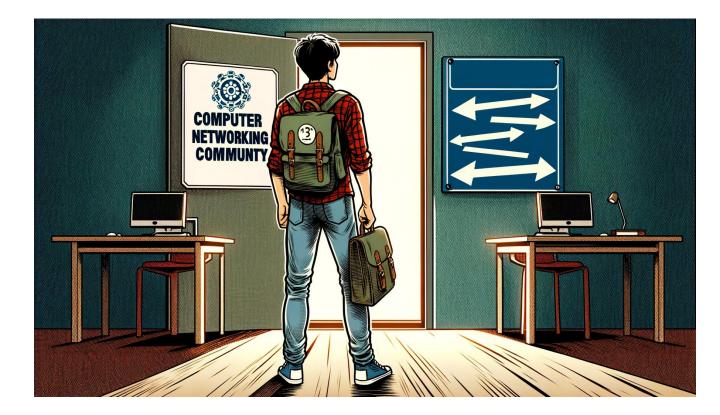


Klonet

an Easy-to-Use and Scalable Platform for Computer Networks Education

<u>Tie Ma</u>⁺, Long Luo⁺, Hongfang Yu⁺, Xi Chen[‡], Jingzhao Xie⁺, Chongxi Ma⁺, Yunhan Xie⁺, Gang Sun⁺, Tianxi Wei⁺, Li Chen⁵, Yanwei Xu[¶], Nicholas Zhang[¶]


†University of Electronic Science and Technology of China

‡Southwest Minzu University <i>Zhongguancun Laboratory

ITheory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.

Education is Vital to Our Community

Education is the gateway for newcomers, shaping the future of computer networking!

Practice is Important

Computer Networks: an abstract and complex discipline
 The key to computer networks education: Practice
 Ways for students to get practice:

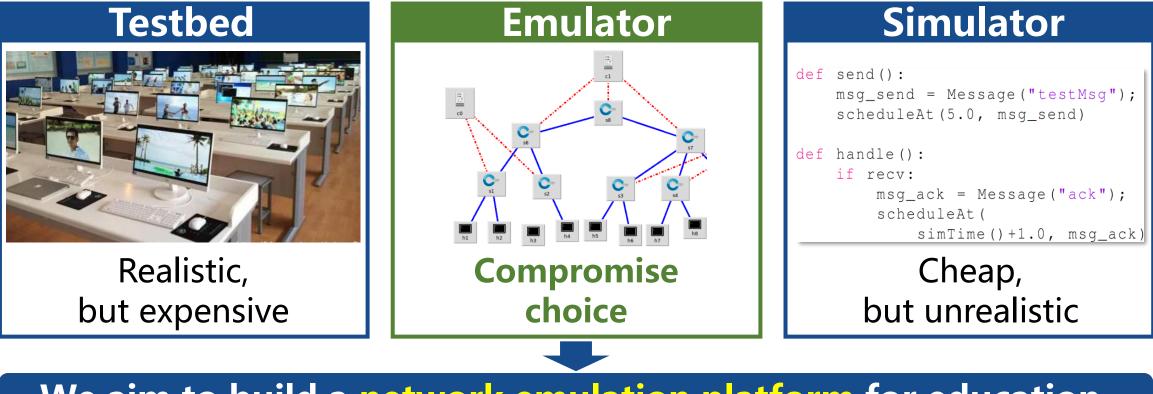
TestbedImage: Image: Ima

Realistic, but expensive

Emulator final de la composition de la composit

Simulator

def send():
 msg_send = Message("testMsg");
 scheduleAt(5.0, msg_send)


def handle():
 if recv:
 msg_ack = Message("ack");
 scheduleAt(
 simTime()+1.0, msg_ack)

 Cheap,

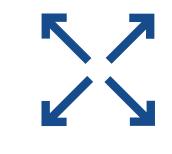
but unrealistic

Practice is Important

Computer Networks: an abstract and complex discipline
 The key to computer networks education: Practice
 Ways for students to get practice:

