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Exception/Error Handling Makes System Robust
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try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

}

Have you written this code before?



Mishandled Exceptions Cause Exception Dependent Failures
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try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

}
// 1k LOC
// store f to a map
// another 1k LOC
// fetch f from a map
f.write(importantData);

FileNotFoundException

NullPointerException

Root Cause

Failure



Acquiring the Exception Dependency Chain is Challenging

4

try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

}
// 1k LOC
// store f to a map
// another 1k LOC
// fetch f from a map
f.write(importantData);

FileNotFoundException Silent Exception Handling

Implicit State Change

Distant Propagation

NullPointerException

Root Cause

Failure



Exception Dependent Failures Are Prevalent
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92

8

Exception Depenent Failure Others

*Simple testing can prevent most critical failures: An analysis of production failures in distributed data-intensive systems. [OSDI 14’]



Existing Techniques Don’t Handle EDFs
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Silent Implicit Distant
Log Analysis ❌ ❓ ❌

Failure Monitoring ✔ ❓ ❌

Request Tracing ❌ ❌ ❓

Exception Analysis ✔ ❌ ❌

ExChain ✔ ✔ ✔



Our Work: ExChain
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ExChain
Instrumentation

ExChain
Runtime

Log

E1→ E2
E2→ Failure

“cause”

Using low overhead instrumentation to the code, ExChain
reports all exceptions related to the EDFs automatically.

Low Overhead Accurate



ExChain: Key Ideas
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Proactive Exception Monitoring

Affected/Responsible State Analysis

Hybrid Taint Analysis

Silent Exception Handling

Implicit State Change

Distant Propagation



This Talk
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Proactive Exception Monitoring

Affected/Responsible State Analysis

Hybrid Taint Analysis

Silent Exception Handling

Implicit State Change

Distant Propagation



Problem: Affected State Analysis
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try {
f = new File(path);

} catch (FNFException e) {
f = null;

}f=new File(path);

FileNotFoundException

Normal
Execution

Exception
Execution

f→File

f→null

Expensive to 
Compare

May not Exist

Slow To Record



Low Overhead Approximation Using Liveness Analysis
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try {
f = new File(path);

} catch (FileNotFoundException e) {
f = null;

} Only live when 
exception happens!

Insight: Compare “live” variables in exception control 
flow vs. normal control flow.



This Talk
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Proactive Exception Monitoring

Affected/Responsible State Analysis

Hybrid Taint Analysis

Silent Exception Handling

Implicit State Change

Distant Propagation



Track the Propagation of Affected States 
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f=new File(path);

FileNotFoundException

f→null

fileMap[path]=f

writeToFile(f) f.write(data)

Problem: efficient and accurate information flow analysis 
for production systems!



Idea: Hybrid Taint Analysis Using 
Dynamic Labeling + Static Taint Tracking
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Online Heap 
Object Labelling

Offline Local 
Variable Static 
Taint Analysis

Heap Objects

Local Variable



ExChain Summary of Key Ideas

● Proactively monitors all exceptions thrown by the application

● Identifies affected states using liveness analysis 

● Track the propagation of affected state using hybrid taint analysis

● Identifies responsible states using backward data-flow analysis
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Evaluation
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● 11 reproducible exception-dependent failures in real-world systems: 
e.g., Hadoop, MapReduce, Fineract

● How does ExChain compare to two state-of-the-art (SoTA) failure 
diagnosis tools for exception-dependent failures?

● How do key ideas contribute to low overhead and accuracy?
○ Is hybrid taint analysis better than static/dynamic taint analysis tool?



ExChain Successfully Diagnosed 8/11 Failures
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*Slicer4J failed to analyze 10/11 applications due to incompatible Java version and missing features.
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ExChain: High Accuracy and Low Overhead
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*Ex/Static, Ex/Dynamic uses ExChain affected/responsible state analysis algorithm with static/dynamic taint analysis.



Conclusions
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● Exception Dependent Failures: Good software engineering practice 
has unintended consequences

● EDFs are challenging to debug with existing tools: 
Silent handling, Implicit state change, Distant effects

● ExChain: Low overhead + Accurate system  
○ Synthesis of static, hybrid analysis for 

● Open Source!

Paper Code



Debuggability and Observability Language/VM Design
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