

this, we compare the synthesis quality with Gemino atop VP8

from three PF resolutions, all at 45Kbps in Tab. 6. Upsampling

256×256 frames, even though they have been compressed more

to achieve the same bitrate, gives a nearly 4 dB improvement

in PSNR, more than 2 dB improvement in SSIM, and a 0.03

improvement in LPIPS, over upsampling lower resolution

frames. This is because the extent of super-resolution that

the model performs decreases dramatically at higher starting

resolutions. This suggests that for any given bitrate budget,

we should start with the highest resolution frames that the

PF stream supports at that bitrate, even at the cost of more

quantization. This also means that if VP9 can compress higher

resolution frames than VP8 at the same target bitrate, we

should pick VP9. Tab. 2 shows the resolution and codec we

choose for different target bitrate ranges in our implementation.

Encoding Video During Training. A key insight in the design

of Gemino is that we need to design the neural compression

pipeline to leverage the latest developments in codec design.

One way to do so is to allow the model to see decompressed

frames at the chosen bitrate and PF resolution during the train-

ing process so that it learns the artifacts produced by the codec.

PF Stream Resolution PSNR (dB) SSIM (dB) LPIPS

64×64 23.80 6.77 0.27

128×128 25.72 7.86 0.27

256×256 27.12 9.01 0.24

Table 6: Reconstruction quality from different resolution

PF stream frames at the same bitrate of 45 Kbps. Gemino

reconstructs better from higher resolution frames.

Training Regime PF @ 15 Kbps PF @45 Kbps PF @75 Kbps

No Codec 0.32 0.30 0.28

VP8 @ 15 Kbps 0.26 0.25 0.23

VP8 @ 45 Kbps 0.28 0.27 0.25

VP8 @ 75 Kbps 0.30 0.28 0.26

VP8 @ [15, 75] Kbps 0.28 0.26 0.25

Table 7: LPIPS for different regimes wherein we include the VP8

codec in the training pipeline. The model trained with the lowest

bitrate videos at a given resolution performs best regardless of

what the bitrate of the video is at inference time.

This allows us to get extremely low bitrates for LR frames

(which often causes color shifts or other artifacts) while main-

taining good visual quality. To evaluate the benefit of this ap-

proach, we compare five training regimes for Gemino when up-

sampling 128×128 video to 1024×1024: (1) no codec, (2) VP8

frames at 15Kbps, (3) VP8 frames at 45Kbps, (4) VP8 frames

at 75Kbps, (5) VP8 frames at a bitrate uniformly sampled from

15Kbps to 75Kbps. We evaluate all five models at upsampling

decompressed frames at 15Kbps, 45Kbps, and 75Kbps.

Tab. 7 shows the LPIPS achieved by all the models in each

reconstruction regime. All models trained on decompressed

frames perform better than the model trained without the codec.

Further, the model trained at the lowest bitrate (15Kbps)

performs the best even when provided decompressed frames

at a higher bitrate at test time because it has learned the

most challenging Super-Resolution task from the worst LR

frames, and performs well even with easier instances or higher

bitrate frames. This suggests that we only need to train one

personalized model per PF resolution at the lowest bitrate

supported by a resolution, and then we can reuse it across the

entire bitrate range that the PF resolution can support.

5.5 Adaptation to Network Conditions

To understand the adaptability of Gemino, we explore

how it responds to changes in the target bitrate over the

course of a video. We remove any conflating effects from

bandwidth prediction by directly supplying the target bitrate

as a decreasing function of time to both Gemino and the VP8

codec. Gemino uses only VP8 through all bitrates for a fair

comparison. Fig. 11 shows (in black) the target bitrate, along

with the achieved bitrates of both schemes, and the associated

perceptual quality [20] for a single video over the course of

220s of video-time5. We observe that initially (first 120s), at

5The timeseries are aligned to ensure that VP8 and Gemino receive the

same video frames to remove confounding effects of differing latencies.

580 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: Gemino’s ability to adapt to a time-varying target

bitrate. As the target bitrate reduces, Gemino gradually lowers

its PF stream resolution trading off more upsampling and less

quality (increased LPIPS) for a reduction in achieved bitrate.

