
Characterization of Large Language Model
Development in the Datacenter

2 3 41 5

Qinghao Hu* 1,2, Zhisheng Ye* 1,3, Zerui Wang* 1,4, Guoteng Wang1, Meng Zhang1,2, Qiaoling Chen1,2,

Peng Sun1,5, Dahua Lin1, Xiaolin Wang3, Yingwei luo3, Yonggang Wen2, Tianwei Zhang2

Background

2

In the Era of Large Language Models

2

PlanningCodingBrainstorming Writing

InternLM

3

In the Era of Large Language Models

Developing LLMs demands extensive computational resources and can span
several months.

LLaMA2 Model Family

16,000 NVIDIA A100 GPUs
Several months development

(7B, 13B, 34B, 70B)
PaLM 540B

6,144 TPU-v4
2 months pretraining

4

Motivation

• What are the characteristics of workloads during the
development of LLMs?

• How to tailor system software for LLMs?

• What are the new datacenter requirements for running
LLMs compared to prior DL workloads?

5

LLM Development Pipeline: An Overview

1 Data Preparation

Tokenization

Collection

Curation

Process Pipeline

Data Stores

Pretraining
Datasets

Alignment
Datasets

Pretraining2

Placement Strategy

Data, Pipeline, Tensor
Parallelisms

Training Recipe

Model Selection

Data Sampling

Hyperparameters

Deployment5

RLHF

Fine-tuning

Prompt Engineering

Quantization

Conversion

Multi-metric

Multi-task

Distributed Eval.

Evaluation4

Alignment3

Deployment is not discussed

6

Acme: GPU Datacenter of Shanghai AI Laboratory

• Two GPU Clusters Dedicated to LLM: Seren & Kalos

Totally 4704 A100 GPUs interconnected by NVLink and InfiniBand

• Model Scale: InternLM (LLaMA like architecture)from 7B~123B

Cluster #CPUs/node #GPUs/node Mem(GB) Network #Nodes
Seren

128 8 × A100-80GB
1,024 1×200Gb/s 286

Kalos 2,048 5×200Gb/s 302

More models see: https://huggingface.co/internlm

7

Trace Overview

• Collection Period: traces are collected from March to August 2023
• Number of Jobs: a total of 684K GPU jobs and 410K CPU jobs in Seren and Kalos
• Trace Sources: (1) Job Metadata, (2) Hardware Monitor Data, (2)Runtime Log, (4) Profiling Data

Trace available at https://github.com/InternLM/AcmeTrace

Datacenter Acme
Shanghai AI Lab

Helios
SenseTime

PAI
Alibaba

Philly
Microsoft

Year 2023 2020 2020 2017
Duration 6 months 6 months 2 months 3 months
#Jobs 1.09M 3.36 M 1.25 M 113K

Workload LLM Development General DL workloads

GPU Model A100 1080Ti/V100 T4/P100/V100 12GB/24GB
Total #GPUs 4,704 6,416 6,742 2,490

Datacenter Characterization

9

LLMs versus Prior DL Workloads

• Shorter GPU Job Duration

Explanation
• More advanced hardware
• Abundant resources of each job (Avg. 5~20 GPU)
• Extensive small-scale jobs
• Many failed jobs (~40%)

0

50

100

150

200

250

300

Acme PAI Helios Philly

Avg. GPU Job Duration (minutes)

12.8×
shorter

Key Insight: Need for a fault-tolerant system

10

LLMs versus Prior DL Workloads
• Polarized GPU Utilization

• LLM workloads are either almost entirely idle or fully active

99 97

48

4
0

25

50

75

100

Seren Kalos Philly PAI

Med. GPU Utilization (%)

Explanation
• The computationally intensive nature

of LLMs
• Many jobs fails at initialization

without using any GPUs

Key Insight: GPU-sharing techniques may not be optimal for LLM development.

11

High-skewed Workload Distribution of LLMs

Key Insight: Design scheduler optimizations for LLM clusters
considering the skew in GPU usage.

