
UFO: The Ultimate QoS-Aware CPU Core Management

for Virtualized and Oversubscribed Public Clouds

*Yajuan Peng, *Shuang Chen(*equal contribution), Yi Zhao, Zhibin Yu

Motivation Characterization EvaluationUFO Design

VM CPU utilization patterns in Azure Cloud
(Xiaoting Qin: DSN’23)

Multi-tenancy Virtualization Oversubscription

Low CPU utilization
< 20%

Most cloud data centers operate at very low resource utilization.

1

Motivation Characterization EvaluationUFO Design

Best-effort Applications Latency-critical Applications

Cloud Applications

2

• Throughput-oriented

• No latency constraint

• Tail latency

• Strict QoS constraint

Motivation Characterization EvaluationUFO Design

Previous studies for virtualization optimization focused on BE(Best-effort) applications，
and are ineffective for LC(Latency-critical) applications.

Due to double scheduling, LC applications suffer up to 10 times worse.

name publication year benchmark

Revisiting VM-Agnostic ... TPDS 2023 parsec3.0, mosbench...

PLE-KVM VEE 2021 parsec3.0, mosbench...

Virtualization Overhead ... TPDS 2021 PARSEC, SPLASH2X

Flexible Micro-sliced Cores .. EuroSys 2018 gmake,swaptions,dedup...

eCS USENIX ATC 2018 Apache,Psearchy,Pbzip2...

3

Motivation Characterization EvaluationUFO Design

Previous work on LC colocation relies on application-level inputs
to guide QoS-aware resource management.

Ah-q (HPCA’23)

PARTIES (ASPLOS’19)

How?

Unrealistic!

4

Motivation Characterization EvaluationUFO Design

Challenges：

LC performs 10x worse than BE applications due to the double scheduling problem.

LC applications are subject to internal resource contention within a VM.

No application-level performance metrics inside VMs to help manage resources.

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications

Virtualization QoS-AwareOversubscription

Public Cloud

5

Motivation Characterization EvaluationUFO Design

Challenges：

LC performs 10x worse than BE applications due to the double scheduling problem.

LC applications are subject to internal resource contention within a VM.

No application level performance metrics inside VMs to help manage resources.

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications

6

Motivation Characterization EvaluationUFO Design

LC： more context switch overhead

LC applications consists of numerous sub-millisecond tasks.

BE applications: fewer and longer tasks.

How to fix it？

7

Motivation Characterization EvaluationUFO Design

pCPU1 pCPU2 pCPU3 pCPU4

Host OS

vCPU1 vCPU2 vCPU3 vCPU4

Guest OS 1 Guest OS 2

vCPU1 vCPU2 vCPU3 vCPU4 Default

Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)

8

Motivation Characterization EvaluationUFO Design

Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)

pCPU1 pCPU2 pCPU3 pCPU4

Host OS

vCPU1 vCPU2 vCPU3 vCPU4

Guest OS 1 Guest OS 2

vCPU1 vCPU2 vCPU3 vCPU4 Isolation

9

Motivation Characterization EvaluationUFO Design

Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)

pCPU1 pCPU2 pCPU3 pCPU4

Host OS

vCPU1 vCPU2 vCPU3 vCPU4

Guest OS 1 Guest OS 2

vCPU1 vCPU2 vCPU3 vCPU4 Host-Aware
IsolationX X X X

10

Motivation Characterization EvaluationUFO Design

Isolation achieves up to 33%(average 18%) higher load than Default, Host-Aware Iso
further increases the maximum load under QoS by up to 25% - 125% than Isolation.

Why?
Lower: Schedule Frequency, Schedule Delay, VM Exits, VM Exit Handling Time, Cache Miss.

Host Aware-Isolation:

Keep the number of vCPU same as pCPU ➯ Host-Guest coordination

QoS target

11

Motivation Characterization EvaluationUFO Design

Challenges：

LC performs 10x worse than BE applications due to the double scheduling problem.

LC applications are subject to internal resource contention within a VM.

No application-level performance metrics inside VMs to help manage resources.

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications

12

Motivation Characterization EvaluationUFO Design

vCPU threads emulator threads

Emulator threads cause resource contention within a VM.

LC: active, related to input load

BE: almost have no usage
13

Motivation Characterization EvaluationUFO Design

Shared:
vCPU threads share 8 pCPUs with
emulator threads.
(Default set)

Isolated:
Partition 8 pCPUs into 6 and 2 cores,
and adopt Host-Aware Isolation in
the vCPU core group.

vCPU thread group and emulator thread group have different core demands,
and interfere with each other when sharing cores.

14

Motivation Characterization EvaluationUFO Design

Compared with Shared, Isolated achieves 15% - 50% higher input load.

• CPU utilization is a great indicator of application's input load;

• Core allocation of both vCPU and emulator threads should be dynamically adjusted
based on input load.

Isolation inner VM ➯

Coordination between vCPUs Threads and Emulator Threads

15

Motivation Characterization EvaluationUFO Design

Challenges：

LC performs 10x worse than BE applications due to the double scheduling problem.

