UFO: The Ultimate QoS-Aware CPU Core Management

for Virtualized and Oversubscribed Public Clouds

*Yajuan Peng, *Shuang Chen(*equal contribution), Yi Zhao, Zhibin Yu

\ .J.| SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY
%, - 4 CHINESE ACADEMY OF SCIENCES SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

S# ii%

If; = H :‘}.H o)) . §<&%\~\\ Of C/E/v054/y0% -
.. \ HERZRRIEREATRE @ aﬁﬁﬁgg
O, - ¥ %

Most cloud data centers operate at very low resource utilization.

= 100 = 100
5 "5 Stable
- -
Q 30 QO 50
g z 1
: U : Y o
Z OO TORWEDIED T SA’I‘ sin’ & O MONTUEWEDTHU FRI SAT SUN Low CPU utilization
Time (d) Time (d) o
<20%
(a) Diurnal (b) Stable and Irregular

VM CPU utilization patterns in Azure Cloud
(Xiaoting Qin: DSN’23)

Multi-tenancy Virtualization Oversubscription

1

Cloud Applications

Best-effort Applications Latency-critical Applications
O ThEREED < MysSOL
Spark
Graphl_{ab\ W Google Maps m NG'MX
* Throughput-oriented Tail latency
* No latency constraint o Strict QoS constraint

Due to double scheduling, LC applications suffer up to 10 times worse.

Previous studies for virtualization optimization focused on BE(Best-effort) applications,
and are ineffective for LC(Latency-critical) applications.

name publication year benchmark
Revisiting VM-Agnostic ... TPDS 2023 |parsec3.0, mosbench...
PLE-KVM VEE 2021 |parsec3d.0, mosbench...
Virtualization Overhead ... TPDS 2021 |PARSEC, SPLASH2X
Flexible Micro-sliced Cores .. EuroSys 2018 |gmake,swaptions,dedup...
eCS USENIXATC | 2018 |Apache,Psearchy,Pbzip2...

B R B

Previous work on LC colocation relies on application-level inputs

to guide QoS-aware resource management.

Algorithm 1 ARQ Resource Scheduling Algorithm.
1: function ARQ

2 isAd just <False, Eg < 1

3 while True do

4 rMonitor the tail latency values of the LC applications Iand the IPC values of
BE applications periodically

S Eé +— Eg

6: Eg < computeEntropy()

/I ReT is an array, the elements of which are the remaining tolerance of each
LC application.
8 ReT < computeRemainingTolerance()

Ah-q (HPCA'23)

Algorithm 1: PARTIES’ main function.

// Start from fair allocation of all resources

initialization();

while TRUE do

monitor tail latency and resource utilization for 500ms;

adjust_network_bandwidth_partition();
for each application A do

| slack[A] « (target[A] - latency[A]) / target[A];
end

PARTIES (ASPLOS'19)

/

Guest OS N

LC Application

oo HOW'

Real-time tail latency

(m

onitor

Public Cloud Scheduler

Host OS

Challenges:

f Public Cloud h

[Virtualization] [Oversubscription] [QoS-Aware J

N
1) Coordination between Host OS and Guest OS

LC performs 10x worse than BE applications due to the double scheduling problem.

/

2) Coordination between vCPU Threads and Emulator Threads

LC applications are subject to internal resource contention within a VM.

3) Coordination between Host Core Manager and Guest Applications

No application-level performance metrics inside VMs to help manage resources.

Challenges:

1) Coordination between Host OS and Guest OS

LC performs 10x worse than BE applications due to the double scheduling problem.

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications

6

LC: more context switch overhead

LC applications consists of numerous sub-millisecond tasks.

BE applications: fewer and longer tasks.