• Kalos (b, orange): Top 5% of jobs, using >256 GPUs, account for ~96% of GPU time.
• Seren (b, blue): Top 2% of jobs, using >64 GPUs, account for ~75% of GPU time.

Most jobs use
single GPU

12

Infrastructure Utilization Patterns

Higher GPU utilization in LLM development
(a) Median SM activity ~40% in both clusters. (20% in PAI)
(b) The majority of GPUs consume >75% GPU memory in Kalos (<25% in PAI)

~40%

Workload Profiling

Pretraining

Evaluation

14

Workloads
• 123B InternLM using 2,048 A100 GPUs

Frameworks and Strategies

• InternEvo-v1: 3D Parallelism (Megatron-LM)

• with pipeline parallelism=4, tensor parallelism=8
• InternEvo-v2: Hierarchical ZeRO [1]

• Parameter sharding limited in subgroups of 64 GPUs
• Recomputing

[1] Qiaoling Chen, Diandian Gu, et al. Internevo: Efficient long-sequence large language model training via hybrid parallelism and redundant
sharding. CoRR, abs/2401.09149, 2024.

Profiling Pretraining Workloads: Methodology

15

Profiling Pretraining Workloads: GPU SM Utilization

[1] Qiaoling Chen, Diandian Gu, et al. Internevo: Efficient long-sequence large language model training via hybrid parallelism and redundant
sharding. CoRR, abs/2401.09149, 2024.

GPU idle/lower period
Key Improvements of InternEvo V2
• Reduced GPU idle/lower period
• Higher peak SM utilization

Optimizations Under the Hood
• Selective Communication Overlap
• Effective hybrid parallelism strategy

See the InternEvo paper[1] for more details

16

Profiling Pretraining Workloads: GPU Memory Footprint

[1] Deepak Narayanan et al. Pipedream: generalized pipeline parallelism for DNN training. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, 2019.

Memory consumption for each pipeline
rank in InternEvo V1 employing 1F1B [1].

Imbalance in activation size

Key Insight: A specialized partitioning mechanism is needed

17

Profiling Evaluation Workloads: High GPU Idle Rate

• Source1👉Model loading and data processing overhead
• Source2👉Metric computing overhead. Up to 30 mins
• An example: 7B model evaluation on HumanEval

Key Insight: Improvement in the evaluation process of LLMs in system-level.

~30% GPU Time Idle ~19% GPU Time Idle

50% GPU Time
Wasted

Failure Analysis

19

Impact of Job Failures: Typical Failure Recovery Process

Training start

②Failure occurs
Time④Resume

③Manual Troubleshooting

①Saving checkpoints

• LLM Jobs suffer from early job termination due to various failures

Training start

②Failure occurs
Time④Resume

③Manual Troubleshooting

①Saving checkpoints

20

Impact of Job Failures: GPU Wastage and Progress Loss

From Checkpointing (①)
• Training get stuck during checkpoint saving (purple chunk)
From Failure Recovery (②-④)
• GPU time wastage (red chunk)
• Training progress loss (red x)

Key Insight: Build a system that minimizes the failure recovery overhead

21

Sources of Job Failures

User Script
import torch
from models import
InternLM

def train(args):
model = InternLM()
for epoch in range():
train_one_epoch(model)

if __name__ == "__main__":
train(args)

Infrastructure

Scheduler
Storage

CPUs, Memory, NVLink

Framework

InternEvo

Eval Framework

Network

• Failures Happen across the Stacks

22

Job Failure Analysis

Workload Composition
• 1.3k pretraining jobs
• 31K evaluation jobs
• 550 debug jobs