LC applications are subject to internal resource contention within a VM.

No application-level performance metrics inside VMs to help manage resources.

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications

16

Motivation Characterization EvaluationUFO Design

2) SF curve’s peak point

Scheduling Frequency in Guest OS represents p99 ➯

Coordination between Host Core Manager and Guest Applications

17

1) SF curve: quadratic function

Motivation Characterization EvaluationUFO Design

2) SF curve’s peak point

3) Threshold [x]

Scheduling Frequency in Guest OS represents p99 ➯

Coordination between Host Core Manager and Guest Applications

18

1) SF curve: quadratic function

output: 6 cpus

Motivation Characterization EvaluationUFO Design

UFO: Feedback, Dynamically, Core allocation

• Prioritize for LC applications
UFO’s goal is to meet QoS for LC applications through modeling of SF in Guest OS.

• Optimize for virtualized and oversubscribed public clouds
Fix double scheduling through Guest-Host coordination and vCPU-emulator isolation.

• Focus on core management
Higher performance with fewer resources.

• Accommodate more VMs under
 QoS on a single host.

19

Motivation Characterization EvaluationUFO Design

UFO architecture

20

Guest OS

vCPU1 vCPU2 vCPU3

on/off

VM 1
VM 2

...

Host OS

(SF, %CPU) for every 1s

VM k

Collector Predictor

(± 2 vCPUs) for every 3s

Enforcer (vCPU)

Enforcer (pCPU)

Monitor
vCPU4vCPU4vCPU3

Motivation Characterization EvaluationUFO Design

Experimental Setup

VM Size: 8 vCPU, 16 GB memory
Hyperthreading: Enabled
Baselines: Default and DynIso

21

Motivation Characterization EvaluationUFO Design

Constant Load: Colocation of 2 VMs, evaluate resource efficiency.
MAL: maximum aggregated load

MAL : 30%+10%

40%+10%

50%+50%

UFO achieves up to 60% higher MAL than DynIso under same #pCPUs.
UFO saves up to 50% cores than DynIso under the same input load.

22

Motivation Characterization EvaluationUFO Design

Dynamic Load: Colocation of 3 VMs, evaluate fluctuating load.

Nginx: Diurnal load fluctuations [1]

• UFO reacts to one second after any load change is detected,
and performs better as more samples are collected.

MySQL: Sub-second load bursts [2]

• UFO is not able to react quickly enough to the burst of sub-
second.

Memcached: Bursts with increasing duration [2]

• The responsiveness of UFO depends on the number of steps
to adjust.

[1] Applied machine learning at Facebook (HPCA’18)

[2] Shenango (NSDI’19)

23

Motivation Characterization EvaluationUFO Design

Dynamic Load: Colocation of 3 VMs, evaluate fluctuating load.

Nginx: Diurnal load fluctuations [1]

• UFO reacts to one second after any load change is detected,
and performs better as more samples are collected.

MySQL: Sub-second load bursts [2]

• UFO is not able to react quickly enough to the burst of sub-
second.

Memcached: Bursts with increasing duration [2]

• The responsiveness of UFO depends on the number of steps
to adjust.

[1] Applied machine learning at Facebook (HPCA’18)

[2] Shenango (NSDI’19)

24

QoS Target

Motivation Characterization EvaluationUFO Design

Decomposition of UFO

UFO-vCPU achieves 19.8% higher load on average under QoS than Default.

UFO-combined: 69.8% higher load

UFO-emulator: cause vcpu staking
25

n Three levels CPU coordination
• Host OS & Guest OS
• Inner VM: vCPU threads & emulator threads
• Host scheduler & Guest Applications

n Dynamic management based on QoS

n Higher resource efficiency

Save up to 50% (average of 22%) cores under the same colocation scenario

UFO: The Ultimate QoS-Aware CPU Core Management

for Virtualized and Oversubscribed Public Clouds

CONCLUSION

26

Thank you!
Q&A

*Yajuan Peng, *Shuang Chen, Yi Zhao, Zhibin Yu

Appendix 1: Impact on VM Exits and Caches under Host-Aware Iso

• VM exits are handled 2x faster on the host under host-aware isolation.

• Compared with Default, Isolation reduces L1D and L1I MPKI by up to 5% and
15% (average of 4.1% and 11%), respectively.

Appendix 2: Comparison with related work

[1] PLE-KVM: Mitigating excessive vcpu spinning in vm-agnostic kvm. (VEE’21)
[2] eCS: Scaling guest {OS} critical sections with ecs. (USENIX ATC’18)

Task 1 running Task 2 running
request 1 arrives request 2 arrives

request 1 run-time

Arrival interval between requests

Task 1 running Task 2 running
request 1 arrives

request 2 arrives
Delay running

request 1 run-time

Thread1

Thread1

Low input load: request inter-arrival time > request processing time

High input load: request inter-arrival time ≤ request processing time

context switch

vCPU

context switch

vCPU

Appendix 3: High input load cause scheduling frequency decrease