100 ;
= BN Host [Guest

>

[&)

5 60 NPTy
S 40 How to fix it
L 20

% 0 _\E - D_O?_L____f:_____&

i SSISSESEESSELLSE

§ FIFPIFEICCEES &

Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)

e N [I
Guest OS 1 Guest OS 2

vCPU,| | veru,|[very,|| Default

A
/

VCPU1 VCPU2 VCPU3

4 Ne— N ~w -4)
pCPU, pCPU, pCPU, pCPU,
Host OS
NG /

Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)

4 N N
Guest OS 1 Guest OS 2
vCPU, || vCPU, || vCPU,| | vCPU, ' vCPU, || vCPU, || vCcPU,| | vCPU, Isolation
N [N [NV /T
\ / N/ t \/ \ /
\'T'/ vy ' v¥ \4
pCPU, pCPU, pCPU, pCPU,
Host (')S
\ J

Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)

4 N)

Guest OS 1 Guest OS 2

vCPU, || vCPU, E,X;I vCPU, || vCPU, E,XEI Br;@ Host-Aware
o\ N\ L N) Isolation
4 \ ~N \} N
pCPU, pCPU, pCPU,
S

N /

Host Aware-lsolation:

Keep the number of vCPU same as pCPU = Host-Guest coordination

; w100
A5 Memcached 6 Nginx MySQL 2 | . Host
20 5 | | —#— Default & 80 2 Guest
é 5 i —a— |solation ; Ocj‘ .‘?
Q9 1 4 30| % Host-Awarelso /| = 60 8 2
E . 40 %
o ° QoS target 20 ——7— B g
05 o J NS RO it A R e sdofle ! el adl e do sl Lo oo =] &'
S 1 L] S
= ; | »w 0 0
@ 0 | 0 DIH DIH DIH DIH DIH DIH
40 80 120 160 200 20 40 60 80 8 16 24 32 Memcached Nginx MySQL Memcached Nginx MySQL
RPS (k RPS (k RPS (k . ;
(k) (k) (k) (a) Scheduling Frequency (b) Scheduling Delay

Isolation achieves up to 33%(average 18%) higher load than Default, Host-Aware Iso
further increases the maximum load under QoS by up to 25% - 125% than Isolation.

Why?
Lower: Schedule Frequency, Schedule Delay, VM Exits, VM Exit Handling Time, Cache Miss.

Challenges:

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

LC applications are subject to internal resource contention within a VM.

3) Coordination between Host Core Manager and Guest Applications

12

Emulator threads cause resource contention within a VM.

Memcached Nginx MySQL

Virtual Machine

S —— vCPU
Guest User Space S —=— Emulator
5
Linux Linux Guest Kernel Space 5
=)
Process Process — o
(JCPUG vepuO || vepuN |Othread 0™"460 200 300 400 500 50 100 150 200 20 40 60

RPS (k RPS (k RPS (k
W\/M ! i ® ®

/ locty | LC: active, related to input load
/ KVM Module) EEN \CPU EEE Emulator
I;n{ux Kernel I S 800
— } T 600
/ HardWare / = 400
o v > 200
o a0 o 3 &
C TS LCLESSTLLTLEEL
vCPU threads emulator threads & & féf,? & & TEF il

BE: almost have no usage

vCPU thread group and emulator thread group have different core demands,
and interfere with each other when sharing cores.

Guest OS

VCPU, | | VCPU, | | vCPU; | | vCPU, | | VCPU; | | vCPU; | | VCPU, | | vCPU, Shared:

N\ \ N N~ \ vCPU threads share 8 pCPUs with
\ N \‘ \ \ SN emulator threads.

pCPU, pCPU, pCPU; pCPU, pCPU; pCPU; pCPU; pCPU;,

py =

N [

£z
ey

(Default set)
\ Host OS)
& Guest OS b
vCPU,| [vcPU,| [vcPu,| [vepu,| [vePus| vCPU, Isolated:

. I
\ N\ e N
\ N

Partition 8 pCPUs into 6 and 2 cores,
and adopt Host-Aware Isolation in
the vCPU core group.