Methodology
• Identify and categories

failures of the failed jobs

Data Sources
• Runtime log: stderr & stdout
• Hardware monitoring data

Category Reason Num Avg. GPU Demands Avg. TF (mins) Total %

Infrastructure

NVLinkError 54 800 868.1 30.25%
CUDAError 21 847 923.2 15.77%
NodeFailure 16 712 1288.8 14.30%
ECCError 12 680 1303.4 11.00%
NetworkError 12 758 549.6 4.53%
ConnectionError 147 29 51.9 3.44%
S3StorageError 10 422 2317.8 2.12%
NCCLTimeoutError 6 596 159.7 0.50%
NCCLRemoteError 3 1152 50.5 0.15%

Framework

DataloaderKilled 6 445 1580.6 4.38%
AttributeError 67 228 67.8 3.90%
OutOfMemoryError 14 572 323.8 3.28%
RuntimeError 65 441 66.4 1.72%
AssertionError 105 413 41.7 1.24%
ValueError 33 387 9.9 0.16%
ZeroDivisionError 5 499 14.5 0.03%
ModelLoadingError 104 8 2.6 0.00%
DatasetLoadingError 5 1 1.6 0.00%

Script

FileNotFoundError 568 21 14.2 2.83%
OSError 266 8 9.6 0.28%
TypeError 620 18 0.9 0.06%
Others - - - 0.08%

System for LLM

23

Fault-tolerant LLM Pretraining

Timely Feedback for Evaluation

24

Asynchronous Checkpointing
1. Store model states in host memory
2. A background process asynchronously save them to the storage
Improvements (blue line vs orange line)
• 58 × checkpointing speedup👉 less progress loss

Fault-tolerant Pretraining: Technique 1

25

Technique 2: LLM-assisted Diagnosis and Recovery

Rule-based
Diagnosis

Recovery Process

Manual
Recovery

Failure Detection

Mismatch

Hint

Failure Agent
Query Engine

Job Start
Failure
Occurs

Compressed
Log & stderr

Automatic
Recovery

Recover-
able?

No

Yes

Log Agent
Rule Writer

Real-time Log
Compression Time

Match

26

Timely Feedback for Evaluation: System Design

Store

1 Trial 1 1

2 Trial 2 2

3 Trial 3 3

4 Trial 4 4

5 Trial 5 5

6 Trial 6 6

Trial 1 Trial 4

Trial 2 Trial 5

Trial 3 Trial 6Time

Baseline Our System

◁ GPU1

Store
◁ GPU2

◁ GPU3

I/O GPU Infer CPU Only PCIe

① Reducing I/O Overhead
• Download models once and load via PCIe

② Async Metric Computation (CPU Only)
③ Batch Trails to Improve Throughput

Time

◁ CPU1

Improvement: Reducing the makespan by 1.3 ~ 1.8 times

①

②

③

Characterization of Large Language Model Development in the Datacenter

Qinghao Hu*I1, Zhisheng Ye*I3, Zerui Wang*I4, Guoteng WangI, Meng ZhangI1, Qiaoling ChenI1

Peng SunI5, Dahua LinI6, Xiaolin Wang3, Yingwei Luo3, Yonggang Wen2, Tianwei Zhang2

IShanghai AI Laboratory 1S-Lab, Nanyang Technological University 2NTU
3Peking University 4Shanghai Jiao Tong University 5SenseTime Research 6CUHK

Abstract
Large Language Models (LLMs) have presented impressive
performance across several transformative tasks. However, it
is non-trivial to efficiently utilize large-scale cluster resources
to develop LLMs, often riddled with numerous challenges
such as frequent hardware failures, intricate parallelization
strategies, and imbalanced resource utilization. In this paper,
we present an in-depth characterization study of a six-month
LLM development workload trace collected from our GPU
datacenter Acme. Specifically, we investigate discrepancies
between LLMs and prior task-specific Deep Learning (DL)
workloads, explore resource utilization patterns, and identify
the impact of various job failures. Our analysis summarizes
hurdles we encountered and uncovers potential opportuni-
ties to optimize systems tailored for LLMs. Furthermore, we
introduce our system efforts: (1) fault-tolerant pretraining,
which enhances fault tolerance through LLM-involved failure
diagnosis and automatic recovery. (2) decoupled scheduling
for evaluation, which achieves timely performance feedback
via trial decomposition and scheduling optimization.