We aim to build a network emulation platform for education

Goals for an ideal education platform


Easy-to-use

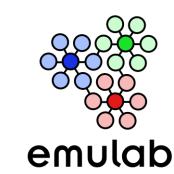
- Help students lower the barrier to practice
 - E.g. easy to get started and master basic operations
 - "The first step is always the hardest"
- Help tutors improve teaching efficiency
 - E.g. direct students easily and setup environments quickly

Scalable

- Support a large number of concurrent experiments
- Support several large-scale emulated networks

Existing Network Emulators

Genaral-purpose Emulators


- Mininet
 - Needs installation (and learning Linux, Virtual Machine, Shell, ...)
 - Installing Mininet on a shared server seems a good idea poor isolation and scalability
 - Lacks a student-friendly GUI
- Emulab
 - Heavy-weight
 - Poor scalability
 - Slow virtual network creation speed
- End-to-end emulators
- Emulators for special scenarios → Cannot emulate diverse network scenario
- ..

6

Cannot emulate all types of devices (e.g. router)

Existing Network Emulators

Education-purpose Emulators

- Netkit
- Kathará
- GNS3
- Mini-Internet
- SEED
- IP-mininet

- Heavy-weight
- Poor Scalability
- Needs installation
- Poor Network Scenarios
- Lacks Embedding Algorithm
- Needs installation

SEED Internet Emulator

7

GNS3

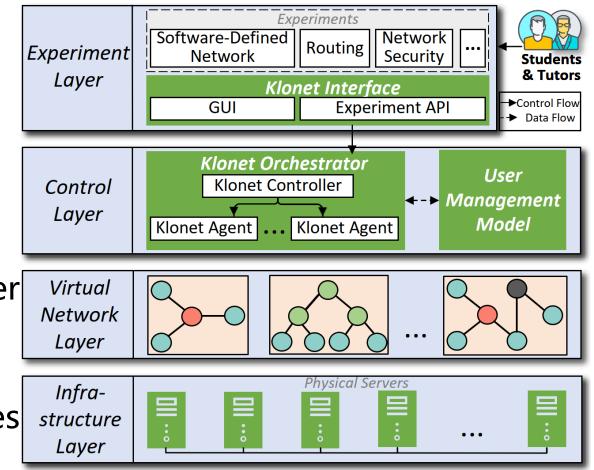
Existing Network Emulators

		Easy	y-to-use			
Platform Name	No Installation	GUI and	Teaching	Experiment	Rich Node	Scalability
	Required	Experiment API	Tools ¹	Tools ²	Types	
Mininet [12]	×	Humble GUI	×	Limited	×	×
Mininet-Hifi [20]	×	Humble GUI	×	Limited	×	×
Distrinet [15]	×	No GUI	×	×	Limited	1
Containernet [16]	×	No GUI	1	×	Limited	×
Vt-Mininet [21]	×	No GUI	×	×	×	1
Mininet-Wifi [22]	×	Humble GUI	1	✓	1	×
Emulab [13]	1	\checkmark	Limited	×	Limited	Limited
Netkit [37]	×	No GUI	1	×	 ✓ 	×
Kathará [17]	×	Humble GUI	1	✓	1	×
Megalos [18]	×	Humble GUI	1	✓	1	1
GNS3 [19]	×	\checkmark	1	✓	1	1
SEED [35]	×	1	1	×	1	1
Mini-Internet [36]	✓	No GUI	1	Limited	×	×
IPMininet [14]	×	No GUI	1	✓	×	×
Klonet (this work)	\checkmark	\checkmark	✓	✓	✓ <i>✓</i>	1

¹ Teaching tools are those designed to facilitate education, *e.g.*, Klonet's scene repository and Mini-Internet's connectivity matrix.