VP8, in contrast, lowers the bitrate initially, but once at its

minimum quality, it stops responding to the target bitrate.

high target bitrates, Gemino and VP8 perform very similarly

because they are both transmitting just VP8 compressed frames

at full (1024×1024) resolution. Once VP8 has hit its minimum

achievable bitrate of ∼550 Kbps (after 120s), there is nothing

more it can do, and it stops responding to the input target

bitrate. However, Gemino continues to lower its PF stream

resolution and/or bitrate in small steps all the way to the lowest

target bitrate of 20Kbps. Since Gemino is only using VP8 here,

it switches to 512×512 at 550Kbps, 256×256 at 180Kbps,

and 128×128 at 30Kbps. This design choice might cause

abrupt shifts in quality around the transition points between

resolutions. However, Gemino prioritizes responsiveness to

the target bitrate over the hysteresis that classical encoders

experience which, in turn, leads to packet losses due to

overshooting and glitches. As the resolution of the PF stream

decreases, as expected, the perceptual quality of Gemino

worsens but is still better than VP8’s visual quality. This shows

that Gemino can adapt well to bandwidth variations, though

we leave the design of a transport and adaptation layer that

provides fast and accurate feedback to Gemino for future work.

6 Limitations and Future Work

While Gemino greatly expands the operating regime for

video conferencing to very low bitrates, it incurs significant

overheads in the form of training costs for codec-in-the-loop

training and personalization. It compresses better than VPX,

but the encoding and decoding processes are quite a bit slower

than VPX, and not as widely supported on devices without

access to some graphical processing engine. However, we

believe that device improvements year on year are trending

in a favorable direction, particularly with the emergence of

optimized runtimes and hardware for running machine learning

workloads on both Apple and Android devices [68,69]. Further,

NetAdapt [18] and layer-by-layer pruning is only one technique

amongst a large suite of model optimization approaches. We

believe that with more targeted optimizations for particular

devices, we can do better. Such optimizations become more

salient when operating on higher-resolution video (e.g., 4K,

UltraHD) and in higher bandwidth regimes (∼ 5Mbps). We

leave an exploration of such optimizations to future work.

Gemino, though trained on random pairs of reference and

target frames, always uses the first frame of the test video

as its reference frame. The reconstruction fidelity can be

improved by using reference frames close to each target frame.

However, sending more frequent reference frames incurs very

high bitrate costs due to their high resolution. We leave to

future work a more thorough investigation of reference frame

selection mechanisms that weigh these tradeoffs to squeeze

the maximum accuracy for a given compression level.

7 Conclusion

This paper proposes Gemino, a neural video compression

scheme for video conferencing using a new high-frequency-

conditional super-resolution model. Our model combines

the benefits of low-frequency reconstruction from a low-

resolution target, and high-frequency reconstruction from a

high-resolution reference. Our novel multi-scale architecture

and personalized training synthesize good quality videos at

high resolution across many scenarios. The adaptability of the

compression scheme to different points on a rate-distortion

curve opens up new avenues to co-design the application and

transport layers for better quality video calls. However, while

neural compression shows promise in enabling very low bitrate

video calls, it also raises important ethical considerations about

the bias that training data can introduce on the usefulness of

such a technique to different segments of the human population.

We believe that our personalized approach alleviates some of

these concerns, but does not eliminate them entirely.

Acknowledgments

We thank our shepherd, Arpit Gupta, and our anonymous

NSDI reviewers for their feedback. This work was supported

by GIST, seed grants from the MIT Nano NCSOFT program

and Zoom Video Communications, and NSF awards 2105819,

1751009 and 1910676.

References

[1] Zoom System Requirements. https://support.zoom

.us/hc/en-us/articles/201362023-Zoom-syste

m-requirements-Windows-macOS-Linux.

[2] Worldwide broadband speed league 2022. https://ww

w.cable.co.uk/broadband/speed/worldwide-sp

eed-league/}speed.

[3] Median Country Speeds March 2023. https://www.sp

eedtest.net/global-index.