4 \ \ l
pCPU, pCPU,| |pCPU;| [pCPU,| |pCPU;| |(pCPUg lpCPU7 pCPU,
Host OS '

Isolation inner VM =

Coordination between vCPUs Threads and Emulator Threads

i Memcached 6 Nginx MySQL

1.

= 5 —=— Shared |

= 1 4l —+— |solated

g‘_’U.S b e e Pt e e e cnin e IR e EESSY GRS G na
(@)

2 D

80 160 240 3200 20 40 60 80 100120 0 8 16 24 32 40 48
RPS (k) RPS (k) RPS (k)

Compared with Shared, Isolated achieves 15% - 50% higher input load.
« CPU utilization is a great indicator of application's input load;

« Core allocation of both vCPU and emulator threads should be dynamically adjusted
based on input load.

Challenges:

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications

No application-level performance metrics inside VMs to help manage resources.

16

Scheduling Frequency in Guest OS represents p99 =

Coordination between Host Core Manager and Guest Applications
6pCPU —e— 8pCPU

—a— 2pCPU —— 4pCPU

1 6
m

E0.8 _
) Ll
0.6 o
o £
ot —
50.4

& §2.
L

0.2

o))

0 0
2 = 1
a31.002 % 30
S 80 D ol
S 2 60
o 60 I
‘é» 40 g 40
3 20 g 20
i 2
S 100 200 300 4005 O

o

RPS (k)

100

200
RPS (k)

300

100

200
RPS (k)

300

400

1) SF curve: quadratic function

y=ax*+bx +c

8U: y = —1.837x% +860.2x + 4713

2) SF curve’s peak point

Scheduling Frequency in Guest OS represents p99 =

Coordination between Host Core Manager and Guest Applications

—a— 2pCPU —— 4pCPU 6pCPU —e— 8pCPU

a o 6 1) SF curve: quadratic function
ﬁo.s] "
206 gzp y=ax“+bx +c
§04 g3 2) SF curve’s peak point
£0.2 x
o

0

300 400 0% 100 200 300 400 3) Threshold[x]

RPS (k)
%120, % 100
- ' —— SF[c + 2] — SF|c]
| ASF(6,8) = 21% ASF = < X
@ 80 Y ol 8 anl SFlc + 2]
g 60 ASF(4,6) = 198%
o 40 s ASF(4,6) = 198% > x
E 20 2 20 ===) OUtput: 6 cpus
2 o L& Bl ASF(6,8) =21% < «x
3 100 200 300 400 100 200 300 400

=
RPS (k) A= RPS (k)

UFO: Feedback, Dynamically, Core allocation

 Prioritize for LC applications
UFQ’s goal is to meet QoS for LC applications through modeling of SF in Guest OS.

« Optimize for virtualized and oversubscribed public clouds
Fix double scheduling through Guest-Host coordination and vCPU-emulator isolation.

* Focus on core management // ~ - \
Higher perf th f e
1 - emulator
Igher peritormance wi ewer resources. i
« Accommodate more VMs under VM, - emulator
QOS on a S|ng|e hOSt. \ VCPUPool ~ /\ Emulator Pool /
_ Host CPU Resource Pool j

19

UFO architecture

Covmz)
N /

(x 2 vCPUs) for every 3s

(OICICIO I (OI0IOI0)
(#CPU, %CPU, SF) @ @ @ @ @ @.

y = apx’ + bpx + ¢y F e e mm—m Mo =

L /

_ Host OS -

Experimental Setup

Table 2: Latency-critical applications.

Application Memcached Nginx MySQL
Domain Key-value store Web server Database
QoS Target 0.5ms 2ms 15ms
Max Load under QoS 350k 120Kk 50k
Load Generator Mutated wrk2 sysbench
Dataset One million 10,000 html files 20 tables, each with one
<key,value> pairs of 4KB each million entries
100% GET OLTP transactions, each with
Request Type requests D e 18 select and 2 update queries
VM Size: 8 vCPU, 16 GB memory
Hyperthreading: Enabled
Baselines: Default and Dynlso

Constant Load: Colocation of 2 VMs, evaluate resource efficiency.