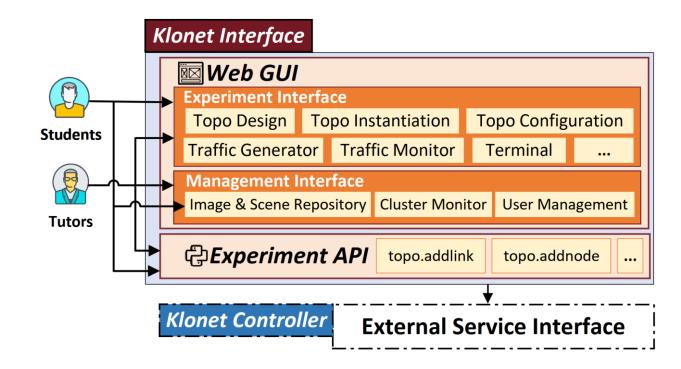
² Experiment tools are those designed to make experiments easier, *e.g.*, Klonet's traffic generator and IPMininet's IP configuration tools.

Related Network Emulators

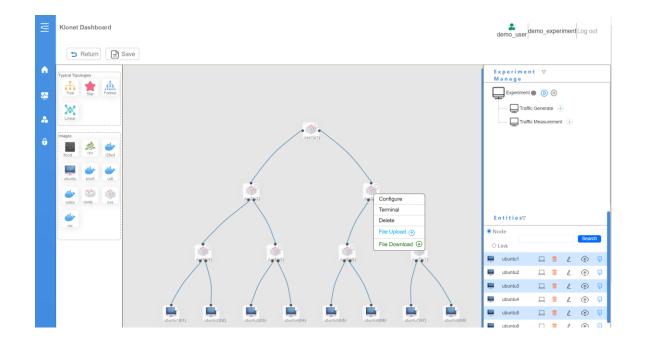

		Eas	y-to-use			
Distform Nome	No Installation	GUI and	Teaching	Experiment	Rich Node	Saalabilit
Platform Name	Required	Experiment API	Tools ¹	Tools ²	Types	Scalability
Mininet [12]						
Mininet-Hifi [20]						
Distrinet [15]						
Containernet [16]						
VANC' A COLL				24		/
Vt-Mininet City Mininet-Wifi	lo existino	a emulator	can ac	hieve th	e two	×
		g emulator tional goals				X Limited X
Mininet-Wifi Emulab		- /				
Mininet-Wifi Emulab Netkit		- /				
Mininet-Wifi Emulab Netkit Kathará	educat	ional goals				
Mininet-Wifi Emulab Netkit Kathará [17] Megalos [18]	educat	ional goals				
Mininet-Wifi Emulab Netkit Kathará [17] Megalos [18] GNS3 [19]	educat	ional goals				
Mininet-Wifi Emulab Netkit Kathará [17] Megalos [18] GNS3 [19] SEED [35]	educat	Humble GUI		taneous		

¹ Teaching tools are those designed to facilitate education, *e.g.*, Klonet's scene repository and Mini-Internet's connectivity matrix.

² Experiment tools are those designed to make experiments easier, *e.g.*, Klonet's traffic generator and IPMininet's IP configuration tools.

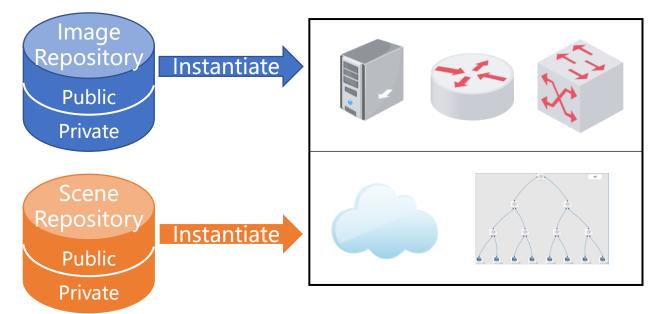

Klonet in a Nutshell

- Adopts a layered architecture
- A shared platform built on a physical cluster, can be easily accessed via its website
- Supports:
 - L2~L7 network experiments
 - Diverse scenarios, e.g. data center networks, wide-area networks
 - Customized topology
 - Mixture of real and virtual devices
 - Rich node types