[4] The state of video conferencing 2022. https://www.di

alpad.com/blog/video-conferencing-report/.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 581

[5] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey

Tulyakov, Elisa Ricci, and Nicu Sebe. First order motion

model for image animation. In Conference on Neural

Information Processing Systems (NeurIPS), December

2019.

[6] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu.

One-shot free-view neural talking-head synthesis for

video conferencing. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 10039–10049, 2021.

[7] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra

Shysheya, and Victor Lempitsky. Fast bi-layer neural

synthesis of one-shot realistic head avatars. In European

Conference of Computer vision (ECCV), August 2020.

[8] Maxime Oquab, Pierre Stock, Daniel Haziza, Tao Xu,

Peizhao Zhang, Onur Celebi, Yana Hasson, Patrick

Labatut, Bobo Bose-Kolanu, Thibault Peyronel, et al.

Low bandwidth video-chat compression using deep

generative models. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 2388–2397, 2021.

[9] Anna Volokitin, Stefan Brugger, Ali Benlalah, Sebastian

Martin, Brian Amberg, and Michael Tschannen. Neural

face video compression using multiple views, 2022.

[10] Unlimited HD Video Calls. https://trueconf.com

/features/modes/videocall.html, 2021.

[11] Project Starline: Feel like you’re there, together.

https://blog.google/technology/research/pr

oject-starline/, 2021.

[12] What is the Best Audio Codec for Online Video

Streaming? https://www.dacast.com/blog/best

-audio-codec/.

[13] Yue Chen, Debargha Murherjee, Jingning Han, Adrian

Grange, Yaowu Xu, Zoe Liu, Sarah Parker, Cheng Chen,

Hui Su, Urvang Joshi, et al. An overview of core coding

tools in the AV1 video codec. In 2018 Picture Coding

Symposium (PCS), pages 41–45. IEEE, 2018.

[14] Debargha Mukherjee, Jingning Han, Jim Bankoski,

Ronald Bultje, Adrian Grange, John Koleszar, Paul

Wilkins, and Yaowu Xu. A technical overview of VP9,

the latest open-source video codec. SMPTE Motion

Imaging Journal, 124(1):44–54, 2015.

[15] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical

overview of VP8, an open source video codec for the web.

In 2011 IEEE International Conference on Multimedia

and Expo, pages 1–6. IEEE, 2011.

[16] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.

Overview of the scalable video coding extension of the

H.264/AVC standard. IEEE Transactions on circuits and

systems for video technology, 17(9):1103–1120, 2007.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,

and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems,

pages 2672–2680, 2014.

[18] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang,

Alec Go,Mark Sandler,Vivienne Sze,and Hartwig Adam.

NetAdapt: Platform-Aware Neural Network Adaptation

for Mobile Applications. In Proceedings of the European

Conference on Computer Vision (ECCV), 2018.

[19] aiortc. https://github.com/aiortc/aiortc.

[20] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness

of deep features as a perceptual metric. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pages 586–595, 2018.

[21] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,

Luc Van Gool, and Radu Timofte. Swinir: Image

restoration using swin transformer. In Proceedings of

the IEEE/CVF International Conference on Computer

Vision, pages 1833–1844, 2021.

[22] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.

Overview of the scalable video coding extension of the

h. 264/avc standard. IEEE Transactions on circuits and

systems for video technology, 17(9):1103–1120, 2007.

[23] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and

Thomas Wiegand. Overview of the high efficiency video

coding (HEVC) standard. IEEE Transactions on circuits

and systems for video technology, 22(12):1649–1668,

2012.

[24] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical

overview of VP8, an open source video codec for the web.

In 2011 IEEE International Conference on Multimedia

and Expo, pages 1–6. IEEE, 2011.

[25] Debargha Mukherjee, Jingning Han, Jim Bankoski,

Ronald Bultje, Adrian Grange, John Koleszar, Paul

Wilkins, and Yaowu Xu. A technical overview of VP9,

the latest open-source video codec. SMPTE Motion

Imaging Journal, 124(1):44–54, 2015.

[26] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine

Wu, Riad S Wahby, and Keith Winstein. Salsify:

Low-latency network video through tighter integration

between a video codec and a transport protocol. In 15th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 18), pages 267–282, 2018.

