Hairpin: Rethinking Packet Loss Recovery in Edge-based Interactive Video Streaming

Zili Meng, Xiao Kong, Jing Chen, Bo Wang^{\square}, Mingwei Xu^{\square}, Rui Han, Honghao Liu, Venkat Arun, Hongxin Hu, Xue Wei

Background Interactive Video Streaming

Immersive interaction over the Internet is the future. Ultra-low and consistent latency is the key factor of user's experience.

Background Interactive Video Streaming

Next-generation applications involve life-or-death decisions!

AR-assisted driving

Remote surgery

They all need continuous operations of up to 10+ hours, where a single stall can be fatal!

Motivation: Latency Variation

What does latency variation mean for us when we say we want a latency of lower than xx msec?

A 0.3 second stall

0.1% Stall rate ↓ Such a 0.3 sec stall happens every 300 secs (5 min)

4

*Video source: https://www.youtube.com/watch?v=hfySDsMW8BU

Motivation: Latency Variation

Taming the network latency variation for interactive video streaming.

$$latency_{tail} = (1 + RTX_{tail}) \cdot RTT_{tail}$$

RTT_{tail}: Congestion Control Mechanism
> Queueing delay, Propagation delay, etc.
> Not the scope of this paper.

➢RTX_{tail}: Loss Recovery Mechanism

• Forward error correction (FEC)

FBRA	FracTal	RLAF	EC
[MMSys'14]	[MM'17]	[MMSys	s'22]
OptFE	C Tan	n bur	FlexFEC
[TIT'19] [NSI	Dl'23]	[WebRTC]

[FCHNOLOGY

Packet Loss Recovery

Now the latency goes down...

Low network RTT (10-20ms) due to Multiaccess Edge Computing (MEC), 5G/WiFi6.

This is not the ping latency... Low latency even with load!

Capacity	Stadia	GeForce	Luna
15 Mb/s	16.0	16.8	17.2
	(1.7)	(1.5)	(2.1)
25 Mb/s	16.6	16.8	17.0
	(2.2)	(1.6)	(1.5)
35 Mb/s	17.1	18.2	16.4
	(1.4)	(1.8)	(1.6)

RTT (ms) measured by Xu et al [IMC'22] –

港科技大 學

Packet Loss Recovery

Now the latency goes down...

- Low network RTT (10-20ms) due to Multiaccess Edge Computing (MEC), 5G/WiFi6.
- >Human's perception ability of interactive latency is bounded by 50-200ms.

Insight: co-optimize redundancy and retransmission.

Network RTT < Human's perception ability</p>

Init. TX Ist RTX 2nd RTX 3rd RTX Retransmission optimizations When the network is lossy...

Should I add 10% redundancy? Should I rely on retransmissions?

You can think further! Differentiate retransmissions!

Insight: co-optimize redundancy and retransmission.

- Solution: Differentiating retransmission
- When there are many chances to transmit, do not add redundancy.
- >When there are few chances to transmit, aggressively add redundancy.

Insight: co-optimize redundancy and retransmission.

Solution: Differentiating retransmission

Suppose loss rate = 20% (RTT: 20 ms; deadline: 50 ms) Loss rate rises to 40%

Legacy

1st (20%)

2nd (20%) All delivered

Hairpin

Legacy

1st (20%)

Hairpin

1st (0%)

Insight: co-optimize redundancy and retransmission.

- Solution: Differentiating retransmission
- Benefit 1: Fewer deadline misses
 - Higher protection rate for retransmissions helps to ha
- Benefit 2: Save bandwidth
 - Protecting all packets by 10% costs the same as prote

*Video from Bilibili.

osses.

100%

Time

budget

Deadline

hairpin shot

Hairpin

1st (0%)

2nd (50%)

Insight: co-optimize redundancy and retransmission.

Challenges

- Temporal dependency
 - \succ One decision will affect the outcome of the next round.
- ➤Spatial dependency
 - > Redundancy rate and block size in each transmission are coupled.
- ➤Convoluted goals
 - > Deadline miss rate and bandwidth cost are non-trivial to estimate at tail.

Mathematical Formulation

Insight: co-optimize redundancy and retransmission.

Solution

• Formulate the redundancy-retransmission joint optimization with Markov Chains.

Evaluation

Insight: co-optimize redundancy and retransmission.

Evaluation

- NS-3 simulation
- Application in Zhuge [SIGCOMM'22]:
 - WebRTC (UDP) with GCC
- 3 sets of bandwidth traces:
 - WiFi, Ethernet, cellular
- 10 baselines
- Metrics
 - Deadline miss rate
 - Bandwidth cost

Evaluation

Insight: co-optimize redundancy and retransmission.

Understanding the results

• *L* is the number of remaining retransmission chances.

500% 400% 300% 200% 100% 0%

- Working with different congestion control algorithms...
- Application-level metrics (stalls, frame delays, ...)
- Network-level metrics (delays, loss rates, ...)
- Parameter sensitivity and more!
- Source codes:
 - NS-3 simulation (compatible with ns-3.33 version): <u>https://github.com/hkust-spark/hairpin</u>
 - WebRTC patch (compatible with M119 release): https://github.com/hkust-spark/hairpin-webrtc

Takeaway

- Packet loss recovery is no longer "the more redundancy, the better performance".
- When sufficient time budget, rely on retransmission; when deadline approaching, rely on redundancy.
- This improves both bandwidth cost and deadline miss rate simultaneously.
- Source codes:
 - NS-3 simulation (compatible with ns-3.33 version): <u>https://github.com/hkust-spark/hairpin</u>
 - WebRTC patch (compatible with M119 release): https://github.com/hkust-spark/hairpin-webrtc
- Thank you!!