Achieving Easy-to-use

• Browser/Server (B/S) architecture to allow no installation

Achieving Easy-to-use


- Browser/Server (B/S) architecture to allow no installation
- Rich Interfaces including Web GUI and Experiment API


```
from klonet_api import *
# Get the available images of current student.
images = get_images()
# Select the host(ubuntu) and switch(ovs) image.
ubuntu_image = images["ubuntu"]
ovs_image = images["ovs"]
# Design our topology: h1---s1---h2.
topo = Topo()
h1 = topo.add_node(ubuntu_image, node_name="h1")
h2 = topo.add_node(ubuntu_image, node_name="h2")
s1 = topo.add_node(ovs_image, node_name="s1")
topo.add_link(h1, s1, src_IP="192.168.1.1/24")
topo.add_link(s1, h2, dst_IP="192.168.1.2/24")
# Let Klonet emulate the topology.
deploy (topo)
# Create file in h1 and h2.
exec_cmds_in_nodes(
    {"h1":["touch /log1"], "h2":["touch /log2"]})
```

Achieving Easy-to-use

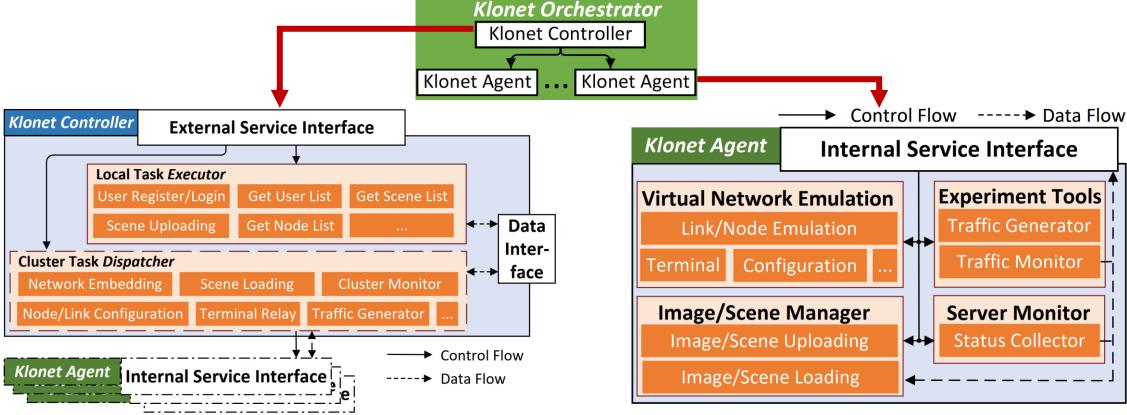
- Browser/Server (B/S) architecture to allow no installation
- Rich Interfaces including Web GUI and Experiment API
- Building image and scene repository to make experiments shareable, scenario-rich, and quick to build