582 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[27] Change the quality of your video. https://support.

google.com/youtube/answer/91449?hl=en.

[28] Robert Keys. Cubic convolution interpolation for digital

image processing. IEEE transactions on acoustics,

speech, and signal processing, 29(6):1153–1160, 1981.

[29] Pascal Getreuer. Linear Methods for Image Interpo-

lation. Image Processing On Line, 1:238–259, 2011.

https://doi.org/10.5201/ipol.2011.g_lmii.

[30] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In IEEE European Conference on

Computer Vision (ECCV), 2014.

[31] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan:

Enhanced super-resolution generative adversarial

networks. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 0–0, 2018.

[32] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah,

and Kyoung Mu Lee. Enhanced deep residual networks

for single image super-resolution. In Proceedings of

the IEEE conference on computer vision and pattern

recognition workshops, pages 136–144, 2017.

[33] Jose Caballero, Christian Ledig, Andrew Aitken,

Alejandro Acosta, Johannes Totz, Zehan Wang, and

Wenzhe Shi. Real-time video super-resolution with

spatio-temporal networks and motion compensation. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4778–4787, 2017.

[34] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang,

Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc

Van Gool. Vrt: A video restoration transformer. arXiv

preprint arXiv:2201.12288, 2022.

[35] Zhengdong Zhang and Vivienne Sze. FAST: A

framework to accelerate super-resolution processing

on compressed videos. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Workshops, pages 19–28, 2017.

[36] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol

Ye, and Dongsu Han. Nemo: Enabling neural-enhanced

video streaming on commodity mobile devices. In

Proceedings of the 26th Annual International Conference

on Mobile Computing and Networking, MobiCom ’20,

New York, NY, USA, 2020. Association for Computing

Machinery.

[37] Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen,

and Jian Yang. Fsrnet: End-to-end learning face

super-resolution with facial priors. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2492–2501, 2018.

[38] Cheng Ma, Zhenyu Jiang, Yongming Rao, Jiwen Lu,

and Jie Zhou. Deep face super-resolution with iterative

collaboration between attentive recovery and landmark

estimation. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages

5569–5578, 2020.

[39] Mehrdad Khani, Vibhaalakshmi Sivaraman, and

Mohammad Alizadeh. Efficient video compression via

content-adaptive super-resolution. In Proceedings of

the IEEE/CVF International Conference on Computer

Vision, pages 4521–4530, 2021.

[40] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo

Shin, and Dongsu Han. Neural adaptive content-aware

internet video delivery. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

18), pages 645–661, 2018.

[41] Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das,

Aruna Balasubramanian, and Dimitris Samaras. Swift:

Adaptive video streaming with layered neural codecs. In

19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 22), pages 103–118, Renton,

WA, April 2022. USENIX Association.

[42] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol

Ye, and Dongsu Han. Neural-enhanced live streaming:

Improving live video ingest via online learning. In

Proceedings of the Annual conference of the ACM

Special Interest Group on Data Communication on the

applications, technologies, architectures, and protocols

for computer communication, pages 107–125, 2020.

[43] Pan Hu, Rakesh Misra, and Sachin Katti. Dejavu: En-

hancing videoconferencing with prior knowledge. In Pro-

ceedings of the 20th International Workshop on Mobile

Computing Systems and Applications, pages 63–68, 2019.

[44] Arun Mallya, Ting-Chun Wang, and Ming-Yu Liu.

Implicit warping for animation with image sets, 2022.

[45] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman.

Voxceleb: a large-scale speaker identification dataset.

arXiv preprint arXiv:1706.08612, 2017.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-net: Convolutional networks for biomedical image

segmentation. In International Conference on Medical

image computing and computer-assisted intervention,

pages 234–241. Springer, 2015.

[47] AV1 bitstream & decoding process specification.

http://aomedia.org/av1/specification/.

[48] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, and Hartwig Adam. Mobilenets: Efficient

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 583

convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861, 2017.

[49] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac

Karaman, and Vivienne Sze. FastDepth: Fast Monocular

Depth Estimation on Embedded Systems. 2019

International Conference on Robotics and Automation

(ICRA), pages 6101–6108, 2019.

