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Most cloud data centers operate at very low resource utilization.
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Due to double scheduling, LC applications suffer up to 10 times worse.

Previous studies for virtualization optimization focused on BE(Best-effort) applications,
and are ineffective for LC(Latency-critical) applications.

name publication year benchmark
Revisiting VM-Agnostic ... TPDS 2023 |parsec3.0, mosbench...
PLE-KVM VEE 2021 |parsec3d.0, mosbench...
Virtualization Overhead ... TPDS 2021 |PARSEC, SPLASH2X
Flexible Micro-sliced Cores .. EuroSys 2018 |gmake,swaptions,dedup...
eCS USENIXATC | 2018 |Apache,Psearchy,Pbzip2...
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Previous work on LC colocation relies on application-level inputs

to guide QoS-aware resource management.

Algorithm 1 ARQ Resource Scheduling Algorithm.
1: function ARQ

2 isAd just <False, Eg < 1

3 while True do

4 rMonitor the tail latency values of the LC applications Iand the IPC values of
BE applications periodically

S Eé +— Eg

6: Eg < computeEntropy()

/I ReT is an array, the elements of which are the remaining tolerance of each
LC application.
8 ReT < computeRemainingTolerance()

Ah-q (HPCA'23)

Algorithm 1: PARTIES’ main function.

// Start from fair allocation of all resources

initialization();

while TRUE do

monitor tail latency and resource utilization for 500ms;

adjust_network_bandwidth_partition();
for each application A do

| slack[A] « (target[A] - latency[A]) / target[A];
end

PARTIES (ASPLOS'19)
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Challenges:

f Public Cloud h

[Virtualization] [Oversubscription] [ QoS-Aware J

N
1) Coordination between Host OS and Guest OS

LC performs 10x worse than BE applications due to the double scheduling problem.

/

2) Coordination between vCPU Threads and Emulator Threads

LC applications are subject to internal resource contention within a VM.

3) Coordination between Host Core Manager and Guest Applications

No application-level performance metrics inside VMs to help manage resources.




Challenges:

1) Coordination between Host OS and Guest OS

LC performs 10x worse than BE applications due to the double scheduling problem.

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications
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LC: more context switch overhead

LC applications consists of numerous sub-millisecond tasks.

BE applications: fewer and longer tasks.
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Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)
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Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)
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Default: Rely on the scheduling policy of OS to schedule VMs. All the two VMs
share the same 4 pCPUs.

Isolation: Isolate the two VMs, each assigned two pCPUs on the host.

Host-Aware Isolation: On top of Isolation, the Guest OS is aware that the VM
is allocated with only two pCPUs, and schedules only two vCPUs. (Hot-plug)
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Host Aware-lsolation:

Keep the number of vCPU same as pCPU = Host-Guest coordination
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Isolation achieves up to 33%(average 18%) higher load than Default, Host-Aware Iso
further increases the maximum load under QoS by up to 25% - 125% than Isolation.

Why?
Lower: Schedule Frequency, Schedule Delay, VM Exits, VM Exit Handling Time, Cache Miss.




Challenges:

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

LC applications are subject to internal resource contention within a VM.

3) Coordination between Host Core Manager and Guest Applications
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Emulator threads cause resource contention within a VM.
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vCPU thread group and emulator thread group have different core demands,
and interfere with each other when sharing cores.

Guest OS
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Isolation inner VM =

Coordination between vCPUs Threads and Emulator Threads

i Memcached 6 Nginx MySQL
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Compared with Shared, Isolated achieves 15% - 50% higher input load.
« CPU utilization is a great indicator of application's input load;

« Core allocation of both vCPU and emulator threads should be dynamically adjusted
based on input load.