13

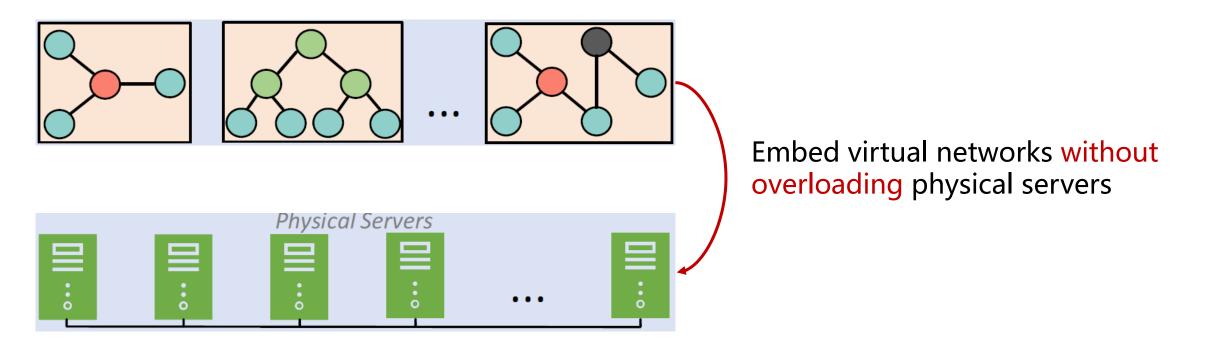
Achieving Easy-to-use

- Browser/Server (B/S) architecture to allow no installation
- Rich Interfaces including Web GUI and Experiment API
- Building image and scene repository to make experiments shareable, scenario-rich, and quick to build
- Built-in auxiliary tools (*e.g.* traffic generator, traffic monitor, and typical topology generator, ...) to facilitate experiments

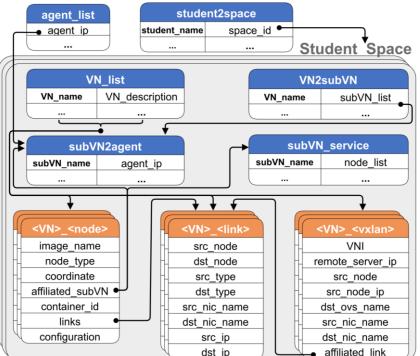



Achieving Easy-to-use

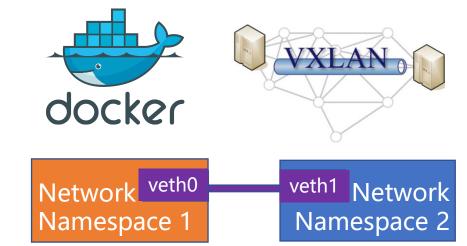
- Browser/Server (B/S) architecture to allow no installation
- Rich Interfaces including Web GUI and Experiment API
- Building image and scene repository to make experiments shareable, scenario-rich, and quick to build
- Built-in auxiliary tools to facilitate experiments
- Apply two parallelization techniques to accelerate creation


Achieving Scalability

• Distributed orchestrator which enables scaling on clusters


Achieving Scalability

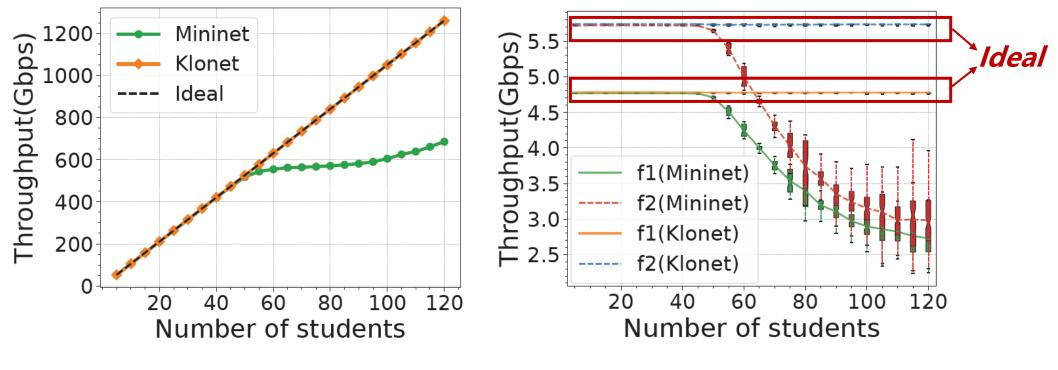
- Distributed orchestrator which enables scaling on clusters
- Design a virtual network embedding algorithm to map virtual networks


Achieving Scalability

- Distributed orchestrator which enables scaling on clusters
- Design a virtual network embedding algorithm to map virtual networks
- Implement a user management model for multi-user data organization