[50] International Telecommunication Union. ITU-T G.1010:

End-user multimedia QoS categories. In Series G:

Transmission Systems and Media, Digital Systems and

Networks, 2001.

[51] WebRTC. https://webrtc.org/.

[52] Henning Schulzrinne, Stephen Casner, Ron Frederick,

and Van Jacobson. Rtp: A transport protocol for real-time

applications, 1996.

[53] Opus interactive audio codec. https://opus-codec

.org/.

[54] Pyav documentation. https://pyav.org/docs/stab

le/.

[55] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style,

high-performance deep learning library. In Advances

in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc., 2019.

[56] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman.

Voxceleb2: Deep speaker recognition. arXiv preprint

arXiv:1806.05622, 2018.

[57] Google Meet Hardware. "https://workspace.goog

le.com/products/meet-hardware/".

[58] Explore hardware options to enable Zoom.

https://explore.zoom.us/en/workspaces/

conference-room/.

[59] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative

adversarial networks. arXiv preprint arXiv:1802.05957,

2018.

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[61] Justin Johnson, Alexandre Alahi, and Li Fei-Fei.

Perceptual losses for real-time style transfer and super-

resolution. In European conference on computer vision,

pages 694–711. Springer, 2016.

[62] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-

video synthesis. arXiv preprint arXiv:1808.06601, 2018.

[63] VP8 Chromium Implementation. h t t p s :

//chromium.googlesource.com/external/w

ebrtc/+/143cec1cc68b9ba44f3ef4467f1422704f

2395f0/webrtc/modules/video_coding/codecs/v

p8/vp8_impl.cc.

[64] WebRTC connectivity. https://developer.mozill

a.org/en-US/docs/Web/API/WebRTC_API/Conne

ctivity.

[65] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error

visibility to structural similarity. IEEE transactions on

image processing, 13(4):600–612, 2004.

[66] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin

Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,

Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An

automated end-to-end optimizing compiler for deep

learning. arXiv preprint arXiv:1802.04799, 2018.

[67] NVIDIA TensorRT. https://developer.nvidia.c

om/tensorrt.

[68] What Is Apple’s Neural Engine and How Does It Work?

https://www.makeuseof.com/what-is-a-neural

-engine-how-does-it-work/.

[69] Android Neural Networks API. h t t p s :

//source.android.com/docs/core/ota/mod

ular-system/nnapi.

[70] Kunihiko Fukushima and Sei Miyake. Neocognitron:

A self-organizing neural network model for a mechanism

of visual pattern recognition. In Competition and coop-

eration in neural nets, pages 267–285. Springer, 1982.

[71] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. In Francis Bach and David Blei, editors,

Proceedings of the 32nd International Conference

on Machine Learning, volume 37 of Proceedings of

Machine Learning Research, pages 448–456, Lille,

France, 07–09 Jul 2015. PMLR.

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6):84–90,

2017.

584 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 585

D
O
W
N

D
O
W
N

D
O
W
N

D
O
W
N

D
O
W
N U

P

U
P

U
P

U
P

U
P

D
O
W
N

!
C

O

N

V

N

O

R

M

R

E

L

U

P

O

O

L

U
P!U

P

C

O

N

V

N

O

R

M

R

E

L

U

C

O

N

V

C

O

N

V

Keypoints

Jacobians

S
O
F
T
M
A
X

Low-Res

Input

UNet

Figure 12: Keypoint Detector used as a precursor for computing

the warping field between the reference and target images.

Low-resolution versions of both frames are supplied to a UNet

architecture [46], and then put through convolutional layers to

generate keypoint locations and four “Jacobian” values in the

neighborhood of each keypoint.

A Model Details

In the following subsections, we detail the structure of the mo-

tion estimator that produces the warping field for Gemino and

the neural encoder-decoderpair that produce the prediction. We

also describe additional details about the training procedure.