< Load of Memcached2 (%) Load of Memcached2 (%) Load of Memcached2 (%) MAL: maximum aggregated load
S 10 20 30 40 50 60 70 80 90 10 10 20 30 40 50 60 70 80 90 10 10 20 30 40 50 60
— 101214 14 16 16 X X X EEN10 10 12 14 14 14 =200
© 280 1e 12 14 14 16 S
S 2 12 12 14 14 16 16 X - 160
3 2 10 12 12 4214 14 16 X X e
= X 10 10 12 12@14 14 X X X 5120 =1
g X 14 14 Il X X X X D gq
= X 14 14 14 X X X X X <
o X 16 o o % 40
g X 16 x 0A)+50/0)
2 X X X X X = 0§ & 10 12 14 16
(a) Default (b) Dynlso (¢c) UFO Number of pCPU
UFQO achieves up to 60% higher MAL than Dynlso under same #pCPUs.
UFO saves up to 50% cores than Dynlso under the same input load.
i —m— Default
| —— Dynlso
= L — —— UFO
 a e

- A &
®© el T = 24 >
= 06 § 10 12 14 164 6 8 10 12 14 164 6 8 10 12 14 164 6 § 10 12 14 164 6 @ 10 12 14 164 & & 10 12 14 16

Number of pCPU Number of pCPU Number of pCPU Number of pCPU Number of pCPU Number of pCPU

(a) Mem$+Mem$ (b) Mem$+Nginx (¢) Mem$+MySQL (d) Nginx+Nginx (e) Nginx+MySQL (f) MySQL+MySQL

Dynamic Load: Colocation of 3 VMs, evaluate fluctuating load.

i —— Nginx —— MySQL —— Memcached
. . . S N .
Nginx: Diurnal load fluctuations I = 4’_/_’ |
o
5 0 —
2 20-—£
-9 0 60 90 120 180 210 240 270
(a) Inpit load respect to eack application’s max load
MySQL: Sub-second load bursts 2 P I R —
k I
2, |- ﬂ [
g, L[0 | \

%30 80 90 120 150 180 210 240 270

Bursts with increasing duration (2
(e) Allocated core count for vCPU threads of each VM

2 10 |
é 100 ot - AR R AR A AR
[1] Applied machine learning at Facebook (HPCA'18) 210!

, 30 60 90 120 150 180 210 240 270
[2] Shenango (NSDI19) (f) Tail latency normalized to QoS target under UFO

o

Dynamic Load: Colocation of 3 VMs, evaluate fluctuating load.

—— Nginx —— MySQL —— Memcached
. : , g)
. 1 g 10!
Nginx: Diurnal load fluctuations [l g 1@ Y 85 3 QoS Target
= —io et ST SN S Y '
S10-1

0 30 60 90 120 150 180 210 240 270
(f) Tail latency normalized to QoS target under UFO

MySQL: Sub-second load bursts 2!

]
&

Norml Latency

Bursts with increasing duration [2! 0 30 60 90 120 150 180 210 240 270

=
o
-

I
&
P

Norml Latency

0
=
o

L

[1] Applied machine learning at Facebook (HPCA'18)

0 30 60 90 120 150 180 210 240 270
Time (s)

(h) Tail latency normalized to QoS target under DynlIso

[2] Shenango (NSDI'19)

Decomposition of UFO

— | Default =3 UFO-vCPU UFO-emulator UFO-combined
4 160 600
Y
=3 74 120 Y 400 | |
4 T BV HoH L Hevl
¥2 . eV 80 (N {7 N VA E 2
X e | i = - N O ALY 5 ~H ENA
HENAH BH YH BV B A\ 200 ENg
0 HENJH E 0L CH ENVE EVH E ol H
8 10 12 14 16 8 10 12 14 16 8 10 12 14 16
Number of pCPU Number of pCPU Number of pCPU
(a) MySQL (b) Nginx (c) Memcached

UFO-vCPU achieves 19.8% higher load on average under QoS than Default.