Achieving Scalability

- Distributed orchestrator which enables scaling on clusters
- Design a virtual network embedding algorithm to map virtual networks
- Implement a user management model for multi-user data organization
- Light-weight virtual network emulation
 - Node: Docker container
 - Link: Virtual Ethernet pair and VXLAN
 - Link Properties: Linux traffic control

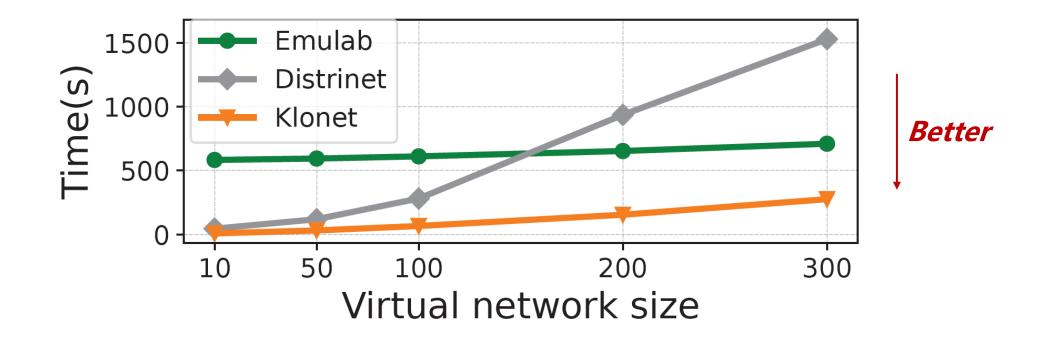

Robustness is important for a shared platform

Achieving Robustness from top to bottom:

- Klonet orchestrator
- User management model
- Virtual networks
- Cluster

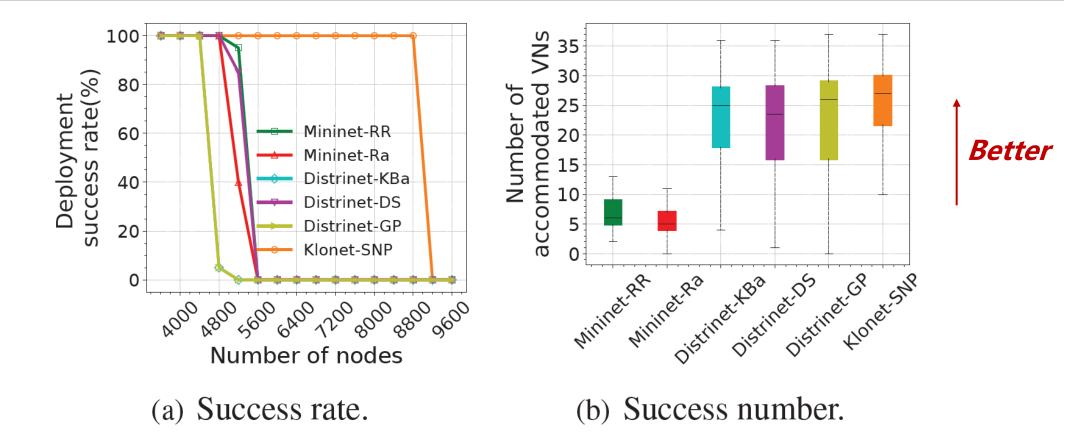
See more details in our paper! (§4.4)

