LitePred: Transferable and Scalable Latency Prediction for Hardware-Aware Neural Architecture Search

<u>Chengquan Feng</u>, Li Lyna Zhang, Yuanchi Liu, Jiahang Xu, Chengruidong Zhang, Zhiyuan Wang, Ting Cao, Mao Yang, Haisheng Tan

Inference latency of DNN is important

Face Recognition

Speech Recognition

AR/VR

Edge device need low latency DNNs

Latency: the important model design metric

To get a model with high accuracy and low inference latency:

• Model design algorithms need consider the inference latency in the design process

Measurement latency is expensive and impractical

- Diverse devices and inference engines
 - More than 8318 smartphones
 - Various inference frameworks

• Large number of models in NAS space

It will explore millions models in one search(eg,~0.3million in ProxylessNAS)

On-device measurement is expensive and impractical

Related Works

- FLOPs-based method
- Not reflect the real inference latency
- Operator-level based method
 - Sum up all the operators'/ kernels'(fused operator) latencies
- Need large cost to build predictors for new platform
- Model-level based method
 - Leverage GCN model to learn the graph optimization

Hard to generalize to unseen devices and unseen models

Poor prediction accuracy on new platforms & Expensive rebuilding cost

System overview of LitePred

Key idea of LitePred : identify the most similar pre-existing latency predictors for each kernel on new platform, and then finetune them with just a few adaptation samples to achieve high prediction accuracy.

- 1. Build accurate base predictors from scratch as warmup ones
- 2. Perform similarity detection to identify most similar latency predictor for each kernel type.
- 3. Swiftly finetune with a few adaptation data

Predict arbitrary DNN models with Minimal adaptation cost

Challenges

• Effective data collection

• Latency-dominant kernels exhibit multidimensional joint distribution.

• Similar predictor detection for each kernel

• Most edge platforms are black boxes

Build Accurate Base Latency Predictors

Key Tech #1 Efficient VAE data sampler

• Collect data

- Latency-dominated configurations have low frequencies in NAS search spaces
- Performing data normalization on latency-dominated kernels
- Train model
 - Mean Squared Error (MSE) reconstruction loss between x' and x
 - Kullback-Leibler (KL) divergence loss between encoder output and distribution and standard normal distribution
- Generate kernel configuration
 - Sample N vectors from multivariate Gaussian distribution and pass them to decoder

Build Accurate Base Latency Predictors

Latency predictor model design

- A 16-layer Multilayer Perceptron (MLP) Network for every kernel
- Using configurations, FLOPs, and parameter size as prediction features
- Minimize the Mean Absolute Percentage Error (MAPE) loss

Platform	Method	Conv Acc.	DWConv Acc.
Xiaomi11 CPU	Adaptive data sampler	84.9%	52.8%
MindSpore	VAE data sampler	91.4%	93.6%
Xiaomi11 CPU	Adaptive data sampler	81.5%	95.5%
NCNN	VAE data sampler	88.8%	98.3%
Pixel5 GPU	Adaptive data sampler	61.6%	86.7%
TFLite 2.7	VAE data sampler	76.7%	89.1%
Pixel5 GPU	Adaptive data sampler	65.6%	79.6%
NCNN	VAE data sampler	87.1%	81.7%

VAE data sampler VS state-of-the-art methods

VAE data sampler VS state-of-the-art methods

Transfer Predictors to New Platforms

Core principle of litepred :

Knowledge from a pre-existing latency predictor for one platform can be transferred to new platforms that share similarities.

(i) Mobile hardware of the same type exhibit similar latency patterns.

(ii) Despite varying optimizations and implementations, there exist inference frameworks display similar latency patterns.

Transfer Predictors to New Platforms

Key Tech #2 Similar platform detection

- latency-distribution based similarity detection
 - A pre-existing kernel latency predictor is considered similar for the target platform if its predicted latency displays a similar distribution to the real latency
- Representative configs
 - Configurations in the search spaces that reflect the underlying distribution
 - Designed configurations that capture the latency patterns
- Similar score
 - Kullback-Leibler (KL) divergence

$$D_{KL}(P||Q) = \sum_{y_r \in Y_r, y_p \in Y_p} P(y_p) \log \frac{P(y_p)}{Q(y_r)}$$

 Y_r : real kernel latency Y_p : predicted latencies

Experiment Setup

• Platforms

• 10 different hardware and CPU frequencies, 5 popular inference frameworks on edge and 2 data precision, totally 85 platforms