A.1 Motion Estimator

UNet Structure. The keypoint detector and the motion esti-

mator use identical UNet structures (Fig. 12 and Fig. 13) to

extract features from their respective inputs before they are post-

processed. In both cases, the UNet consists of five up and down-

sampling blocks each. Each downsampling block consists of

a 2D convolutional layer [70], a batch normalization layer [71],

a Rectified Linear Unit Non-linearity (ReLU) layer [72], and a

pooling layer that downsamples by 2× in each dimension. The

batch normalization helps normalize inputs and outputs across

layers, while the ReLU layer helps speed up training. Each up-

sampling block first performs a 2× interpolation, followed by

a convolutional layer, a batch normalization layer, and a ReLU

layer. Thus, every downsampling layer reduces the spatial di-

mensions of the input but instead extracts features in a third

“channel” or “depth” dimension by doubling the third dimen-

sion. On the other hand, every upsampling layer doubles in each

spatial dimension, while halving the number of features in the

depth dimension. In our implementation, the UNet structure al-

ways produces 64 features after its first encoder downsampling

layer, and doubles from there on. The reverse happens with the

decoder ending with 64 features after its last layer. Since the

UNet structure operates on low-resolution input (as part of the

keypoint detector and motion estimator), its kernel size is set

to 3×3 to capture reasonably sized fields of interest.

Keypoint Detector. To obtain the warping field between the

reference frame and the target, Gemino first uses a keypoint

detector to locate key facial landmarks. It then uses a first-order

approximation in the neighborhood of these keypoints similar

to the FOMM [5]. To extractkeypoints,we firstdownsample the

input image to 64×64, and then feed it into the UNet structure

described above in its RGB space itself. The UNet structure pro-

duces a set of output features from its decoder, which are then

put through two separate pipelines to extract the keypoint loca-

tions and the “Jacobians.” The keypoint locations are extracted

via a single 7×7 convolutional layer, which is then put through

a softmax to extract probabilities for keypoint presence at each

spatial location. This is then converted to actual keypoint loca-

tions by performing a weighted average of these probabilities

across the entire spatial grid. Note that this process is replicated

10 times by having 10 separate channels to extract 10 keypoints.

The Jacobians are simply four floating point numbers that are

used to approximate the movement (derivatives) in the neigh-

borhood of each keypoint. This is used for the first-order ap-

proximation when computing the motion around each keypoint.

To generate these Jacobians, the output from the UNet is simply

put through a single 7x7 convolutional layer. Fig. 12 describes

this architecture. Note that both the reference and the target

images are fed to this pipeline independently to generate two

separate sets of reference and target keypoints and Jacobians.

Motion Estimation Fig. 13 describes the working of the mo-

tion estimator in Gemino’s design in detail. First, the motion

estimator creates Gaussian heatmaps corresponding to the key-

point locations from both the reference and the target frames.

It subtracts the two on a per-keypoint basis to generate the dif-

ference between the two frames’ keypoints. It adds a separate

heatmap consisting of zeros to denote the fact that the back-

ground is identical in the two frames. The motion estimator then

generates sparse motion vectors or motion vectors in the neigh-

borhood of each keypoint using the first-order Taylor series

approximation [5] and the Jacobian values from the keypoint

detector. These motion vectors (along with an identity for the

background) are applied to the low-resolution reference frame

to obtain a setofdeformedreferences. This effectivelygenerates

11 heatmaps (10 keypoints + 1 forbackground),and11 different

RGB (3 channels) deformed references. The 44 resulting chan-

nels are provided as input along with 3 RGB features from the

low-resolution target image to another replica of the UNet struc-

ture described above. This UNet’s decoder also outputs a set of

predicted features based on all the provided 47 input features.

The predicted features are put through three separate 7×7

convolutional layer followed by Sigmoid layers and a Softmax

layer to produce three occlusion masks. Each occlusion mask

is later used in the decoding pipeline to convey how to combine

information from three pathways: the warped high-resolution

features, the non-warped high-resolution features, and the

low-resolution features to generate the prediction. We use a

Softmax layer to enforce that the sum of these three occlusion

masks is 1 at every spatial location so that they do not compete

in later parts of the decoding pipeline. Intuitively, this forces

each pixel to be generated from one out of the three pathways.

If a feature represents a part of the frame that has moved

between the reference and the target frames, reconstruction

relies on the HR warped pathway, while if it represents a part

of the frame that has not moved, it relies on the non-warped

586 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 587

588 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 589

590 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