Fidelity Evaluation



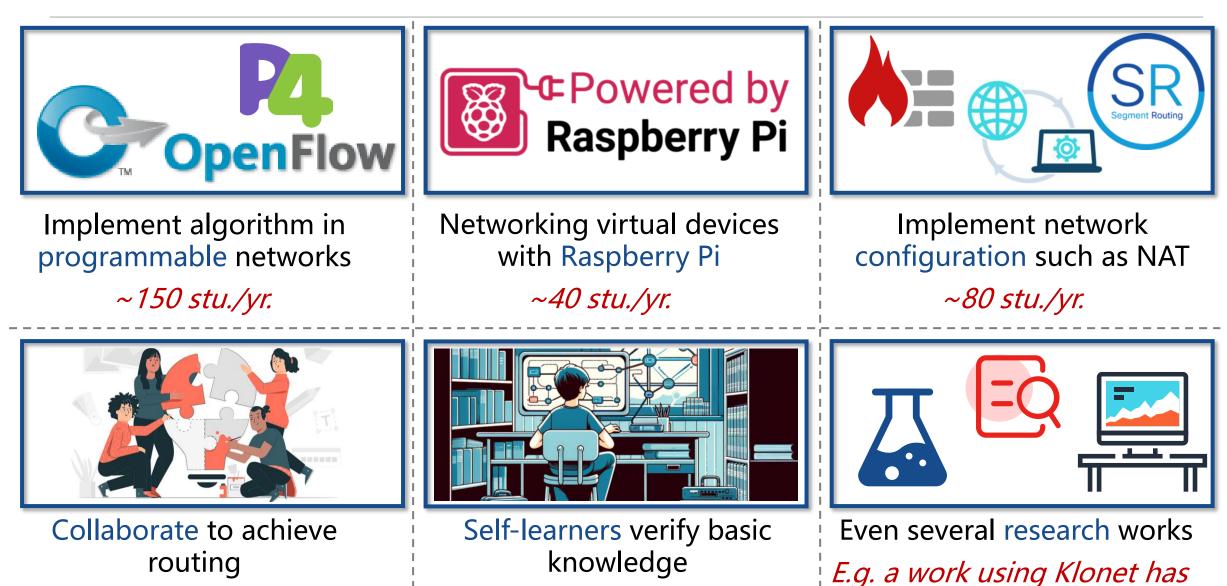
(a) Total throughput.

(b) Throughput distribution.


Klonet can support more students to conduct experiments simultaneously

Creation Time Evaluation

Klonet has a faster speed to deploy VNs


VNE Algorithm Evaluation

Klonet has a more efficient Virtual Network Embedding (VNE) algorithm

Use Cases

~*30 stu./yr.*

~100 stu./yr.

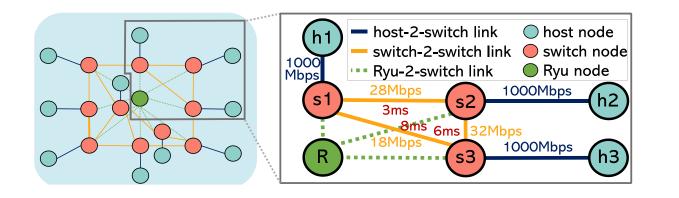
been published in RTSS 2022

Use Cases

Implement algorithm in programmable networks

~150 stu./yr.

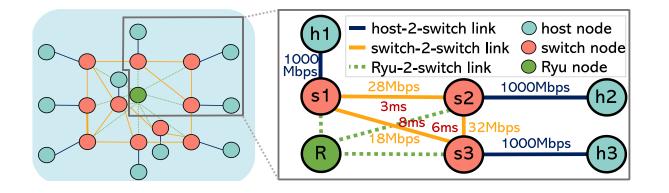
Collaborate to achieve routing ~30 stu./yr.