Challenges:

1) Coordination between Host OS and Guest OS

2) Coordination between vCPU Threads and Emulator Threads

3) Coordination between Host Core Manager and Guest Applications

No application-level performance metrics inside VMs to help manage resources.
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Scheduling Frequency in Guest OS represents p99 =

Coordination between Host Core Manager and Guest Applications
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Scheduling Frequency in Guest OS represents p99 =

Coordination between Host Core Manager and Guest Applications
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UFO: Feedback, Dynamically, Core allocation

 Prioritize for LC applications
UFQ’s goal is to meet QoS for LC applications through modeling of SF in Guest OS.

« Optimize for virtualized and oversubscribed public clouds
Fix double scheduling through Guest-Host coordination and vCPU-emulator isolation.

* Focus on core management // ~ - \
Higher perf th f e
1 - emulator
Igher peritormance wi ewer resources. i
« Accommodate more VMs under VM, - emulator
QOS on a S|ng|e hOSt. \ VCPUPool ~ /\  Emulator Pool /
\_ Host CPU Resource Pool j
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UFO architecture
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Experimental Setup

Table 2: Latency-critical applications.

Application Memcached Nginx MySQL
Domain Key-value store Web server Database
QoS Target 0.5ms 2ms 15ms
Max Load under QoS 350k 120Kk 50k
Load Generator Mutated wrk2 sysbench
Dataset One million 10,000 html files 20 tables, each with one
<key,value> pairs  of 4KB each million entries
100% GET OLTP transactions, each with
Request Type requests D e 18 select and 2 update queries
VM Size: 8 vCPU, 16 GB memory
Hyperthreading: Enabled
Baselines: Default and Dynlso




Constant Load: Colocation of 2 VMs, evaluate resource efficiency.
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Dynamic Load: Colocation of 3 VMs, evaluate fluctuating load.
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Dynamic Load: Colocation of 3 VMs, evaluate fluctuating load.
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Decomposition of UFO
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UFO-vCPU achieves 19.8% higher load on average under QoS than Default.

UFO-combined: 69.8% higher load

UFO-emulator: cause vcpu staking




CONCLUSION

UFO: The Ultimate QoS-Aware CPU Core Management

for Virtualized and Oversubscribed Public Clouds

B Three levels CPU coordination

« Host OS & Guest OS
* Inner VM: vCPU threads & emulator threads
« Host scheduler & Guest Applications

B Dynamic management based on QoS

B Higher resource efficiency

Save up to 50% (average of 22%) cores under the same colocation scenario
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Appendix 1: Impact on VM Exits and Caches under Host-Aware Iso
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Figure 16: VM exit frequency and VM exit handled time under
default (D), isolation (I), and host-aware isolation (H), decomposed
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Figure 17: Cache misses-per-kilo-instructions (MPKI) under three
core managers.

« VM exits are handled 2x faster on the host under host-aware isolation.

Compared with Default, Isolation reduces L1D and L1I MPKI by up to 5% and
15% (average of 4.1% and 11%), respectively.



Appendix 2: Comparison with related work

Memcached Nginx MySQL —— Default LN Isolation Host-Aware Iso
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Figure 2: Performance under five core allocation mechanisms. For LC applications, we show the 99 percentile tail latency with increasing
input load (RPS). Horizontal dotted lines represent applications’ QoS targets. For BE applications, we show the execution time of each
benchmark normalized to that under the Default manager. Lower is better.

[1] PLE-KVM: Mitigating excessive vcpu spinning in vm-agnostic kvm. (VEE’21)
[2] eCS: Scaling guest {OS} critical sections with ecs. (USENIX ATC'18)



Appendix 3: High input load cause scheduling frequency decrease

Low input load: request inter-arrival time > request processing time

lrequest 1 arrives l, request 2 arrives
Thread1 Task 1 runnlng Task 2 running
| request 1 run- tlme | context switch

\
| Arrival interval between requests | vCPU %

High input load: request inter-arrival time < request processing time

request 2 arrives
lrequest 1 arrives .

Thread1 Task 1 running Task 2 running

I . :
l request 1 run-tlrpe context switch
I
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