UFO-combined: 69.8% higher load

UFO-emulator: cause vcpu staking

CONCLUSION

UFO: The Ultimate QoS-Aware CPU Core Management

for Virtualized and Oversubscribed Public Clouds

B Three levels CPU coordination

« Host OS & Guest OS
* Inner VM: vCPU threads & emulator threads
« Host scheduler & Guest Applications

B Dynamic management based on QoS

B Higher resource efficiency

Save up to 50% (average of 22%) cores under the same colocation scenario

nsdio
Thank you!

Q&A

*Yajuan Peng, *Shuang Chen, Yi Zhao, Zhibin Yu

N HER SRR ERTRE

., .J.| SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY
Q. “Fiir &Y CHINESE ACADEMY OF SCIENCES

hs Wi L%

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Appendix 1: Impact on VM Exits and Caches under Host-Aware Iso

BN MSR_READ B EX_INTERRUPT

300

VM Exit Frequency (k/s)
S
o

Memcached Nginx MySQL

PAUSE_INS HLT
=
I - |
BiH BiH DiH

(a) #VM Exits

by VM exit reason.

MSR_WRITE

EPT_MISCONFIG

@6 —

®

£ =
o

=4

=

©

¥

E _‘
>

C‘DIH DIH DIH

Memcached Nginx MySQL
(b) VM Exit Handled Time

Figure 16: VM exit frequency and VM exit handled time under
default (D), isolation (I), and host-aware isolation (H), decomposed

——1 Default LSS Isolation /7] Host-Aware Iso
50 160
_ 0.61 EJ
O e 12002 Gy =N
< 30{ = =\ =\r =7 2N
i I=NZIEN 8ol =N B 041 ER
=20] - = N waliel 0.2 -
10| =Y =N/ =N VI
=N A Sa«EE=N2

o=\ BN :
Memca Nginx M

N
ySaL
(a) L1 dcache

OMemnca Ng'inx MJSQLO'

(b) L1 icache

OMemca Nginx MySQL

(c¢) Last-level cache

Figure 17: Cache misses-per-kilo-instructions (MPKI) under three
core managers.

« VM exits are handled 2x faster on the host under host-aware isolation.

Compared with Default, Isolation reduces L1D and L1I MPKI by up to 5% and
15% (average of 4.1% and 11%), respectively.

Appendix 2: Comparison with related work

Memcached Nginx MySQL —— Default LN Isolation Host-Aware Iso

19 6 = oL ek 0 PLE-KVM £ eCS
é 5 + Is:olati(:)n o =
z 4 B Y s
= 3
3 3 il il 3
205 e L B PV AL Lt -
g |
> 0 o--* 0 £
40 80 120 160 200 20 40 60 80 8 16 24 32 5
RPS (k) RPS (k) RPS (k) =z

(a) LC (b) BE

Figure 2: Performance under five core allocation mechanisms. For LC applications, we show the 99 percentile tail latency with increasing
input load (RPS). Horizontal dotted lines represent applications’ QoS targets. For BE applications, we show the execution time of each
benchmark normalized to that under the Default manager. Lower is better.

[1] PLE-KVM: Mitigating excessive vcpu spinning in vm-agnostic kvm. (VEE’21)
[2] eCS: Scaling guest {OS} critical sections with ecs. (USENIX ATC'18)

Appendix 3: High input load cause scheduling frequency decrease

Low input load: request inter-arrival time > request processing time

lrequest 1 arrives l, request 2 arrives
Thread1 Task 1 runnlng Task 2 running
| request 1 run- tlme | context switch

\
| Arrival interval between requests | vCPU %

High input load: request inter-arrival time < request processing time

request 2 arrives
lrequest 1 arrives .

Thread1 Task 1 running Task 2 running

I . :
l request 1 run-tlrpe context switch
I

| | U mm m Emh

