
ExChain: Exception Dependency
Analysis for Root Cause Diagnosis
Ao Li, Shan Lu, Suman Nath, Rohan Padhye, Vyas Sekar

1

Exception/Error Handling Makes System Robust

2

try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

}

Have you written this code before?

Mishandled Exceptions Cause Exception Dependent Failures

3

try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

}
// 1k LOC
// store f to a map
// another 1k LOC
// fetch f from a map
f.write(importantData);

FileNotFoundException

NullPointerException

Root Cause

Failure

Acquiring the Exception Dependency Chain is Challenging

4

try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

}
// 1k LOC
// store f to a map
// another 1k LOC
// fetch f from a map
f.write(importantData);

FileNotFoundException Silent Exception Handling

Implicit State Change

Distant Propagation

NullPointerException

Root Cause

Failure

Exception Dependent Failures Are Prevalent

5

92

8

Exception Depenent Failure Others

*Simple testing can prevent most critical failures: An analysis of production failures in distributed data-intensive systems. [OSDI 14’]

Existing Techniques Don’t Handle EDFs

6

Silent Implicit Distant
Log Analysis ❌ ❓ ❌

Failure Monitoring ✔ ❓ ❌

Request Tracing ❌ ❌ ❓

Exception Analysis ✔ ❌ ❌

ExChain ✔ ✔ ✔

Our Work: ExChain

7

ExChain
Instrumentation

ExChain
Runtime

Log

E1→ E2
E2→ Failure

“cause”

Using low overhead instrumentation to the code, ExChain
reports all exceptions related to the EDFs automatically.

Low Overhead Accurate

ExChain: Key Ideas

8

Proactive Exception Monitoring

Affected/Responsible State Analysis

Hybrid Taint Analysis

Silent Exception Handling

Implicit State Change

Distant Propagation

This Talk

9

Proactive Exception Monitoring

Affected/Responsible State Analysis

Hybrid Taint Analysis

Silent Exception Handling

Implicit State Change

Distant Propagation

Problem: Affected State Analysis

10

try {
f = new File(path);

} catch (FNFException e) {
f = null;

}f=new File(path);

FileNotFoundException

Normal
Execution

Exception
Execution

f→File

f→null

Expensive to
Compare

May not Exist

Slow To Record

Low Overhead Approximation Using Liveness Analysis

11

try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

} Only live when
exception happens!

Insight: Compare “live” variables in exception control
flow vs. normal control flow.

This Talk

12

Proactive Exception Monitoring

Affected/Responsible State Analysis

Hybrid Taint Analysis

Silent Exception Handling

Implicit State Change

Distant Propagation

Track the Propagation of Affected States

13

f=new File(path);

FileNotFoundException

f→null

fileMap[path]=f

writeToFile(f) f.write(data)

Problem: efficient and accurate information flow analysis
for production systems!

Idea: Hybrid Taint Analysis Using
Dynamic Labeling + Static Taint Tracking

14

Online Heap
Object Labelling

Offline Local
Variable Static
Taint Analysis

Heap Objects

Local Variable

ExChain Summary of Key Ideas

● Proactively monitors all exceptions thrown by the application

● Identifies affected states using liveness analysis

● Track the propagation of affected state using hybrid taint analysis

● Identifies responsible states using backward data-flow analysis

15

Evaluation

16

● 11 reproducible exception-dependent failures in real-world systems:
e.g., Hadoop, MapReduce, Fineract

● How does ExChain compare to two state-of-the-art (SoTA) failure
diagnosis tools for exception-dependent failures?

● How do key ideas contribute to low overhead and accuracy?
○ Is hybrid taint analysis better than static/dynamic taint analysis tool?

ExChain Successfully Diagnosed 8/11 Failures

17
*Slicer4J failed to analyze 10/11 applications due to incompatible Java version and missing features.

0

2

4

6

8

10

ExChain Gzoltar Slicer4J

D

ia
gn

os
ed

 F
ai

lu
re

s

ExChain: High Accuracy and Low Overhead

18

0

2

4

6

8

10

ExChain Ex/Static Ex/Dynamic

D

ia
gn

os
ed

 F
ai

lu
re

s

1

10

100

ExChain Ex/Static Ex/Dynamic

O
ve

rh
ea

d
(%

)

*Ex/Static, Ex/Dynamic uses ExChain affected/responsible state analysis algorithm with static/dynamic taint analysis.

Conclusions

19

● Exception Dependent Failures: Good software engineering practice
has unintended consequences

● EDFs are challenging to debug with existing tools:
Silent handling, Implicit state change, Distant effects

● ExChain: Low overhead + Accurate system
○ Synthesis of static, hybrid analysis for

● Open Source!

Paper Code

Debuggability and Observability Language/VM Design

20

0

2

4

6

8

10

12

14

Fineract Hadoop HDFS MapReduce TomCat Wicket

O
ve

rh
ea

d

JVMTi ExChain