Project I: Playing with algorithms (§6.1)

Project II: Intra-domain Routing (§6.2)

Use Cases -- Project I: Playing with algorithms

Help students gain practical experience with algorithm performance in a programmable network


Learning outcomes

- Understand how OpenFlow works
- Write algorithms in OpenFlow controllers
- •Identify the performance of algorithms

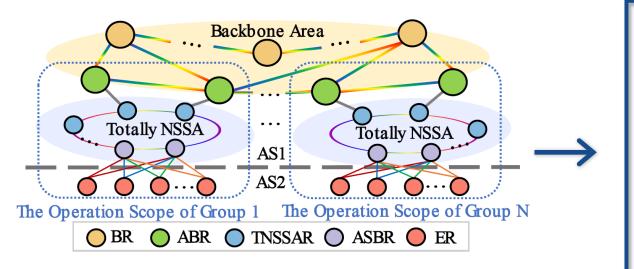
Challenges:

- 1. How to focus on learning SDN networks rather than building them?
- 2. How to quickly replay experiments for selfimprovement or tutor assessment?
- 3. How to interact with the network, control it, and observe its performance?

Use Cases -- Project I: Playing with algorithms

Challenges:

- 1. How to focus on learning SDN networks rather than building them?
- 2. How to quickly replay experiments for selfimprovement or tutor assessment?
- *3. How to interact with the network, control it, and observe its performance?*

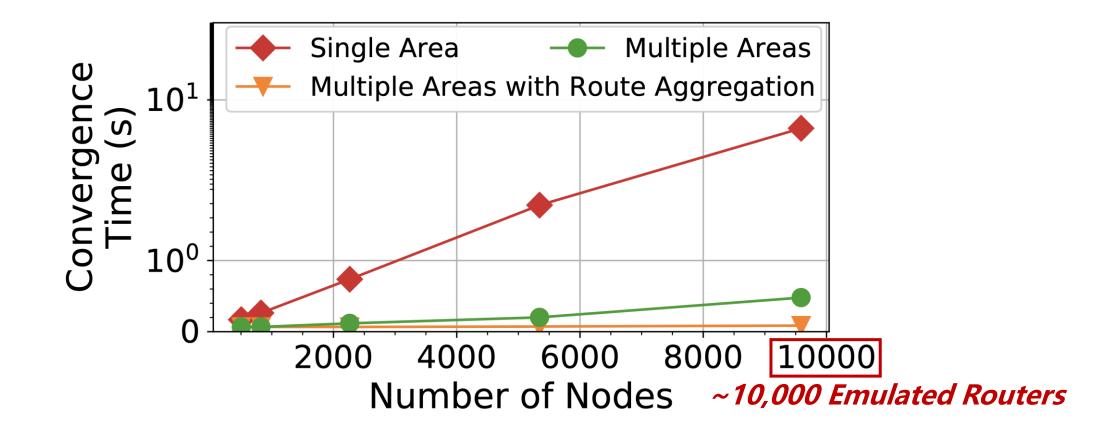

Using Klonet's

- Image repository: tutors can design new experiments quickly (*Address challenge 1*)
- Scene repository: students can start and refine experiments easily, TAs can correct and grade experiments easily (*Address challenge 1, 2*)
- Web terminal, SSH connection: students can program networks, control networks, and interact with networks easily (*Address challenge 3*)

Klonet holds great usability for both tutors and students

Use Cases -- Project II: Intra-domain Routing

Help students gain a hands-on experiment that involves realistic network operations


Challenges:

- 1. Massive scale as if in an enterprise network (up to ~10,000 routers)
- 2. Configure as if in an enterprise network
- 3. Observe as if in an enterprise network

• Learning outcomes

- Build and operate enterprise network
- Have a deeper understanding of OSPF and splitting areas
- Observe and learn the benefits of route aggregation

Use Cases -- Project II: Intra-domain Routing

Klonet's virtual networks can scale to a very large size while maintaining the network's configurability and observability

Conclusion

- We present Klonet, an easy-to-use and scalable platform for computer networks education
- Klonet has been in development for 4 years and in operation for 2 years
- Klonet has been adopted in 3 universities and 4 courses, serving more than 800 students
- We call for more attention to be invested in computer networks education, for the future of our community!

Thank You!

 \bigvee yuhf@uestc.edu.cn \bigvee Or if you have a WeChat account:

Welcome to contact us for discussion or cooperation!