• Evaluation datasets

- 5 widely-used CNN and 1 vision transformer NAS search space
- 1.86 million model and latency pairs (4k models from each search space on 85 platforms)

Device	CPU	GPU	CPU Frequency		
Pixel 4	Qualcomm Snapdragon 855	Adreno 640	2.4GHz, 2.1GHz		
Pixel 5	Qualcomm Snapdragon 765G	Adreno 620	2.2GHz, 1.9GHz		
Pixel 6	Google Tensor SoC	Mali-G78	2.5GHz, 2.2GHz		
Xiaomi 11	Qualcomm Snapdragon 888	Adreno 660	2.4GHz, 2.1GHz		
Xiaomi 12	Qualcomm Snapdragon 8 Gen 1	Adreno 730	2.4GHz, 2.1GHz		
Inference engines	TFLite 2.1, TFLite 2.7, NCNN,	Mindspore L	lite, Onnxruntime		
Precision	FP32, INT8				

Transferable latency prediction of LitePred on diverse new platforms

- □ We achieve an average of **99.3%** transfer accuracy, with **87.0%** of models having prediction errors within a negligible **5%** margin on CNN models, with minimal adaptation cost (**0.05 to 1.73 hours**) on new platforms
- □ We achieve high transferable prediction accuracy on transformers

(a) Sele	cting most similar kernel p	redictors from the whole kn	owledge po	ol		
Blatform	Similar	#Adaptation Time		Prediction Accuracy		
riauorm	Conv kernel	DWConv kernel	Data	Cost	±5%Acc	±10%Acc
Xiaomi11CPU, ORT	Xiaomi12 CPU, ORT	Xiaomi12 CPU, ORT	1400	0.48h	90.5%	98.9%
Pixel5 GPU, NCNN	Xiaomi11 GPU, NCNN	Xiaomi11 GPU, NCNN	17400	0.96h	84.3%	99.1%
Xiaomi11 CPU, MindSpore	Pixel5 CPU, MindSpore	Xiaomi12 CPU, MindSpore	4800	0.35h	90.4%	99.9%
Xiaomi11 GPU, TFLite 2.7	Xiaomi12 GPU, TFLite 2.7	Xiaomi12 GPU, TFLite 2.7	11000	0.17h	83.7%	98.6%
Xiaomi11 CPU, NCNN	Xiaomi11 CPU, MindSpore	Pixel5 CPU, NCNN	11400	0.88h	80.3%	98.9%
Pixel6 CPU, TFLite 2.1	Xiaomi12 CPU, TFLite 2.1	Xiaomi12 CPU, TFLite 2.1	3500	0.16h	79.4%	100%
Pixel5 CPU, TFLite 2.7	Xiaomi11 CPU, TFLite 2.7	Xiaomi11 CPU, TFLite 2.7	3400	0.13h	79.6%	99.2%
Xiaomi12 CPU, TFLite 2.7, INT8	Xiaomi11 CPU, ORT	Pixel5 GPU, TFLite 2.7	3100	0.05h	95.7%	100%
(b) Similar	ity detection of kernel pred	ictors Excluding same infer	ence framev	vorks		
Xiaomi11 CPU, ORT	Pixel5 CPU, MindSpore	Pixel5 GPU, NCNN	2400	0.72h	84.2%	99.2%
Xiaomi12 GPU, TFLite 2.7	Pixel5 GPU, NCNN	Xiaomi12 CPU, MindSpore	16100	0.22h	79.4%	98.7%
Xiaomi11 CPU, Mindspore	Pixel5CPU, TFLite 2.7	Pixel5GPU, TFLite 2.7	9700	0.80h	98.1%	99.2%
Pixel5 GPU, NCNN	Xiaomi12 CPU, TFLite 2.1	Xiaomi11 CPU, ORT	18500	1.73h	86.5%	99.3%
Xiaomi12 CPU, TFLite 2.1, low Freq	Xiaomi11 GPU, NCNN	Pixel5 CPU, MindSpore	1800	0.18h	94.7%	100%
Xiaomi12 CPU, TFLite 2.1	Pixel4 CPU, TFLite 2.7	Pixel5 CPU, MindSpore	1800	0.10h	97.6%	99.9%

Platform	Similar Platform	Cost	±5%	$\pm 10\%$
Xiaomi11 CPU TFLite 2.7	Xiaomi11 CPU TFLite 2.1	0.05h	100%	100%
Xiaomi12 CPU TFLite 2.1	Pixel5 CPU TFLite 2.7, LowFreq	0.08h	83.9%	99.9%
Xiaomi12 CPU TFLite 2.7, INT8	Pixel5 CPU TFLite 2.7, LowFreq	0.02h	41.4%	99.9%