1 Introduction
Over the years, advances in LLMs have attracted significant
attention from both academia and industry owing to their
impressive performance and capabilities, such as ChatGPT
[2] and GitHub Copilot [3]. However, due to their immense
model sizes and extensive data demands, training such models
necessitates a substantial computational infrastructure with
thousands of accelerators [27, 68]. Hence, it is a common
practice for tech companies and cloud providers to build large-
scale GPU clusters to facilitate LLM development, especially
after the popularity of ChatGPT. Nevertheless, it is non-trivial
to perform efficient LLM development on such high-cost
infrastructure. Developers often confront numerous issues
and challenges, including frequent hardware failures [64, 96],
intricate parallelization strategies [68, 113], unstable training
progress [1, 110], long queuing delay [104], etc.

Developing LLMs is closely intertwined with the support
of GPU clusters in various aspects. A thorough analysis of
cluster workloads is essential for comprehending challenges
and uncovering opportunities in designing systems tailored

*Equal Contribution.

for LLMs. However, many conclusions and implications from
existing DL workloads analysis works [38, 45, 97], conducted
before the rise of LLMs, are not applicable to LLM develop-
ment. This is primarily due to the divergent characteristics
and requirements of LLMs:
(1) Paradigm Transition. DL workloads generally follow
a task-specific paradigm that trains the model on domain-
specific data to tackle a particular task (e.g., translation [18]).
In contrast, LLMs follow an emerging paradigm that performs
self-supervised training on broad data to generate a foundation
model [19] and further adapts to a wide range of downstream
tasks. This shift signifies a substantial divergence in the model
development pipeline (e.g., pretraining [85], alignment [37])
and workload characteristics from prior DL workloads (§2.1).
(2) Tailored Software Stack. To accommodate the enormous
model size of LLMs, a series of systems implement advanced
techniques to optimize the execution of LLMs. For instance,
Deepspeed [79], Megatron [68] and Alpa [113] accelerate
the training via hybrid parallelism or state-sharding optimizer.
As for model serving, Orca [104] and vLLM [51] improve
throughput via iteration scheduling or memory management.
(3) Unified Architecture. Prior DL workloads usually employ
various model architectures (e.g., CNN [54], RNN [18]) to ad-
dress diverse tasks. In contrast, LLMs commonly embrace the
Transformer [93] architecture, like BERT [31], GPT-3 [20],
LLaMA [91] and PaLM [27]. The architectural homogeneity
suggests a high level of uniformity in the LLM development
pipeline and similarity across different datacenters.

To bridge this gap, we present an in-depth study of our
operational experiences in the datacenter Acme of Shanghai
AI Laboratory. It houses two distinct clusters, Seren and
Kalos, dedicated to LLM development and equipped with
4,704 A100 GPUs in total. Our analysis draws upon traces
collected over a six-month period from March to August 2023,
encompassing scheduler logs, infrastructure monitoring data,
failure logs, and fine-grained profiling data. Our key findings
and identified challenges can be summarized as follows:
• Shorter Job Duration and Unfair Queuing Delay. In
contrast to the common stereotype that LLM workloads are
usually long-term, the workloads in our datacenter exhibit
2.7⇠12.8⇥ shorter average job duration compared to the
DL workloads in previous traces [38, 45, 97]. This can be

27

More in the Paper

• More profiling results:
• 123B model with 1k GPUs
• Profiling MoE models

• Statistics on the workload categories
• Detailed failure analysis
• Environment impact of LLM development in

Acme

28
Email: wangzerui@pjlab.org.cnInternLM: https://github.com/InternLM

Systems Efforts for LLM
Fault-Tolerant Pretraining System & Timely Feedback Evaluation

Acme

Datacenter Characterization
LLM workload & resource utilization

Failure Impacts
Failures severely affect LLM development

Resource Inefficiencies
GPU time wastage of evaluation & pretraining workloads

Seren & Kalos