LitePred prediction on 5 CNN spaces

LitePred prediction on vision transformer space

Comparison with baseline methods

□ LitePred outperforms both state-of-the-art platform-specific and platform-agnostic baselines by achieving up to **5.3%** higher prediction accuracy with a significant **50.6**× profiling cost reduction

Platform	Method	Train Data	Cost	RMSE	$\begin{array}{c} \text{Prediction Acc} \\ \pm 5\% \pm 10\% \end{array}$	
3	HELP	10 models	12.44s	6.6 ms	11.5%	22.5%
Xiaomi11 CPU	HELP*	1030 models	0.35h	4.1 ms	39.3%	48.7%
Mindspore	nn-Meter	234997 kernels	16.23h	0.8 ms	78.0%	98.9%
	Ours	4800 kernels	0.35h	0.4 ms	95.4%	100%
	HELP	10 models	10.87s	9.5 ms	15.4%	23.0%
Xiaomi11 CPU	HELP*	3000 models	0.88h	6.7 ms	37.1%	49.1%
NCNN	nn-Meter	169305 kernels	20.17h	0.4 ms	96.4%	100%
	Ours	11400 kernels	0.88h	0.3 ms	99.5%	100%
	HELP	10 models	2.66s	1.2 ms	13.9%	28.0%
Pixel 5 GPU	HELP*	2500 models	0.62h	0.8 ms	51.6%	61.1 %
TFLite 2.7	nn-Meter	104996 kernels	7.94h	0.8 ms	37.7%	95.8%
	Ours	11900 kernels	0.62h	0.3 ms	95.9%	99.9%
Pixel 5 GPU NCNN	HELP	10 models	16.41s	12 ms	7.9%	16.8%
	HELP*	2100 models	0.96h	7.5 ms	33.5%	50.8 %
	nn-Meter	397384 kernels	48.60h	1.6 ms	52.2%	94.7%
	Ours	17400 kernels	0.96h	0.9 ms	92.6%	100%

The effectiveness of our similarity detection technique

- □ Finetuning a pre-trained predictor from similar platform yields higher accuracy than training a new predictor from scratch on the same platform
- By our similarity detection, we achieve higher accuracy with 2.5× less adaptation data than baseline method

Hardware-aware NAS with LitePred

■ By integrating LitePred into OFA, we achieve up to **4.4%** accuracy compared to MobileNets across various edge platforms

Method	Pixel6 CPU, TFLite 2.1		Xiaomi11 CPU, Mindspore		Pixel5 GPU, NCNN		Xiaomi11 GPU, TFLite 2.7	
Wethod	Top1 Acc. ↑	Latency \downarrow	Top1 Acc. ↑	Latency \downarrow	Top1 Acc. ↑	Latency \downarrow	Top1 Acc. ↑	Latency ↓
MobileNetV2	72.0	45.9ms	72.0	22.7ms	72.0	31.3ms	72.0	5.0 ms
OFA [8] + LitePred	76.4	44.4 ms	73.4	21.8 ms	75.3	31.1 ms	75.8	5.0 ms
MobileNetV3× 0.75	73.3	29.7ms	73.3	24.4ms	73.3	34.4ms	73.3	4.0 ms
OFA [8] + LitePred	74.8	29.6 ms	74.5	23.9 ms	76.0	34.3 ms	74.4	3.9 ms
MobileNetV3	75.2	37.2ms	75.2	33.4ms	75.2	30.3ms	75.2	4.7ms
OFA [8] + LitePred	75.5	36.8 ms	75.6	33.2 ms	75.6	29.8 ms	75.5	4.6 ms

Summary

- LitePred: a lightweight transferrable approach for accurately predicting DNN inference latency
 - Principle: knowledge from a pre-existing latency predictor for one platform can be transferred to new platforms that share similarities
 - Key Tech #1: Efficient VAE data sampler
 - Key Tech #2: Similar platform detection
- Extensive experiments on 85 edge platforms and 6 NAS search spaces
- Impressive results
 - LitePred achieves an average latency prediction accuracy of **99.3%** with less than an hour of adaptation cost
 - LitePred achieves up to **5.3%** higher accuracy with a significant **50.6**× reduction in profiling cost
 - By integrating LitePred with NAS, achieving an impressive up to **4.4%** higher accuracy on ImageNet.